Correlation Robust Influence Maximization: Supplementary Material

Louis Chen*
Naval Postgraduate School
Monterey, California

Divya Padmanabhan ${ }^{\dagger}$ Chee Chin Lim ${ }^{\ddagger}$ Karthik Natarajan ${ }^{\S}$
SUTD
Singapore
SUTD
Singapore
SUTD

Broader Impact

The aim of this work is to address the possible pitfalls to the independence assumption in a social network, as used in the study of influence maximization. As discussed previously, how an idea, product, or piece of news makes its way through a network could very well be impacted by natural social biases, thus connecting parts of a social network in ways that could have been unforeseen. The methodology presented thus attempts to make this possibility a consideration during the selection of seed set, and hence find "influential" members to a network regardless of whatever underlying correlations may exist. This potentially can reduce the impact of biases that the independence assumption may cause.

The Correlation Robust Influence Function $f^{c o r r}$

Theorem 1 Let $G=(V, E)$ be a directed graph, $\mathcal{S} \subseteq V$ a seed set, and $\mathbf{p} \in[0,1]^{E}$ a vector of edge likelihoods. Then $\min _{\theta \in \Theta} \mathbf{E}_{\tilde{\mathbf{c}} \sim \theta}[Z(\tilde{\mathbf{c}}, \mathcal{S})]$ is the value to the following polynomial sized linear program.

$$
\begin{align*}
\min _{\theta \in \Theta} \mathbf{E}_{\tilde{\mathbf{c}} \sim \theta}[Z(\tilde{\mathbf{c}}, \mathcal{S})]=\min _{\boldsymbol{\pi} \in \mathbb{R}^{V}} & \sum_{i \in V \backslash \mathcal{S}} \pi_{i} \\
& \text { s.t } \quad \tag{3}\\
& \pi_{i}=1 \text { for } i \in \mathcal{S}, \\
& \pi_{i}-\pi_{j} \leq 1-p_{i j} \text { for }(i, j) \in E, \\
& 0 \leq \pi_{i} \leq 1 \text { for } i \in V
\end{align*}
$$

Proof: According to [1], if we let M assume a large value (anything at least $|V \backslash \mathcal{S}|$), then $\min _{\theta \in \Theta(p)} \mathbf{E}_{\tilde{\mathbf{c}} \sim \theta}[Z(\tilde{\mathbf{c}}, \mathcal{S})]$ can be formulated as the following linear program:

[^0]\[

$$
\begin{array}{ll}
\min _{\pi \in \mathbb{R}^{V \backslash s, t\}}, \lambda} & \sum_{i, j \in E} 0 \cdot \lambda_{i j}^{0}+M \cdot \lambda_{i j}^{1}+\sum_{i \in \mathcal{S}} 0 \cdot \lambda_{s i}^{0}+M \cdot \lambda_{s i}^{1}+\sum_{i \in N \backslash \mathcal{S}} 0 \cdot \lambda_{i t}^{0}+\lambda_{i t}^{1} \\
\text { subject to } & \pi_{i}-\pi_{j} \leq \lambda_{i j}^{0} \forall(i, j) \in E \\
& \pi_{i}-\pi_{j}-\left(1-p_{i j}\right) \leq \lambda_{i j}^{1} \forall(i, j) \in E \\
& \pi_{s}-\pi_{i} \leq \lambda_{s i}^{0} \forall i \in \mathcal{S} \\
& \pi_{s}-\pi_{i} \leq \lambda_{s i}^{1} \quad \forall i \in \mathcal{S} \\
& \pi_{i}-\pi_{t} \leq \lambda_{i t}^{0} \forall i \in V \backslash \mathcal{S} \\
& \pi_{i}-\pi_{t} \leq \lambda_{i t}^{1} \quad \forall i \in V \backslash \mathcal{S} \\
& 0 \leq \pi \leq 1 ; \quad \forall i \in V \\
& \lambda \geq 0 \\
& \pi_{s}=1, \pi_{t}=0
\end{array}
$$
\]

Upon inspection, the program reduces to the desired program.
Corollary 1 (Correlation Robust Influence Likelihood) For an arbitrary seed set \mathcal{S} and vector of edge likelihoods $\mathbf{p} \in[0,1]^{E}$, let π^{*} solve (3). Then for each $i \in V \backslash \mathcal{S}$,

$$
\begin{gathered}
\pi_{i}^{*}=\left[\max _{\gamma \in \Gamma(S, i)} L(\gamma)\right]^{+}, \\
\mathbb{P}_{\theta^{*}}(\text { Node } i \text { is reachable from } \mathcal{S} \text { in } G(\tilde{\mathbf{c}}))=\pi_{i}^{*} \quad \forall \theta^{*} \in \arg \min _{\theta \in \Theta} \mathbf{E}_{\tilde{\mathbf{c}} \sim \theta}[Z(\tilde{\mathbf{c}}, \mathcal{S})] .
\end{gathered}
$$

In light of this, we define the correlation robust influence likelihood of i as π_{i}^{*}. In particular, π_{i}^{*} is no greater than the IC model's likelihood that i is influenced, that is, $\pi_{i}^{*} \leq$ $\mathbb{P}_{\theta_{i c}}($ Node i is reachable from $\mathcal{S})$.

Proof: We begin by establishing the equality

$$
\pi_{i}^{*}=\left[\max _{\gamma \in \Gamma(S, i)} L(\gamma)\right]^{+} .
$$

Let i be such that $\Gamma(S, i) \neq \emptyset$. Consider any path $\gamma \in \Gamma(S, i)$ and let $\gamma=\left(i_{0} \rightarrow i_{1} \rightarrow i_{2} \rightarrow \ldots \rightarrow\right.$ $i_{l}=i$), where $i_{0} \in S$. Since π^{*} is feasible to (3), we must have,

$$
\begin{gathered}
\pi_{i_{0}}^{*}-\pi_{i_{1}}^{*} \leq 1-p_{i_{0}, i_{1}} \\
\pi_{i_{1}}^{*}-\pi_{i_{2}}^{*} \leq 1-p_{i_{1}, i_{2}} \\
\vdots \\
\pi_{i_{l-1}}^{*}-\pi_{i}^{*} \leq 1-p_{i_{l-1}, i_{l}}
\end{gathered}
$$

Summation of these inequalities gives $\pi_{i_{0}}^{*}-\pi_{i}^{*} \leq \sum_{l=1}^{l}\left(1-p_{i_{l-1}, i_{l}}\right)$. Since $i_{0} \in \mathcal{S}$, it follows that $\pi_{i_{0}}^{*}=1$, so that $\pi_{i}^{*} \geq L(\gamma)$. Hence, $\pi_{i}^{*}=\left[\max _{\gamma \in \Gamma(S, i)} L(\gamma)\right]^{+}$.
On the other hand, observe that if $\Gamma(S, i) \neq \emptyset$, then the decision variable π_{i} has no lower bound other than 0 . Further, $\left[\max _{\gamma \in \Gamma(S, i)} L(\gamma)\right]^{+}=0$, in such a case, as desired.
We next establish the remaining equality

$$
\mathbb{P}_{\theta^{*}}(\text { Node } i \text { is reachable from } \mathcal{S})=\pi_{i}^{*} \quad \forall \theta^{*} \in \arg \min _{\theta \in \Theta} \mathbb{E}_{\tilde{\mathbf{c}} \sim \theta}[Z(\tilde{\mathbf{c}}, \mathcal{S})]
$$

Taking note of

$$
\begin{aligned}
\min _{\theta \in \Theta} & \mathbb{E}_{\theta}[Z(\tilde{\mathbf{c}}, \mathcal{S})]=\min _{\theta \in \Theta} \sum_{i \in V \backslash \mathcal{S}} \mathbb{P}_{\theta}(\text { Node } i \text { is reachable from } \mathcal{S} \text { in } G(\tilde{\mathbf{c}})) \\
& \geq \sum_{i \in V \backslash \mathcal{S}} \min _{\theta \in \Theta} \mathbb{P}_{\theta}(\text { Node } i \text { is reachable from } \mathcal{S} \text { in } G(\tilde{\mathbf{c}})) \geq \sum_{i \in V \backslash \mathcal{S}}\left[\max _{\gamma \in \Gamma(\mathcal{S}, i)} L(\gamma)\right]^{+} \\
& =\sum_{i \in V \backslash \mathcal{S}} \pi_{i}^{*}=\min _{\theta \in \Theta} \mathbb{E}_{\theta}[Z(\tilde{\mathbf{c}}, \mathcal{S})],
\end{aligned}
$$

and that for any $i \in V \backslash \mathcal{S}$, it holds that

$$
\min _{\theta \in \Theta} \mathbb{P}_{\theta}(\text { Node } i \text { is reachable from } \mathcal{S} \text { in } G(\tilde{\mathbf{c}})) \geq\left[\max _{\gamma \in \Gamma(\mathcal{S}, i)} L(\gamma)\right]^{+}
$$

so we arrive at the desired conclusion.
Corollary 2 (Path existence under Correlation Robustness) Let \mathcal{S} be an arbitrary seed set, and let $\theta^{*} \in \Theta$ be any solution to $\min _{\theta \in \Theta} \mathbb{E}_{\theta}[R(\tilde{\mathbf{c}}, \mathcal{S})]$. Let $\bar{\Gamma}(\mathcal{S}, i):=\arg \max _{\gamma \in \Gamma(\mathcal{S}, i)} L(\gamma)$, and π^{*} is any optimal solution to $\sqrt{3}$. If $i \notin \mathcal{S}$ and $\max _{\gamma \in \Gamma(S, i)} L(\gamma)>0$, then

$$
\mathbb{P}_{\theta^{*}}\left(\cup_{\gamma \in \bar{\Gamma}(\mathcal{S}, i)}[G(\tilde{\mathbf{c}}) \text { contains path } \gamma]\right)=\pi_{i}^{*}=\mathbb{P}_{\theta^{*}}\left(\cap_{\gamma \in \bar{\Gamma}(\mathcal{S}, i)}[G(\tilde{\mathbf{c}}) \text { contains path } \gamma]\right),
$$

In addition, if $\max _{\gamma \in \Gamma(\mathcal{S}, i)} L(\gamma)>0$, then for any path $\gamma \in \bar{\Gamma}(\mathcal{S}, i)$, at most one of the arcs in γ is ever missing in the random graph $G(\tilde{\mathbf{c}}) \sim \theta^{*}$, almost surely.

Proof: If θ^{*} solves $\min _{\theta \in \Theta} \mathbb{E}_{\theta}[R(\tilde{\mathbf{c}}, \mathcal{S})], i \notin \mathcal{S}$, and $\max _{\gamma \in \Gamma(S, i)} L(\gamma)>0$, then for any $\gamma^{*} \in \bar{\Gamma}(\mathcal{S}, i)$,

$$
\begin{aligned}
\max _{\gamma \in \Gamma(S, i)} L(\gamma) & =\mathbb{P}_{\theta^{*}}(\text { Node } i \text { is reachable from } \mathcal{S} \text { in } G(\tilde{\mathbf{c}}))=\mathbb{P}_{\theta^{*}}\left(\cup_{\gamma \in \Gamma(\mathcal{S}, i)}[G(\tilde{\mathbf{c}}) \text { contains path } \gamma]\right) \\
& \geq \mathbb{P}_{\theta^{*}}\left(\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{*}\right]\right) \stackrel{5 p}{\geq} L\left(\gamma^{*}\right)=\max _{\gamma \in \Gamma(S, i)} L(\gamma) .
\end{aligned}
$$

So we conclude that

$$
\mathbb{P}_{\theta^{*}}\left(\cup_{\gamma \in \Gamma(\mathcal{S}, i)}[G(\tilde{\mathbf{c}}) \text { contains path } \gamma]\right)=\mathbb{P}_{\theta^{*}}\left(\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{*}\right]\right),
$$

which implies

$$
\begin{aligned}
\mathbb{P}_{\theta^{*}}\left(\cup_{\gamma \in \bar{\Gamma}(\mathcal{S}, i)}[G(\tilde{\mathbf{c}}) \text { contains path } \gamma]\right) & \geq \mathbb{P}_{\theta^{*}}\left(\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{*}\right]\right) \\
& =\mathbb{P}_{\theta^{*}}\left(\cup_{\gamma \in \Gamma(\mathcal{S}, i)}[G(\tilde{\mathbf{c}}) \text { contains path } \gamma]\right),
\end{aligned}
$$

as desired.
For the remaining equality in the statement, we note that if

$$
\mathbb{P}_{\theta^{*}}\left(\cap_{\gamma \in \bar{\Gamma}(\mathcal{S}, i)}[G(\tilde{\mathbf{c}}) \text { contains path } \gamma]\right)<\mathbb{P}_{\theta^{*}}\left(\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{*}\right]\right)
$$

then $\mathbb{P}_{\theta^{*}}\left(\left[G(\tilde{\mathbf{c}})\right.\right.$ contains path $\left.\gamma^{*}\right] \backslash\left[G(\tilde{\mathbf{c}})\right.$ contains path $\left.\left.\gamma^{\prime}\right]\right)>0$ for some $\gamma^{\prime} \in \bar{\Gamma}(\mathcal{S}, i)$, which means

$$
\begin{aligned}
\mathbb{P}_{\theta^{*}}\left(\cup_{\gamma \in \Gamma(\mathcal{S}, i)}[G(\tilde{\mathbf{c}}) \text { contains path } \gamma]\right) & \geq \mathbb{P}_{\theta^{*}}\left(\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{\prime}\right]\right) \\
& +\mathbb{P}_{\theta^{*}}\left(\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{*}\right] \backslash\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{\prime}\right]\right) \\
& >\mathbb{P}_{\theta^{*}}\left(\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{*}\right] \backslash\left[G(\tilde{\mathbf{c}}) \text { contains path } \gamma^{\prime}\right]\right)
\end{aligned}
$$

a contradiction.
As for the last statement, if $\gamma \in \bar{\Gamma}(\mathcal{S}, i)$, we observe that under the joint distribution θ^{*} it cannot be the case that - with positive probability - more than one arc is missing from $G(\tilde{\mathbf{c}})$, else (5) would be a strict inequality, contradicting the fact that Corollary 1 implies that it should be an equality.

Corollary 3 Given an arbitrary seed set \mathcal{S} and vector of edge likelihoods $\mathbf{p} \in[0,1]^{E}$, let π^{*} denote the optimal solution to (3). Let $\tilde{q} \sim \operatorname{Unif}[0,1], V(\tilde{q}):=\left\{i: \tilde{q}<\pi_{i}^{*}\right\}$,

$$
E(\tilde{q}):=\left\{(k, j): \pi_{k}^{*}>\pi_{j}^{*}, \tilde{q} \notin\left[\pi_{k}^{*}-1+p_{k j}, \pi_{k}^{*}\right]\right\} \cup\left\{(k, j): \pi_{k}^{*} \leq \pi_{j}^{*}, \tilde{q} \in\left(0, p_{k j}\right]\right\}
$$

and $\mathbf{c}(\tilde{q}) \in\{0,1\}^{E}$ be such that $c(\tilde{q})_{i j}=1$ iff $(i, j) \in E(\tilde{q})$. Then $\mathbf{c}(\tilde{q}) \sim \theta^{*}$ for some θ^{*} solving Equation (1). In particular, $V(\tilde{q})$ is the set of all nodes reachable from \mathcal{S} in the graph $G(\tilde{q})=(V, E(\tilde{q}))$, so that $\mathbb{E}_{\tilde{q}}[|V(\tilde{q})|]=\min _{\theta \in \Theta} \mathbb{E}_{\tilde{\mathbf{c}} \sim \theta}[R(\tilde{\mathbf{c}}, \mathcal{S})]=|\mathcal{S}|+\mathbb{E}_{\tilde{q}}[Z(\mathbf{c}(\tilde{q}), \mathcal{S})]$.

Proof: Consider the max-flow problem of $Z(c, \mathcal{S})$ for arbitrary $c \in\{0,1\}^{E}$. Then the two collections $\{s\} \cup \mathcal{S} \cup\left\{j: x_{j t}^{*}=1, j \in V \backslash \mathcal{S}\right\}$ and $\{t\} \cup\left\{j: x_{j t}^{*}=0, j \in V \backslash \mathcal{S}\right\}$ form a minimum s - t cut. In particular, $\left\{j: x_{j t}^{*}=1, j \in V \backslash \mathcal{S}\right\}$ is precisely the set of nodes outside of \mathcal{S} that are reached, and j is reached if and only if the edge (j, t) runs across this minimum cut.
With π^{*} an optimal solution to (3), we may characterize a $\theta^{*} \in \Theta$ consistent with \boldsymbol{p} that solves $\min _{\theta \in \Theta} \mathbf{E}[Z(\tilde{c}, \mathcal{S})]=\min _{\theta \in \Theta} \mathbf{E}[R(\tilde{c}, \mathcal{S})]-|S|$. This characterization will be defined on the probability space $((0,1], \mathcal{B}, \lambda)$, and for the sake of notation, in the following we'll let $F_{i j}$ denote the cdf for edge (i, j) that is live with probability $\boldsymbol{p}_{i j}$. For all $(i, j) \in E$, if $\pi_{i}^{*}>\pi_{j}^{*}$, define for all $q \in(0,1]$,

$$
\tilde{c}_{i j}(q):= \begin{cases}F_{i j}^{-1}\left(q-\pi_{j}^{*}\right) ; & \pi_{j}^{*}<q \leq \pi_{i}^{*} \\ F_{i j}^{-1}\left(1-p_{i j}+q\right) ; & 0<q \leq \pi_{i}^{*}-\left(1-p_{i j}\right) \\ F_{i j}^{-1}\left(1-p_{i j}-\pi_{j}^{*}+q\right) ; & \pi_{i}^{*}-\left(1-p_{i j}\right)<q \leq \pi_{j}^{*} \\ F_{i j}^{-1}(q) ; & \pi_{i}^{*}<q \leq 1,\end{cases}
$$

otherwise if $\pi_{i}^{*} \leq \pi_{j}^{*}$ define $\tilde{c}_{i j}(q):=F_{i j}^{-1}(1-q)$. Finally, for all $(i, j) \notin E$ but are auxillary arcs with s or t as an endpoint, we can let $\tilde{c}_{i j}(q):=+\infty$ if $i=s$, else $\tilde{c}_{i j}(q):=1$ for the case that $j=t$. As well, we define

$$
\tilde{\chi}_{i j}(q):= \begin{cases}1 ; & \pi_{i}^{*}>\pi_{j}^{*}, q \in\left[\pi_{j}^{*}, \pi_{i}^{*}\right] \\ 0 ; & \text { otherwise }\end{cases}
$$

The resulting random vector \tilde{c} has as its distribution a solution to $\min _{\theta \in \Theta} \mathbf{E}[Z(\tilde{c}, \mathcal{S})]$. This follows after adopting the arguments in Theorem 3.1 of [1]. It is not hard to see that with $\tilde{q} \sim \operatorname{Unif}(0,1]$, $E(\tilde{q})$ as defined in the statement is precisely $\left\{(k, j): \tilde{c}_{k j}(\tilde{q})=1\right\}$. Furthermore, according to Theorem 3.1 of [1], $\tilde{\chi}_{j t}(\tilde{q})$ is 1 if and only if (j, t) runs across the minimum cut - equivalently, when j is reached. And since $\pi_{t}^{*}=0$ always, we arrive at the characterization of $V(\tilde{q})$.

Correlation Robustness: Maximization and Robust Ratios

Theorem 2 The problem of computing $\max _{\mathcal{S}:|\mathcal{S}| \leq k} f^{\text {corr }}(\mathcal{S})$, given a graph $G=(V, E)$, a vector of edge likelihoods $\mathbf{p} \in[0,1]^{E}$, and an integer number k, is NP-Hard. In particular, we have the following exact formulation as a mixed-integer program.

$$
\begin{aligned}
\max _{\mathcal{S}:|\mathcal{S}| \leq k} f_{p}^{c o r r}(\mathcal{S})=\max & \sum_{(i, j) \in E} z_{i j}\left(p_{i j}-1\right)+\sum_{i \in V} w_{i} \\
& 1-y_{i}-\sum_{j:(j, i) \in E} z_{j i}+\sum_{j:(i, j) \in E} z_{i j} \geq 0 \forall i \in V \\
& w_{i} \geq|V| x_{i}+y_{i}-|V| \forall i \in V \\
& w_{i} \leq \min \left(|V| x_{i}, y_{i}\right) \forall i \in V \\
& \sum_{i \in V} x_{i}=k \\
& y_{i} \geq 0 w_{i} \geq 0 \forall i \in V \\
& z_{i j} \geq 0 \forall(i, j) \in E \\
& x_{i} \in\{0,1\} \forall i \in V
\end{aligned}
$$

Proof: We prove the hardness of computing $\max _{\mathcal{S}:|\mathcal{S}| \leq k} f^{\text {corr }}(\mathcal{S})$ through a reduction from the set cover problem. The proof is along the lines of the proof of hardness of the independent cascade model in [2]. In the set cover problem, there is a universe of elements $\Omega=\{1, \ldots, n\}$, a collection of subsets $J_{1}, \ldots, J_{m} \subseteq \Omega$ (whose union gives Ω), and an integer k. The decision version of the set cover problem is to check if there exists a collection of k subsets, whose union gives Ω. We will now reduce an instance of set cover problem to (2). For this, consider a bipartite graph with a total of $m+n$ vertices corresponding to the m subsets and the n elements of Ω. This bipartite graph contains an edge between a subset node i and an element node j if $j \in J_{i}$. Fix $p_{i j}=1$ for all edges (i, j) in this graph. Then there exist k subsets whose union is Ω is and only if the optimal value to 2 is $k+n$.

Next we will derive the MILP formulation. Using Theorem 1 , we have,

$$
\begin{aligned}
\max _{\mathcal{S}:|\mathcal{S}| \leq k} f_{p}^{c o r r}(\mathcal{S})=\max _{x \in \mathbb{R}^{V}} \min _{\pi \in \mathbb{R}^{V}} & \sum_{i} \pi_{i} \\
\text { subject to } \quad & x_{i} \leq \pi_{i} \forall i \in V \\
& \pi_{i}-\pi_{j} \leq 1-p_{i j} \forall(i, j) \in E \\
& 0 \leq \pi_{i} \leq 1 \quad \forall i \in V \\
& \sum_{i \in V} x_{i}=k \\
& x_{i} \in\{0,1\} \quad \forall i \in V
\end{aligned}
$$

The dual of the inner minimization problem is,

$$
\max _{\mathbf{z} \geq 0, \mathbf{y} \geq 0, \mathbf{w} \geq 0} \sum_{(i, j) \in E} z_{i j}\left(p_{i j}-1\right)+\sum_{i \in V} x_{i} y_{i}: 1-y_{i}-\sum_{j:(j, i) \in E} z_{j i}+\sum_{j:(i, j) \in E} z_{i j} \geq 0 \forall i \in V
$$

Further we linearize the product terms $w_{i}=x_{i} y_{i}$. Summing up the inequality over all i gives us, $\sum_{i \in V}\left(1-y_{i}-\sum_{j:(j, i) \in E} z_{j i}+\sum_{j:(i, j) \in E} z_{i j}\right) \geq 0$. The terms involving z cancel out and we are left with $\sum_{i \in V} y_{i} \leq V$ and since $y_{i} \geq 0$ for all i, we get an upper bound $y_{i} \leq V$.
Using the bounds $0 \leq x_{i} \leq 1$ and $0 \leq y_{i} \leq|V|$, the McCormick inequalities introduced in [3] for w_{i} give us,

$$
|V| x_{i}+y_{i}-|V| \leq w_{i} \leq \min \left(|V| x_{i}, y_{i}\right) \forall i \in V
$$

To see that these inequalities are sufficient to capture $w_{i}=x_{i} y_{i}$, when $x_{i} \in\{0,1\}$, first let $x_{i}=0$. Then the inequalities give us $y_{i}-|V| \leq w_{i} \leq \min \left(0, y_{i}\right)$ and along with the fact that $w_{i} \geq 0$, we get $w_{i}=0$. Now Let $x_{i}=1$. Then the inequalities give us $y_{i} \leq w_{i} \leq \min \left(|V|, y_{i}\right)=y_{i}$. Therefore we get $w_{i}=y_{i}$ and hence these inequalities are tight.

Theorem 3 The correlation robust influence function $f^{\text {corr }}: 2^{V} \rightarrow \mathbb{R}_{+}$is a monotone, submodular function.

Proof: Since $f^{\operatorname{corr}}(\mathcal{S})=|\mathcal{S}|+\min _{\theta \in \Theta} \mathbb{E}_{\theta}[Z(\tilde{\mathbf{c}}, \mathcal{S})]$, submodularity of $g(\mathcal{S}) \quad:=$ $\min _{\theta \in \Theta} \mathbf{E}_{\tilde{\mathbf{c}} \sim \theta} Z[\tilde{\mathbf{c}}, \mathcal{S}]$ implies submodularity of $f^{c o r r}$. If two seed sets S and T with $S \subset T$ and vertex $v \notin T$ are given, then by (7),

$$
\begin{align*}
g(S+v)- & g(S)=\sum_{i \notin(S \cup v)} \max \left(\left[\max _{\gamma \in \Gamma(S, i)} L(\gamma)\right]^{+},\left[\max _{\gamma \in \Gamma(\{v\}, i)} L(\gamma)\right]^{+}\right) \\
& -\left[\sum_{i \notin(S+v)}\left[\max _{\gamma \in \Gamma(S, i)} L(\gamma)\right]^{+}+\left[\max _{\gamma \in \Gamma(S, v)} L(\gamma)\right]^{+}\right] \\
= & \sum_{i \notin(S+v)}\left[\left[\max _{\gamma \in \Gamma(\{v\}, i)} L(\gamma)\right]^{+}-\left[\max _{\gamma \in \Gamma(S, i)} L(\gamma)\right]^{+}\right]^{+}-\left[\max _{\gamma \in \Gamma(S, v)} L(\gamma)\right]^{+} \tag{1}\\
\geq & \sum_{i \notin(T+v)}\left[\left[\max _{\gamma \in \Gamma(\{v\}, i)} L(\gamma)\right]^{+}-\left[\max _{\gamma \in \Gamma(T, i)} L(\gamma)\right]^{+}\right]^{+}-\left[\max _{\gamma \in \Gamma(T, v)} L(\gamma)\right]^{+} \\
& =g(T+v)-g(T),
\end{align*}
$$

as desired. As for monotonicity, simply observe that by (1),

$$
f^{c o r r}(S+v)-f^{c o r r}(S)=g(S+v)-g(S)+1 \geq 1-\left[\max _{\gamma \in \Gamma(S, v)} L(\gamma)\right]^{+} \geq 0
$$

Corollary 4 Let $\mathcal{S}_{\text {corr }}^{g}$ denote the seed set generated upon termination of the greedy algorithm for maximization of forr. Then

$$
f^{\text {corr }}\left(\mathcal{S}_{\text {corr }}^{g}\right) \geq(1-1 / e) \max _{|\mathcal{S}| \leq k} f^{\text {corr }}(\mathcal{S})
$$

Proof: By Theorem 3] and known approximation guarantees for submodular optimization [4] we get the result.

Computations for Example 2, POC study

Figure 1: Example 2 for POC study

We consider the tree in Figure 1 with a root node, containing l children. There are a total of l paths from the root to all the leaf nodes, starting from the root node. Each path contains $m+2$ nodes (apart from the root). The labels on the nodes indicate the "type" of each node. Between nodes of type 0 and 1 as well as between type 1 and type 2 nodes, the activation probability $=0.5$. For all other edges, activation probability is 1 . The total number of nodes in the graph is $n=l(m+2)+1$. Suppose we are interested in choosing a single seed node, so $k=1$.

Independent cascade model: We first compute the values of $f^{i c}($.$) for each type of node.$
Type 2: For such nodes, $f^{i c}(\{2\})=m+1$. Also it can be verified that nodes of type 2 reach more than nodes of type $3,4, \ldots m+2$.

Type 1: There is one random edge which, if active, will enable $m+1$ nodes to be reached. However if this edge is inactive, none of the nodes are reached. Therefore, $f^{i c}(\{1\})=\frac{m+1}{2}+1$.
Type 0 (root): Here we are l sub-trees (each corresponding to a path graph) in which the nodes could be potentially reached. Let the number of nodes reached in each of the sub-trees be denoted by the random variables $\tilde{X}_{1}, \ldots, \tilde{X}_{l}$. The object of our interest is $\mathbb{E}_{\theta_{i c}}\left[\sum_{i=1}^{l} \tilde{X}_{i}\right]+1 . \tilde{X}_{i}$ takes values $m+2,1$ and 0 with probabilities $0.25,0.25$ and 0.5 respectively. and therefore $\mathbb{E}\left[\tilde{X}_{i}\right]=(m+3) / 4$. Therefore the overall reachability $f^{i c}(\{0\})=1+l(m+3) / 4$.
Clearly the choice to be made is between the root node and any node of type 2 (as node 2 is always better than node 1 (assuming $m \geq 1$). The root node is preferred when $l(m+3) / 4 \geq m$ which occurs when $l \geq \frac{4 m}{m+3}$.

Worst case analysis: We perform a similar analysis on the values of $f^{\text {corr }}(\cdot)$ too. For any type 2 node, we have $f^{\text {corr }}(\{2\})=m+1$. When $\mathcal{S}=\{1\}, f^{\text {corr }}(\{1\})=1+\frac{m+1}{2}$ as an optimal solution to the LP that computes $f^{c o r r}(\{1\})$ is $\pi_{2}^{*}=\pi_{3}^{*}=\ldots=\pi_{m+2}^{*}=0.5$ from Corollary 1
Type 0 (root): In each sub-tree of the root node, our LP solution gives $\pi_{1}^{*}=0.5, \pi_{2}^{*}=\pi_{3}^{*}=\ldots=$ $\pi_{m+2}^{*}=0$. Therefore $f^{\text {corr }}(\{0\})=1+l / 2$.
Between type 0 and type 2 nodes, type 0 is selected whenever $l>2 m$ and a type 2 node can be selected otherwise.
Suppose $\frac{4 m}{m+3} \leq l \leq 2 m$. Then if $k=1, \mathcal{S}_{\text {corr }}$ is any one of the type 2 nodes while $\mathcal{S}_{i c}=\{0\}$. Then the price of correlations is $\frac{(l / 2)+1}{m+1}$. If $l=\frac{4 m}{m+3}$, then $\mathrm{POC}=\frac{2 m+3}{(m+1)(m+3)}$ which tends to zero as $m \rightarrow \infty$.

References

[1] Louis L Chen, Will Ma, James B Orlin, and David Simchi-Levi. Distributionally robust max flows. In Symposium on Simplicity in Algorithms, pages 81-90. SIAM, 2020.
[2] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137-146, 2003.
[3] Garth P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I - Convex underestimating problems. Mathematical Programming, 10(1):147-175, 1976.
[4] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maximizing submodular set functions-I. Mathematical programming, 14(1):265-294, 1978.

[^0]: *louis.chen@nps.edu
 ${ }^{\dagger}$ divya_padmanabhan@sutd.edu.sg
 \ddagger cheechin_lim@sutd.edu.sg
 §karthik_natarajan@sutd.edu.sg

