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Abstract

We study the sample complexity of private synthetic data generation over an
unbounded sized class of statistical queries, and show that any class that is privately
proper PAC learnable admits a private synthetic data generator (perhaps non-
efficient). Previous work on synthetic data generators focused on the case that
the query class D is finite and obtained sample complexity bounds that scale
logarithmically with the size |D|. Here we construct a private synthetic data
generator whose sample complexity is independent of the domain size, and we
replace finiteness with the assumption that D is privately PAC learnable (a formally
weaker task, hence we obtain equivalence between the two tasks).

1 Introduction

Generating differentially–private synthetic data [9, 14] is a fundamental task in learning that has won
considerable attention in the last few years [22, 34, 23, 16].

Formally, given a class D of distinguishing functions, a fooling algorithm receives as input IID
samples from an unknown real-life distribution, preal, and outputs a distribution psyn that is ε-close
to preal w.r.t the Integral Probability Metric ([29]), denoted IPMD:

IPMD(p, q) = sup
d∈D

∣∣∣∣ Ex∼p[d(x)]− E
x∼q

[d(x)]

∣∣∣∣ (1)

A DP-SDG is then simply defined to be a differentially private fooling algorithm.

A fundamental question is then: Which classes D can be privately fooled? In this paper, we focus
on sample complexity bounds and give a first such characterization. We prove that a class D is
DP–foolable if and only if it is privately (proper) PAC learnable. As a corollary, we obtain equivalence
between several important tasks within private learning such as proper PAC Learning [25], Data
Release [14], Sanitization [6] and what we will term here Private Uniform Convergence.

Much focus has been given to the task of synthetic data generation. Also, several papers [5, 23, 16,
20, 21] discuss the reduction of private fooling to private PAC learning. In contrast with previous
work, we assume an arbitrary large domain. In detail, previous existing bounds normally scale
logarithmically with the size of the query class D (or alternatively, depend on the size of the domain).
Here we initiate a study of the sample complexity that does not assume that the size of the domain is
fixed. Instead, we only assume that the class is privately PAC learnable, and obtain sample complexity

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



bounds that are independent of the cardinality |D|. We note that the existence of a private synthetic
data generator entails private proper PAC learning, hence our assumption is a necessary condition for
the existence of a DP-SDG.

The general approach taken for generating synthetic data (which we also follow here) is to exploit
an online setup of a sequential game between a generator that aims to fool a discriminator and a
discriminator that attempts to distinguish between real and fake data. The utility and generality of this
technical method, in the context of privacy, has been observed in several previous works [22, 32, 20].
However, in the finite case, specific on-line algorithms, such as Multiplicative Weights [20] and
Follow-the-Perturbed-Leader [37] are considered. The algorithms are then exploited, in a white-box
fashion, that allow easy construction of SDGs. The technical challenge we face in this work is to
generalize the above technique in order to allow the use of no-regret algorithms that work over infinite
classes. Such algorithms don’t necessarily share the attractive traits of MW and FtPL that allow their
exploitation for generating synthetic data. To overcome this, we study here a general framework of
sequential SDGs and show how an arbitrary online algorithm can be turned, via a Black-box process,
into an SDG which in turn can be privatized. We discuss these challenges in more detail in the full
version [10].

Thus, the technical workhorse behind our proof is a learning primitive which is of interest of its own
right. We term it here Sequential Synthetic Data Generator (Sequential-SDG). Similar frameworks
appeared [20, 37] in the context of private-SDGs but also more broadly in the context of generative
learning [19, 27, 18, 17]. We further discuss this deep and important connection between private
learning and generative learning in Section 5

In the sequential-SDG setting, we consider a sequential game between a generator (player G) and a
discriminator (player D). At every iteration, player G proposes a distribution and player D outputs a
discriminating function from a prespecified binary class D. The game stops when player G proposes
a distribution that is close in IPMD distance to the true target distribution. As we focus on the
statistical limits of the model, we ignore the optimization and computational complexity aspects and
we assume that both players are omnipotent in terms of their computational power.

We provide here characterization of the classes that can be sequentially fooled (i.e. classes D for
which we can construct a sequential SDG) and show that the sequentially foolable classes are exactly
Littlestone classes [28, 7]. In turn, we harness sequential SDGs to generate synthetic data together
with a private discriminator in order to generate private synthetic data. Because this framework
assumes only a private learner, we in some sense show that the sequential setting is a canonical
method to generate synthetic data.

To summarize this work contains several contributions: We provide the first domain-size independent
sample complexity bounds for DP-Fooling, and show an equivalence between private synthetic data
generation and private learning. Second, we introduce and characterize a new class of SDGs and
demonstrate their utility in the construction of private synthetic data.

2 Prelimineries

In this section we recall standard definitions and notions in differential privacy and learning (a more
extensive background is also given in the full version [10]). Throughout the paper we will study
classes D of boolean functions defined on a domain X . However, we will often use a dual point of
view where we think of X as the class of functions and on D as the domain. Therefore, in order
to avoid confusion, in this section we let W denote the domain and H ⊆ {0, 1}W to denote the
functions class.

2.1 Differential Privacy and Private Learning

Differential Privacy [13, 12] is a statistical formalism which aims at capturing algorithmic privacy. It
concerns with problems whose input contains databases with private records and it enables to design
algorithms that are formally guaranteed to protect the private information. For more background see
the surveys [15, 35].

The formal definition is as follows: letWm denote the input space. An input instance Ω ∈ Wm is
called a database, and two databases Ω′,Ω′′ ∈ Wm are called neighbours if there exists a single
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i ≤ m such that Ω′i 6= Ω′′i . Let α, β > 0 be the privacy parameters, a randomized algorithm
M : Wm → Σ is called (α, β)-differentially private if for every two neighbouring Ω′,Ω′′ ∈ Wm

and for every event E ⊆ Σ:
Pr
[
M(Ω′) ∈ E

]
≤ eα Pr

[
M(Ω′′) ∈ E

]
+ β.

An algorithm M : ∪∞m=1Wm → Y is called differentially private if for every m its restriction toWm

is (α(m), β(m))-differentially private, where α(m) = O(1) and β(m) is negligible1. Concretely,
we will think of α(m) as a small constant (say, 0.1) and β(m) = O(m− logm).

Private Learning. We next overview the notion of Differentially private learning algorithms [25].
In this context the input database is the training set of the algorithm.

Given a hypothesis classH over a domain W , we say thatH ⊆ {0, 1}W is privately PAC learnable
if it can be learned by a differentially private algorithm. That is, if there is a differentially private
algorithm M and a sample complexity bound m(ε, δ) = poly(1/ε, 1/δ) such that for every ε, δ > 0
and every distribution P over W × {0, 1}, if M receives an independent sample S ∼ Pm then it
outputs an hypothesis hS such that with probability at least 1− δ:

LP(hS) ≤ min
h∈H

LP(h) + ε,

where LP(h) = E(w,y)∼P
[
1[h(w) 6= y]

]
. If M is proper, namely hS ∈ H for every input sample S,

thenH is said to be Privately Agnostically and Properly PAC learnable (PAP-PAC-learnable).

In some of our proofs it will be convenient to consider private learning algorithms whose privacy
parameter α satisfies α ≤ 1 (rather than α = O(1) as in the definition of private algorithms). This can
be done without loss of generality due to privacy amplification theorems (see, for example (similar,
for example [35] (Definition 8.2) and references within (see also the full version [10] for further
details).

Sanitization. The notion of sanitization has been introduced by (author?) [9] and further studied in
[6]. LetH ⊆ {0, 1}W be a class of functions. An (ε, δ, α, β,m)-sanitizer forH is an (α, β)-private
algorithm M that receives as an input a sample S ∈ Wm and outputs a function Est : H → [0, 1]
such that with probability at least 1− δ,

(∀h ∈ H) :
∣∣∣Est(h)− |{w ∈ S : h(w) = 1}|

|S|

∣∣∣ ≤ ε.
We say that H is sanitizable if there exists an algorithm M and a bound m(ε, δ) = poly(1/ε, 1/δ)
such that for every ε, δ > 0, the restriction of M to samples of any size m ≥ m(ε, δ) is an
(ε, δ, α, β,m)-sanitizer forH with α = α(m) = O(1) and β = β(m) negligible.

Private Uniform Convergence. A basic concept in Statistical Learning Theory is the notion of
uniform convergence. In a nutshell, a class of hypothesesH satisfies the uniform convergence property
if for any unknown distribution P over examples, one can uniformly estimate the expected losses
of all hypotheses in H given a large enough sample from P . Uniform convergence and statistical
learning are closely related. For example, the Fundamental Theorem of PAC Learning asserts that
they are equivalent for binary-classification [33].

This notion extends to the setting of private learning: a class H satisfies the Private Uniform
Convergence property if there exists a differentially private algorithm M and a sample complexity
bound m(ε, δ) = poly(1/ε, 1/δ) such that for every distribution P overW × {0, 1} the following
holds: if M is given an input sample S of size at least m(ε, δ) which is drawn independently from P,
then it outputs an estimator L̂ : H → [0, 1] such that with probability at least (1− δ) it holds that

(∀h ∈ H) :
∣∣L̂(h)− LP(h)

∣∣ ≤ ε.
Note that without the privacy restriction, the estimator

L̂(h) = LS(h) :=
|{(wi, yi) ∈ S : h(wi) 6= yi}|

|S|
satisfies the requirement for m = Õ(d/ε2), where d is the VC-dimension ofH; this follows by the
celebrated VC-Theorem [36, 33].

1I.e. β(m) = o(m−k) for every k > 0.

3



3 Problem Setup

We assume a domain X and we let D ⊆ {0, 1}X be a class of functions over X . The class D is
referred to as the discriminating functions class and its members d ∈ D are called discriminating
functions or distinguishers. We let ∆(X ) denote the space of distributions over X . Given two
distributions p, q ∈ ∆(X ), let IPMD(p, q) denote the IPM distance between p and q as in Eq. (1).

It will be convenient to assume thatD is symmetric, i.e. that whenever d ∈ D then also its complement,
1− d ∈ D. Assuming that D is symmetric will not lose generality and will help simplify notations.
We will also use the following shorthand: given a distribution p and a distinguisher d we will often
write

p(d) := E
x∼p

[d(x)].

Under this assumption and notation we can remove the absolute value from the definition of IPM:

IPMD(p, q) = sup
d∈D

(p(d)− q(d)) . (2)

3.1 Synthetic Data Generators

A synthetic data generator (SDG), without additional constraints, is defined as follows
Definition 1 (SDG). An SDG, or a fooling algorithm, for D with sample complexity m(ε, δ) is an
algorithm M that receives as input a sample S of points from X and parameters ε, δ such that the
following holds: for every ε, δ > 0 and every target distribution preal, if S is an independent sample
of size at least m(ε, δ) from preal then

Pr
[
IPMD(psyn, preal) < ε

]
≥ 1− δ,

where psyn := M(S) is the distribution outputted by M , and the probability is taken over S ∼
(preal)

m as well as over the randomness of M .

We will say that a class is foolable if it can be fooled by an SDG algorithm whose sample complexity
is poly(1

ε ,
1
δ ). Foolability, without further constraints, comes with the following characterization

which is an immediate corollary (or rather a reformulation) of the celebrated VC Theorem ([36]).

Denote by Memp an algorithm that receives a sample S and returns Memp(S) := pS , the empirical
distribution over S.
Observation 1 ([36]). The following statements are equivalent for a class D ⊆ {0, 1}X :

1. D is PAC–learnable.

2. D is foolable.

3. D satisfies the uniform convergence property.

4. D has a finite VC-dimension.

5. Memp is a fooling algorithm for D with sample complexity m = O( log 1/δ
ε2 ).

Observation 1 shows that foolability is equivalent to PAC-learnability (and in turn to finite VC di-
mension). We will later see analogous results for DP–Foolability (which is equivalent to differentially
private PAC learnability) and Sequential–Foolability (which is equivalent to online learnability).

We now discuss the two fundamental models that are the focus of this work – DP–Foolability and
Sequential–Foolability.

3.2 DP–Synthetic Data Generators

We next introduce the notion of a DP–synthetic data generator and DP–Foolability. As discussed,
DP-SDGs have been the focus of study of several papers [9, 14, 22, 34, 23, 16].
Definition 2 (DP-SDG). A DP-SDG, or a DP-fooling algorithm M for a class D is an algorithm
that receives as an input a finite sample S and two parameters (ε, δ) and satisfies:

4



• Differential Privacy. For every m, the restriction of M to input samples S of size m is
(α(m), β(m))-differentially private, where α(m) = O(1) and β(m) is negligible.

• Fooling. M fools D: there exists a sample complexity bound m = m(ε, δ) such that for
every target distribution preal if S is a sample of at least m examples from preal then
IPMD(psyn, preal) ≤ ε with probability at least 1− δ, where psyn is the output of M on
the input sample S.

We will say in short that a class D is DP– Foolable if there exists a DP-SDG for the class D with
sample complexity m = poly(1/ε, 1/δ).

3.3 Sequential–Synthetic Data Generators

We now describe the second model of foolability which, as discussed, is the technical engine behind
our proof of equivalence between DP-foolability and DP-learning.

Sequential-SDGs A Sequential-SDG can be thought of as a sequential game between two players
called the generator (denoted by G) and the discriminator (denoted by D). At the beginning of the
game, the discriminator D receives the target distribution which is denoted by preal. The goal of the
generator G is to find a distribution p such that p and preal are ε-indistinguishable with respect to
some prespecified discriminating class D and an error parameter ε > 0, i.e.

IPMD(p, preal) ≤ ε.

We note that both players know D and ε. The game proceeds in rounds, where in each round t the
generator G submits to the discriminator a candidate distribution pt and the discriminator replies
according to the following rule: if IPMD(pt, preal) ≤ ε then the discriminator replies “WIN” and the
game terminates. Else, the discriminator picks dt ∈ D such that |preal(dt)− pt(dt)| > ε, and sends
dt to the generator along with a bit which indicates whether pt(dt) > preal(dt) or pt(dt) < preal(dt).
Equivalently, instead of transmitting an extra bit, we assume that the discriminator always sends
dt ∈ D ∪ (1−D) s.t.

preal(dt)− pt(dt) > ε. (3)

Definition 3 (Sequential–Foolability). Let ε > 0 and let D be a discriminating class.

1. D is called ε-Sequential–Foolable if there exists a generator G and a bound T = T (ε) such
that G wins any discriminator D with any target distribution preal after at most T rounds.

2. The round complexity of Sequential–Fooling D is defined as the minimal upper bound T (ε)
on the number of rounds that suffice to ε–Fool D.

3. D is called Sequential–Foolable if it is ε-Sequential foolable for every ε > 0 with T (ε) =
poly(1/ε).

In the next section we will see that if D is ε-Sequential–Foolabe for some fixed ε < 1/2 then it is
Sequential–Foolable with round complexity T (ε) = O(1/ε2).

4 Results

Our main result characterizes DP–Foolability in terms of basic notions from differential privacy and
PAC learning.
Theorem 1 (Characterization of DP–Fooling). The following statements are equivalent for a class
D ⊆ {0, 1}X :

1. D is privately and properly learnable in the agnostic PAC setting.

2. D is DP–Foolable.

3. D is sanitizable.

4. D satisfies the private uniform convergence property.
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Theorem 1 shows a qualitative equivalence between the relevant four notions, quantitative bounds on
the entailed sample complexity are provided in the full version [10].

The implication Item 3 =⇒ Item 1 was known prior to this work and was proven in [6] (albeit
the pure case). The equivalence among Items 2 to 4 is natural and expected. Indeed, each of them
expresses the existence of a private algorithm that publishes, privately, certain estimates of all
functions in D.

The fact that Item 1 implies the other three items is perhaps more surprising, and the main contribution
of this work, and we show that Item 1 implies Item 2. Our proof of that exploits the Sequential
framework. In a nutshell, we observe that a class that is both sequentially foolable and privately pac
learnable is also DP-foolable: this result follows by constructing a sequential SDG that with a private
discriminator, that is assumed to exists, combined with standard compositional and preprocessing
arguments regarding the privacy of the generators output.

Thus to prove the implication we only need to show that private PAC learning implies sequential
foolability. This result follows from Corollary 2 that provides characterization of sequential foolable
classes as well as a recent result by (author?) [1] that shows that private PAC learnable classes have
finite Littlestone dimension. See the full version [10] for a complete proof.

Private learnability versus private uniform convergence. The equivalence Item 1 ⇐⇒ Item 4
is between private learning and private uniform convergence. The non-private analogue of this
equivalence is a cornerstone in statistical learning; it reduces the statistical challenge of minimizing
an unknown population loss to an optimization problem of minimizing a known empirical estimate.
In particular, it yields the celebrated Empirical Risk Minimization (ERM) principle: “Output h ∈ H
that minimizes the empirical loss”. We therefore highlight this equivalence in the following corollary:

Corollary 1 (Private proper learning = private uniform convergence). Let H ⊆ {0, 1}X . Then H
is privately and properly PAC learnable if and only ifH satisfies the private uniform convergence
property.

Sequential–SDGs We next describe our characterization of Sequential-SDGs. As discussed, this
characterization is the technical heart behind the equivalence between private PAC learning and
DP-foolability. Nevertheless we believe that it may be of interest of its own right. We thus provide
quantitative upper and lower bounds on the round complexity of Sequential-SDGs in terms of the
Littlestone dimension (see [7] or the full version [10] for the exact definition).

Theorem 2 (Quantitative round-complexity bounds). Let D be a discriminating class with dual
Littlestone dimension `∗ and let T (ε) denote the round complexity of Sequential–Fooling D. Then,

1. T (ε) = O
(
`∗

ε2 log `∗

ε

)
for every ε.

2. T (ε) ≥ `∗

2 for every ε < 1
2 .

It would be interesting to close the gap between the two bounds in terms of ε > 0, and we leave it for
future work.

To prove Item 1 we construct a generator with winning strategy which we outline in the full version
[10]. A complete proof of Theorem 2 appears in the full version [10]. As a corollary we get the
following characterization of Sequential–Foolability:

Corollary 2 (Characterization of Sequential–Foolability). The following are equivalent for D ⊆
{0, 1}X :

1. D is Sequential–Foolable.

2. D is ε-Sequential–Foolable for some ε < 1/2.

3. D has a finite dual Littlestone dimension.

4. D has a finite Littlestone dimension.

Corollary 2 follows directly from Theorem 2 (which gives the equivalences 1 ⇐⇒ 2 ⇐⇒ 3) and
from [8] (which gives the equivalence 3 ⇐⇒ 4, see the full version [10] for further detail).
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Tightness of ε = 1
2 . The implication Item 2 =⇒ Item 1 can be seen as a boosting result: i.e.

“weak” foolability for some fixed ε < 1/2 implies “strong” foolability for every ε. The following
example demonstrates that the dependence on ε in Item 2 can not be improved beyond 1

2 : let X be
the unit circle in R2, and let D consist of all arcs whose length is exactly half of the circumference. It
is easy to verify that the uniform distribution µ over X satisfies IPMD(µ, preal) ≤ 1

2 for any target
distribution preal (since µ(d) = 1

2 for all d ∈ D). Therefore D is (ε = 1
2 )-Sequential–Foolable with

round complexity T ( 1
2 ) = 1. On the other hand, D has an infinite Littlestone dimension and therefore

is not Sequential–Foolable.

Sequential-SDGs versus DP-SDGs So far we have introduced and characterized two formal setups
for synthetic data generation. It is therefore natural to compare and seek connections between these
two frameworks. We first note that the DP setting may only be more restrictive than the Sequential
setting:

Corollary 3 (DP–Foolability implies Sequential–Foolability). Let D be a class that is DP–Foolable.
Then D has finite Littlestone dimension and in particular is Sequential–Foolable.

Corollary 3 follows from Theorem 1: indeed, the latter yields that DP–Foolability is equivalent to
Private agnostic proper -PAC learnability (PAP-PAC), and by [1] PAP-PAC learnability implies a
finite Littlestone dimension which by Corollary 2 implies Sequential–Foolability.

Towards a converse of Corollary 3. By the above it follows that the family of classes D that can
be fooled by a DP algorithm is contained in the family of all Sequential–Foolable classes; specifically,
those which admit a Sequential-SDG with a differentially private discriminator.

We do not know whether the converse holds; i.e. whether “Sequential–Foolability =⇒ DP– Foola-
bility”. Nevertheless, the implication “PAP-PAC learnability =⇒ DP–Foolability” (Theorem 1) can
be regarded as an intermediate step towards this converse. Indeed, as discussed above, PAP-PAC
learnablity implies Sequential–Foolablility. It is therefore natural to consider the following question,
which is equivalent2 to the converse of Corollary 3:

Question 1. Let D be a class that has finite Littlestone dimension. Is D properly and privately
learnable in the agnostic PAC setting?

A weaker form of this question – Whether every Littlestone class is privately PAC Learnable? – was
posed by [1] as an open question (and was recently resolved in [11]).

5 Discussion

In this work we develop a theory for two types of constrained-SDG, sequential and private. Let us
now discuss SDGs more generally, and we broadly want to consider algorithms that observe data,
sampled from some real-life distribution, and in turn generate new synthetic examples that resemble
real-life samples, without any a-priori constraints. For example, consider an algorithm that receives
as input some tunes from a specific music genre (e.g. jazz, rock, pop) and then outputs a new tune.

Recently, there has been a remarkable breakthrough in the the construction of such SDGs with the
introduction of the algorithmic frameworks of Generative Adversarial Networks (GANs) [18, 17], as
well as Variational AutoEncoders (VAE) [26, 31]. In turn, the use of SDGs has seen many potential
applications [24, 30, 38]. Here we follow a common interpretation of SDGs as IPM minimizers [2, 4].
However, it was also observed [2, 3] that there is a critical gap between the task of generating new
synthetic data (such as new tunes) and the IPM minimization problem: In detail, Observation 1
shows that the IPM framework allows certain “bad" solutions that memorize. Specifically, let S
be a sufficiently large independent sample from the target distribution and consider the empirical
distribution as a candidate solution to the IPM minimization problem. Then, with high probability,
the IPM distance between the empirical and the target distribution vanishes as |S| grows.

To illustrate the problem, imagine that our goal is to generate new jazz tunes. Let us consider the
discriminating class of all human music experts. The solution suggested above uses the empirical

2I.e. an affirmative answer to Question 1 is equivalent to the converse of Corollary 3.

7



distribution and simply “generates" a tune from the training set3. This clearly misses the goal of
generating new and original tunes but the IPM distance minimization framework does not discard this
solution. For this reason we often invoke further restrictions on the SDG and consider constrained-
SDGs. For example, [4] suggests to restrict the class of possible outputs psyn and shows that, under
certain assumptions on the distribution preal, the right choice of class D leads to learning the true
underlying distribution (in Wasserstein distance).

In this work we explored two other types of constrained-SDGs, DP–SDGs and Sequential–SDGs,
and we characterized the foolable classes in a distribution independent model, i.e. without making
assumptions on the distribution preal. One motivation for studying these models, as well as the
interest in a distribution independent setting, is the following underlying question:

The output of Synthetic Data Generators should be new examples. But in what sense we require the
output to be novel or distinct from the training set? How and in what sense we should avoid copying

the training data or even outputting a memorized version of it?

To answer such questions is of practical importance. For example, consider a company that wishes to
automatically generate music or images to be used commercially. One approach could be to train an
SDG, and then sell the generated output. What can we say about the output of SDGs in this context?
Are the images generated by the SDG original? Are they copying the data? or breaching copyright?

In this context, the differentially private setup comes with a very attractive interpretation that provides
further motivation to study DP-SDGs, beyond preserving privacy of the dataset. To illustrate our
interpretation of differential privacy as a criterion for originality consider the following situation:
imagine that Lisa is a learning painter. She has learned to paint by observing samples of painting,
produced by a mentor painter Mona. After a learning process, she draws a new painting L. Mona
agrees that this new painting is a valid work of art, but Mona claims the result is not an original
painting but a mere copy of a painting, say M , produced by Mona.

How can Lisa argue that paint L is not a plagiary? The easiest argument would be that she had never
observed M . However, this line of defence is not always realistic as she must observe some paintings.
Instead, we will argue using the following thought experiment: What if Lisa never observed M?
Might she still create L? If we could prove that this is the case, then one could argue similarly that L
is not a palgiary.

The last argument is captured by the notion of differential privacy. In a nutshell, a randomized algo-
rithm that receives a sequence of data points x̄ as input is differentially private if removing/replacing
a single data point in its input, does not affect its output y by much; more accurately, for any event
E over the output y that has non-negligible probability on input x̄, then the probability remains
non-negligible even after modifying one data point in x̄.

The sequential setting also comes with an appealing interpretation in this context. A remarkable
property of existing SDGs (e.g. GANs), that potentially reduces the likeliness of memorization, is
that the generator’s access to the sample is masked. In more detail, the generator only has restricted
access to the training set via feedback from a discriminator that observes real data vs. synthetic data.
Thus, potentially, the generator may avoid degenerate solutions that memorize. Nevertheless, even
though the generator is not given a direct access to the training data, it could still be that information
about this data could "leak" through the feedback it receives from the discriminator. This raises
the question of whether Sequential–Foolability can provide guarantees against memorization, and
perhaps more importantly, in what sense? To start answering this question part of this work aims to
understand the interconnection between the task of Sequential-Fooling and the task of DP–Fooling.

Finally, the above questions also motivate our interest in a distribution-independent setting, that
avoids assumptions on the distribution preal which we often don’t know. In detail, if we only cared
about the resemblence between preal and psyn then we may be content with any algorithm that
performs well in practice regardless of whether certain assumptions that we made in the analysis
hold or not. But, if we care to obtain guarantees against copying or memorizing, then these should
principally hold. And thus we should prefer to obtain our guarantees without too strong assumptions
on the distribution preal.

3There are at most 7 · 109 music experts in the world. Hence, by standard concentration inequalities a sample
of size roughly 9

ε2
log 10 suffices to achieve IPM distance at most ε with high probability.
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