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Broader Impact

The aim of this work is to address the possible pitfalls to the independence assumption in a social
network, as used in the study of influence maximization. As discussed previously, how an idea,
product, or piece of news makes its way through a network could very well be impacted by natural
social biases, thus connecting parts of a social network in ways that could have been unforeseen. The
methodology presented thus attempts to make this possibility a consideration during the selection
of seed set, and hence find “influential" members to a network regardless of whatever underlying
correlations may exist. This potentially can reduce the impact of biases that the independence
assumption may cause.

The Correlation Robust Influence Function f corr

Theorem 1 Let G = (V,E) be a directed graph, S ⊆ V a seed set, and p ∈ [0, 1]E a vector of
edge likelihoods. Then minθ∈Θ Ec̃∼θ [Z(c̃,S)] is the value to the following polynomial sized linear
program.

min
θ∈Θ

Ec̃∼θ [Z(c̃,S)] = min
π∈RV

∑
i∈V \S

πi

s.t πi = 1 for i ∈ S,
πi − πj ≤ 1− pij for (i, j) ∈ E,
0 ≤ πi ≤ 1 for i ∈ V

(3)

Proof: According to [1], if we let M assume a large value (anything at least |V \ S|), then
minθ∈Θ(p) Ec̃∼θ [Z(c̃,S)] can be formulated as the following linear program:
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min
π∈RV∪{s,t},λ

∑
i,j∈E

0 · λ0
ij +M · λ1

ij +
∑
i∈S

0 · λ0
si +M · λ1

si +
∑
i∈N\S

0 · λ0
it + λ1

it

subject to πi − πj ≤ λ0
ij ∀(i, j) ∈ E

πi − πj − (1− pij) ≤ λ1
ij ∀(i, j) ∈ E

πs − πi ≤ λ0
si ∀i ∈ S

πs − πi ≤ λ1
si ∀i ∈ S

πi − πt ≤ λ0
it ∀i ∈ V \ S

πi − πt ≤ λ1
it ∀i ∈ V \ S

0 ≤ π ≤ 1; ∀i ∈ V
λ ≥ 0

πs = 1, πt = 0

Upon inspection, the program reduces to the desired program. �

Corollary 1 (Correlation Robust Influence Likelihood) For an arbitrary seed set S and vector of
edge likelihoods p ∈ [0, 1]E , let π∗ solve (3). Then for each i ∈ V \ S ,

π∗i =

[
max

γ∈Γ(S,i)
L(γ)

]+

,

Pθ∗(Node i is reachable from S in G(c̃)) = π∗i ∀θ∗ ∈ argmin
θ∈Θ

Ec̃∼θ [Z(c̃,S)] .

In light of this, we define the correlation robust influence likelihood of i as π∗i . In par-
ticular, π∗i is no greater than the IC model’s likelihood that i is influenced, that is, π∗i ≤
Pθic(Node i is reachable from S).

Proof: We begin by establishing the equality

π∗i =

[
max

γ∈Γ(S,i)
L(γ)

]+

.

Let i be such that Γ(S, i) 6= ∅. Consider any path γ ∈ Γ(S, i) and let γ = (i0 → i1 → i2 → . . .→
il = i), where i0 ∈ S. Since π∗ is feasible to (3), we must have,

π∗i0 − π
∗
i1 ≤ 1− pi0,i1

π∗i1 − π
∗
i2 ≤ 1− pi1,i2

...
π∗il−1

− π∗i ≤ 1− pil−1,il

Summation of these inequalities gives π∗i0 − π
∗
i ≤

∑l
l=1(1− pil−1,il). Since i0 ∈ S, it follows that

π∗i0 = 1, so that π∗i ≥ L(γ). Hence, π∗i =
[
maxγ∈Γ(S,i) L(γ)

]+
.

On the other hand, observe that if Γ(S, i) 6= ∅, then the decision variable πi has no lower bound other
than 0. Further,

[
maxγ∈Γ(S,i) L(γ)

]+
= 0, in such a case, as desired.

We next establish the remaining equality
Pθ∗(Node i is reachable from S) = π∗i ∀θ∗ ∈ argmin

θ∈Θ
Ec̃∼θ [Z(c̃,S)] .

Taking note of

min
θ∈Θ

Eθ[Z(c̃,S)] = min
θ∈Θ

∑
i∈V \S

Pθ(Node i is reachable from S in G(c̃))

≥
∑
i∈V \S

min
θ∈Θ

Pθ(Node i is reachable from S in G(c̃)) ≥
∑
i∈V \S

[
max

γ∈Γ(S,i)
L(γ)

]+

=
∑
i∈V \S

π∗i = min
θ∈Θ

Eθ[Z(c̃,S)],
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and that for any i ∈ V \ S, it holds that

min
θ∈Θ

Pθ(Node i is reachable from S in G(c̃)) ≥
[

max
γ∈Γ(S,i)

L(γ)

]+

,

so we arrive at the desired conclusion. �

Corollary 2 (Path existence under Correlation Robustness) Let S be an arbitrary seed set, and
let θ∗ ∈ Θ be any solution to minθ∈Θ Eθ[R(c̃,S)]. Let Γ̄(S, i) := argmaxγ∈Γ(S,i)L(γ), and π∗ is
any optimal solution to (3). If i /∈ S and maxγ∈Γ(S,i) L(γ) > 0, then

Pθ∗(∪γ∈Γ̄(S,i) [G(c̃) contains path γ]) = π∗i = Pθ∗(∩γ∈Γ̄(S,i) [G(c̃) contains path γ]),

In addition, if maxγ∈Γ(S,i) L(γ) > 0, then for any path γ ∈ Γ̄(S, i), at most one of the arcs in γ is
ever missing in the random graph G(c̃) ∼ θ∗, almost surely.

Proof: If θ∗ solves minθ∈Θ Eθ[R(c̃,S)], i /∈ S, and max
γ∈Γ(S,i)

L(γ) > 0, then for any γ∗ ∈ Γ̄(S, i),

max
γ∈Γ(S,i)

L(γ) = Pθ∗(Node i is reachable from S in G(c̃)) = Pθ∗(∪γ∈Γ(S,i) [G(c̃) contains path γ])

≥ Pθ∗([G(c̃) contains path γ∗])
(5)

≥ L(γ∗) = max
γ∈Γ(S,i)

L(γ).

So we conclude that

Pθ∗(∪γ∈Γ(S,i) [G(c̃) contains path γ]) = Pθ∗([G(c̃) contains path γ∗]),

which implies

Pθ∗(∪γ∈Γ̄(S,i) [G(c̃) contains path γ]) ≥ Pθ∗([G(c̃) contains path γ∗])

= Pθ∗(∪γ∈Γ(S,i) [G(c̃) contains path γ]),

as desired.

For the remaining equality in the statement, we note that if

Pθ∗(∩γ∈Γ̄(S,i) [G(c̃) contains path γ]) < Pθ∗([G(c̃) contains path γ∗]),

then Pθ∗([G(c̃) contains path γ∗] \ [G(c̃) contains path γ′]) > 0 for some γ′ ∈ Γ̄(S, i), which
means

Pθ∗(∪γ∈Γ(S,i) [G(c̃) contains path γ]) ≥ Pθ∗([G(c̃) contains path γ′])

+Pθ∗([G(c̃) contains path γ∗] \ [G(c̃) contains path γ′])

> Pθ∗([G(c̃) contains path γ∗] \ [G(c̃) contains path γ′]),

a contradiction.

As for the last statement, if γ ∈ Γ̄(S, i), we observe that under the joint distribution θ∗ it cannot be
the case that - with positive probability - more than one arc is missing from G(c̃), else (5) would be a
strict inequality, contradicting the fact that Corollary 1 implies that it should be an equality. �

Corollary 3 Given an arbitrary seed set S and vector of edge likelihoods p ∈ [0, 1]E , let π∗ denote
the optimal solution to (3). Let q̃ ∼ Unif [0, 1], V (q̃) := {i : q̃ < π∗i },

E(q̃) := {(k, j) : π∗k > π∗j , q̃ /∈ [π∗k − 1 + pkj , π
∗
k]} ∪ {(k, j) : π∗k ≤ π∗j , q̃ ∈ (0, pkj ]},

and c(q̃) ∈ {0, 1}E be such that c(q̃)ij = 1 iff (i, j) ∈ E(q̃). Then c(q̃) ∼ θ∗ for some θ∗
solving Equation (1). In particular, V (q̃) is the set of all nodes reachable from S in the graph
G(q̃) = (V,E(q̃)), so that Eq̃ [|V (q̃)|] = minθ∈Θ Ec̃∼θ[R(c̃,S)] = |S|+ Eq̃ [Z(c(q̃),S)].
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Proof: Consider the max-flow problem of Z(c,S) for arbitrary c ∈ {0, 1}E . Then the two
collections {s} ∪ S ∪ {j : x∗jt = 1, j ∈ V \ S} and {t} ∪ {j : x∗jt = 0, j ∈ V \ S} form a minimum
s-t cut. In particular, {j : x∗jt = 1, j ∈ V \ S} is precisely the set of nodes outside of S that are
reached, and j is reached if and only if the edge (j, t) runs across this minimum cut.

With π∗ an optimal solution to (3), we may characterize a θ∗ ∈ Θ consistent with p that solves
minθ∈Θ E [Z(c̃,S)] = minθ∈Θ E [R(c̃,S)] − |S|. This characterization will be defined on the
probability space

(
(0, 1],B, λ

)
, and for the sake of notation, in the following we’ll let Fij denote

the cdf for edge (i, j) that is live with probability pij . For all (i, j) ∈ E, if π∗i > π∗j , define for all
q ∈ (0, 1],

c̃ij(q) :=


F−1
ij (q − π∗j ); π∗j < q ≤ π∗i
F−1
ij (1− pij + q); 0 < q ≤ π∗i − (1− pij)
F−1
ij (1− pij − π∗j + q); π∗i − (1− pij) < q ≤ π∗j
F−1
ij (q); π∗i < q ≤ 1,

otherwise if π∗i ≤ π∗j define c̃ij(q) := F−1
ij (1− q). Finally, for all (i, j) /∈ E but are auxillary arcs

with s or t as an endpoint, we can let c̃ij(q) := +∞ if i = s, else c̃ij(q) := 1 for the case that j = t.
As well, we define

χ̃ij(q) :=

{
1; π∗i > π∗j , q ∈ [π∗j , π

∗
i ]

0; otherwise.

The resulting random vector c̃ has as its distribution a solution to minθ∈Θ E [Z(c̃,S)]. This follows
after adopting the arguments in Theorem 3.1 of [1]. It is not hard to see that with q̃ ∼ Unif(0, 1],
E(q̃) as defined in the statement is precisely {(k, j) : c̃kj(q̃) = 1}. Furthermore, according to
Theorem 3.1 of [1], χ̃jt(q̃) is 1 if and only if (j, t) runs across the minimum cut - equivalently, when
j is reached. And since π∗t = 0 always, we arrive at the characterization of V (q̃). �

Correlation Robustness: Maximization and Robust Ratios

Theorem 2 The problem of computing maxS:|S|≤k f
corr(S), given a graph G = (V,E), a vector

of edge likelihoods p ∈ [0, 1]E , and an integer number k, is NP-Hard. In particular, we have the
following exact formulation as a mixed-integer program.

max
S:|S|≤k

f corrp (S) = max
∑

(i,j)∈E

zij(pij − 1) +
∑
i∈V

wi

1− yi −
∑

j:(j,i)∈E

zji +
∑

j:(i,j)∈E

zij ≥ 0 ∀i ∈ V

wi ≥ |V |xi + yi − |V | ∀i ∈ V
wi ≤ min(|V |xi, yi) ∀i ∈ V∑
i∈V

xi = k

yi ≥ 0 wi ≥ 0 ∀i ∈ V
zij ≥ 0 ∀(i, j) ∈ E
xi ∈ {0, 1} ∀i ∈ V

Proof: We prove the hardness of computing maxS:|S|≤k f
corr(S) through a reduction from the

set cover problem. The proof is along the lines of the proof of hardness of the independent cascade
model in [2]. In the set cover problem, there is a universe of elements Ω = {1, . . . , n}, a collection
of subsets J1, . . . , Jm ⊆ Ω (whose union gives Ω), and an integer k. The decision version of the set
cover problem is to check if there exists a collection of k subsets, whose union gives Ω. We will now
reduce an instance of set cover problem to (2). For this, consider a bipartite graph with a total of
m+n vertices corresponding to the m subsets and the n elements of Ω. This bipartite graph contains
an edge between a subset node i and an element node j if j ∈ Ji. Fix pij = 1 for all edges (i, j)
in this graph. Then there exist k subsets whose union is Ω is and only if the optimal value to (2) is
k + n.
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Next we will derive the MILP formulation. Using Theorem 1, we have,

max
S:|S|≤k

f corrp (S) = max
x∈RV

min
π∈RV

∑
i

πi

subject to xi ≤ πi ∀i ∈ V
πi − πj ≤ 1− pij ∀(i, j) ∈ E
0 ≤ πi ≤ 1 ∀i ∈ V∑
i∈V

xi = k

xi ∈ {0, 1} ∀i ∈ V
The dual of the inner minimization problem is,

max
z≥0,y≥0,w≥0

∑
(i,j)∈E

zij(pij − 1) +
∑
i∈V

xiyi : 1− yi −
∑

j:(j,i)∈E

zji +
∑

j:(i,j)∈E

zij ≥ 0 ∀i ∈ V

Further we linearize the product terms wi = xiyi. Summing up the inequality over all i gives us,∑
i∈V (1− yi −

∑
j:(j,i)∈E zji +

∑
j:(i,j)∈E zij) ≥ 0. The terms involving z cancel out and we are

left with
∑
i∈V yi ≤ V and since yi ≥ 0 for all i, we get an upper bound yi ≤ V .

Using the bounds 0 ≤ xi ≤ 1 and 0 ≤ yi ≤ |V |, the McCormick inequalities introduced in [3] for
wi give us,

|V |xi + yi − |V | ≤ wi ≤ min(|V |xi, yi) ∀i ∈ V

To see that these inequalities are sufficient to capture wi = xiyi, when xi ∈ {0, 1}, first let xi = 0.
Then the inequalities give us yi − |V | ≤ wi ≤ min(0, yi) and along with the fact that wi ≥ 0, we
get wi = 0. Now Let xi = 1. Then the inequalities give us yi ≤ wi ≤ min(|V |, yi) = yi. Therefore
we get wi = yi and hence these inequalities are tight. �

Theorem 3 The correlation robust influence function f corr : 2V → R+ is a monotone, submodular
function.

Proof: Since f corr(S) = |S| + minθ∈Θ Eθ[Z(c̃,S)], submodularity of g(S) :=
minθ∈Θ Ec̃∼θZ [c̃,S] implies submodularity of f corr. If two seed sets S and T with S ⊂ T
and vertex v /∈ T are given, then by (7),

g(S + v)− g(S) =
∑

i/∈(S∪v)

max
(

[ max
γ∈Γ(S,i)

L(γ)]+, [ max
γ∈Γ({v},i)

L(γ)]+
)

−

 ∑
i/∈(S+v)

[ max
γ∈Γ(S,i)

L(γ)]+ + [ max
γ∈Γ(S,v)

L(γ)]+


=

∑
i 6∈(S+v)

[
[ max
γ∈Γ({v},i)

L(γ)]+ − [ max
γ∈Γ(S,i)

L(γ)]+
]+

− [ max
γ∈Γ(S,v)

L(γ)]+ (1)

≥
∑

i 6∈(T+v)

[
[ max
γ∈Γ({v},i)

L(γ)]+ − [ max
γ∈Γ(T,i)

L(γ)]+
]+

− [ max
γ∈Γ(T,v)

L(γ)]+

= g(T + v)− g(T ),

as desired. As for monotonicity, simply observe that by (1),

f corr(S + v)− f corr(S) = g(S + v)− g(S) + 1 ≥ 1− [ max
γ∈Γ(S,v)

L(γ)]+ ≥ 0.

�

Corollary 4 Let Sgcorr denote the seed set generated upon termination of the greedy algorithm for
maximization of f corr. Then

f corr(Sgcorr) ≥ (1− 1/e) max
|S|≤k

f corr(S)
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Proof: By Theorem 3 and known approximation guarantees for submodular optimization [4] we
get the result. �

Computations for Example 2, POC study
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Figure 1: Example 2 for POC study

We consider the tree in Figure 1 with a root node, containing l children. There are a total of l paths
from the root to all the leaf nodes, starting from the root node. Each path contains m+ 2 nodes (apart
from the root). The labels on the nodes indicate the “type” of each node. Between nodes of type 0
and 1 as well as between type 1 and type 2 nodes, the activation probability = 0.5. For all other edges,
activation probability is 1. The total number of nodes in the graph is n = l(m+ 2) + 1. Suppose we
are interested in choosing a single seed node, so k = 1.

Independent cascade model: We first compute the values of f ic(.) for each type of node.

Type 2: For such nodes, f ic({2}) = m+ 1. Also it can be verified that nodes of type 2 reach more
than nodes of type 3, 4, . . .m+ 2.

Type 1: There is one random edge which, if active, will enable m+ 1 nodes to be reached. However
if this edge is inactive, none of the nodes are reached. Therefore,f ic({1}) = m+1

2 + 1.

Type 0 (root): Here we are l sub-trees (each corresponding to a path graph) in which the nodes could
be potentially reached. Let the number of nodes reached in each of the sub-trees be denoted by the
random variables X̃1, . . . , X̃l. The object of our interest is Eθic

[∑l
i=1 X̃i

]
+ 1. X̃i takes values

m+ 2, 1 and 0 with probabilities 0.25, 0.25 and 0.5 respectively. and therefore E[X̃i] = (m+ 3)/4.
Therefore the overall reachability f ic({0}) = 1 + l(m+ 3)/4.

Clearly the choice to be made is between the root node and any node of type 2 (as node 2 is always
better than node 1 (assuming m ≥ 1). The root node is preferred when l(m + 3)/4 ≥ m which
occurs when l ≥ 4m

m+3 .

Worst case analysis: We perform a similar analysis on the values of f corr(·) too. For any type 2 node,
we have f corr({2}) = m+ 1. When S = {1}, f corr({1}) = 1 + m+1

2 as an optimal solution to the
LP that computes f corr({1}) is π∗2 = π∗3 = . . . = π∗m+2 = 0.5 from Corollary 1.

Type 0 (root): In each sub-tree of the root node, our LP solution gives π∗1 = 0.5, π∗2 = π∗3 = . . . =
π∗m+2 = 0. Therefore f corr({0}) = 1 + l/2.

Between type 0 and type 2 nodes, type 0 is selected whenever l > 2m and a type 2 node can be
selected otherwise.

Suppose 4m
m+3 ≤ l ≤ 2m. Then if k = 1, Scorr is any one of the type 2 nodes while Sic = {0}. Then

the price of correlations is (l/2)+1
m+1 . If l = 4m

m+3 , then POC = 2m+3
(m+1)(m+3) which tends to zero as

m→∞.
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