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Abstract

Weakly supervised object detection (WSOD) has attracted extensive research
attention due to its great flexibility of exploiting large-scale dataset with only
image-level annotations for detector training. Despite its great advance in recent
years, WSOD still suffers limited performance, which is far below that of fully
supervised object detection (FSOD). As most WSOD methods depend on object
proposal algorithms to generate candidate regions and are also confronted with
challenges like low-quality predicted bounding boxes and large scale variation. In
this paper, we propose a unified WSOD framework, termed UWSOD, to develop
a high-capacity general detection model with only image-level labels, which is
self-contained and does not require external modules or additional supervision. To
this end, we exploit three important components, i.e., object proposal generation,
bounding-box fine-tuning and scale-invariant features. First, we propose an anchor-
based self-supervised proposal generator to hypothesize object locations, which
is trained end-to-end with supervision created by UWSOD for both objectness
classification and regression. Second, we develop a step-wise bounding-box fine-
tuning to refine both detection scores and coordinates by progressively select high-
confidence object proposals as positive samples, which bootstraps the quality of
predicted bounding boxes. Third, we construct a multi-rate resampling pyramid to
aggregate multi-scale contextual information, which is the first in-network feature
hierarchy to handle scale variation in WSOD. Extensive experiments on PASCAL
VOC and MS COCO show that the proposed UWSOD achieves competitive results
with the state-of-the-art WSOD methods while not requiring external modules
or additional supervision. Moreover, the upper-bound performance of UWSOD
with class-agnostic ground-truth bounding boxes approaches Faster R-CNN, which
demonstrates UWSOD has fully-supervised-level capacity. The code is available
at: https://github.com/shenyunhang/UWSOD.

1 Introduction

Different from fully supervised object detection (FSOD) [1–4] that requires bounding-box-level
annotations, weakly supervised object detection (WSOD) [5–8] only needs image-level labels, which
indicate the presence or absence of an object category. More recently, WSOD has attracted extensive
attention to reducing the manual labelling effort to learn detectors. Unfortunately, due to the lack of
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Figure 1: The overall flowchart of the proposed UWSOD. The full-image scale-invariant feature maps
are first computed. Then object proposal generation provides candidate boxes to extract proposal
features in RoIPool layer. Finally, the object mining phase outputs initial detection scores, and
bounding-box fine-tuning phase further refines both scores and coordinates of proposals.

instance-level annotations, WSOD is still challenging to obtain satisfactory performance. Therefore,
there is still a huge performance gap between WSOD and FSOD methods.

The recent widely-used paradigm for WSOD is a two-phase learning procedure, i.e., object mining
and instance refinement. In the first phase, multiple instance learning is employed to mine object
from a set of candidate regions generated by object proposal algorithms, e.g., selective search [9]
and edge boxes [10]. Then multiple parallel branches of instance refinement are trained to refine
bounding boxes by using the preceding predictions as supervision. Although the above paradigm has
achieved promising results, there still exist three major challenges: First, object proposal algorithms
are adopted as external modules independent of the detectors. Such a multi-stage system hurts the
detection accuracy and efficiency. Recent attempts in [11–13] learn to generate object proposals
for WSOD. However, those methods are still not in an end-to-end fashion and require traditional
object proposals [9, 10], motion segmentation [14] and additional video dataset [15, 16]. Second,
the predicted bounding boxes may not cover object well, as they heavily relies on the quality of
candidate boxes generated by object proposal algorithms, which limits further improvement with
large margins. One way to reduce mislocalizations is to using bounding-box regression [17–20].
However, methods in [17–19] require super-pixel evidence and additional supervision to fine-tune
bounding boxes, and regression module in [20] failed to consider the trade-off between the precision
and recall requirements in different branches of instance refinement. Third, existing WSOD methods
use multi-scale image pyramids [21] to remedy the scale-variation problem. However, they neglect
the in-network feature hierarchy to handle large scale variations. And the increase of inference time
and memory consumption makes the image pyramid infeasible for practical applications.

In this paper, we propose a unified WSOD framework, termed UWSOD, to develop a high-capacity
general detection model with only image-level labels, which is self-contained and does not require
external modules or additional supervision. In particular, we exploit three important components, i.e.,
object proposal generation, bounding-box fine-tuning and scale-invariant features to address above
challenges, as illustrated in Fig. 1. First, we propose an anchor-based self-supervised object proposal
generator (SSOPG) to hypothesize object locations, which is trained end-to-end with supervision
created by UWSOD for both objectness classification and regression. Second, to reduce mislocaliza-
tions, we propose a step-wise bounding-box fine-tuning (SWBBFT) to refine both detection scores
and coordinates by progressively select high-confidence object proposals as positive samples, which
bootstraps the quality of predicted bounding boxes. Third, we construct a multi-rate resampling
pyramid (MRRP) to aggregate multi-scale contextual information, which is the first in-network
feature hierarchy to handle scale variation in WSOD. Different to common FSOD that attach new
parameter to build feature pyramids [22], MRRP does not need to learn new parameters and avoids
over-fitting by sharing the same parameters of pre-trained backbones.

The contributions of this work are concluded as follows:

• We propose a unified weakly supervised object detection (UWSOD) framework, which is
self-contained and does not require external modules or additional supervision to develop a
high-capacity general detection model with only image-level labels.

• An anchor-based self-supervised proposal generator is proposed to hypothesize candidate
object locations, which is end-to-end trainable with supervision created by UWSOD.

• We propose a step-wise bounding-box fine-tuning to refine both detection scores and
coordinates progressively, which aims to bootstrap the quality of predicted bounding boxes.
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• A multi-rates resampling pyramid is constructed to aggregate multi-scale contextual infor-
mation, which is the first in-network feature hierarchy to handle scale variation in WSOD.

Extensive experiments on PASCAL VOC and MS COCO show that the proposed UWSOD achieves
competitive results with the state-of-the-art methods while not requiring external modules or additional
supervision. A crucial property of our model is that even with class-agnostic ground-truth bounding
boxes, the upper-bound performance of UWSOD approach Faster R-CNN [2], thus having fully-
supervised-level capacity.

2 Related work

2.1 Weakly supervised object detection

Recent widely-used WSOD learning procedure has two phases: object mining and instance refinement.
The object mining phase is formulated as multiple instance learning to implicitly model latent object
locations with image-level labels, which alternates between localizing object instances and training an
appearance model [23–28]. Bilen et al. [7] selected proposals by parallel detection and classification
branches in deep convolutional networks. Contextual information [29], attention mechanism [30],
gradient map [31] and semantic segmentation [32] are leveraged to learn outstanding object proposals.

The instance refinement phase aims at explicitly learning the object location by making use of the
predictions from the object mining phase. The top-scoring proposals from the preceding predictions
are used as supervision to train the instance refinement classifier [33, 34, 8, 35]. Other different
strategies [36–39] are also proposed to generate pseudo-ground-truth boxes and assign labels to
proposals. Some methods exploit to improve the optimization of the overall framework that jointly
learn the two-phase modules with min-entropy prior [40, 41], multi-view learning [42], continuation
MIL [43], utilizing uncertainty [44–46] and generative adversarial learning [47]. Collaboration
mechanisms are also exploited to take advantages of the complementary interpretations of weakly
supervised tasks [48, 49] and different WSOD models [50]. With the output of the above two-phase
paradigm, a separated fully-supervised detector can also be trained. Thus, many efforts [51, 52] have
been made to mine high-quality bounding boxes for FSOD.

Some work also used additional annotations and data to improve the performance, e.g., object-size es-
timation [53], instance-count annotations [17], video-motion cue [54, 12] and human verification [55].
Knowledge transfer for cross-domain adaptation has been exploited, e.g., data adaption [56] and task
adaption [57]. Methods in [19, 58, 59] trained object detection systems from different supervisions.

2.2 Object proposal generation

Object proposal methods aim to generate candidate object regions for an ensuing detector or seg-
mentation model. Traditional methods include those based on grouping super-pixels, e.g., selective
search [9] and multiscale combinatorial grouping [60], and those based on sliding windows, e.g.,
edge boxes [10]. In most existing WSOD, object proposal methods were typically adopted as external
modules independent of the detectors. Few literature exploits trainable object proposal generation
in WSOD. Cheng et al. [13] combined selective search [9] and a gradient-weighted class activation
map [61] to generate more proposals. Tang et al. [11] used a smaller WSOD network [8] to refine the
coarse proposals generated by edge boxes [10] on edge-like response maps. Singh et al. [12] used
motion information in weakly-labelled videos to learn object proposals. However, all of they are not in
an end-to-end fashion and still need traditional object proposals [9, 10], motion segmentation [14] and
additional video dataset [15, 16]. In this work, the proposed anchor-based self-supervised proposal
generator is end-to-end trainable and does not use external modules or additional information.

There are some WSOD methods focused on proposal-free paradigms by taking advantages of deep
feature maps [62], class activation maps [63, 64] and generative adversarial learning [65]. However,
such paradigm seriously depends on the quality of feature maps and is hard to distinguish different
instances in challenging scenes.
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Figure 2: The figure illustrates the architecture of UWSOD.

2.3 Bounding-box regression

Bounding-box regression proposed in [1] framed localization as a regression problem, which is
widely adopted by FSOD. However, only few work introduces bounding-box regression into WSOD
due to the lack of instance-level annotations. Gao et al. [17] and Fang et al. [19] trained bounding box
regressors with counting information or instance-level labels. Zeng et al. [18] combined superpixels
straddling [66] and predicted scores to determine bounding-box regression targets. Yang et al. [67]
leveraged category labels and action labels as location cues. Yanga et al. [35] introduced additional
detection branch to jointly optimized the region classification and regression. Ren et al. [20] selected
multiple pseudo boxes with non-maximum suppression for regression training. However, the above
methods either require external modules and additional supervision, or fail to consider the trade-off
between the precision and recall requirements in different refinement branches. In this work, the
proposed step-wise bounding-box fine-tuning refines both classification and regression progressively.

2.4 Handling scale variation

Most WSOD methods heavily use image pyramids [21] to detect object across scales during training
and testing to remedy the scale-variation problem. However, image pyramid method increases
the inference time and neglects the in-network feature hierarchy to handle large scale variation.
SNIP [68, 69] proposed a scale normalization strategy for FSOD, which selectively trains the objects
of appropriate sizes in each image scale. However, SNIP is not adaptable to WSOD due to the lack of
instance-level annotations. Another stream of utilizing multi-scale information in fully supervised
learning is to consider both low- and high-level information. For example, encode-decoder structure
in U-Net [70] and FPN [22] attaches a top-down pyramid-like structure to propagate information
from top to bottom layers. However, it requires to attache new layers to build feature pyramids and
may converge to an undesirable local minimum in WSOD. R-SSD [71] and RRC [72] gathered both
low- and high-level feature maps, which cost more computational resource significantly.

3 The proposed method

3.1 Unified weakly supervised object detection (UWSOD) framework

In this paper, we introduce a unified weakly supervised object detection framework, which consists of
three major components: self-supervised object proposal generator (SSOPG), step-wise bounding-box
fine-tuning (SWBBFT) and multi-rate resampling pyramid (MRRP). The overall architecture of the
proposed network is shown in Fig. 2. Given an input image, scale-invariant full-image feature maps
are first extracted from the backbone with MRRP (Sec. 3.4). Then SSOPG (Sec. 3.2) predicts a
set of high-confidence object proposals, which is followed by RoIPool layer to generate proposal
features. Finally, the object mining phase outputs initial detection scores, and multi-branch SWBBFT
refines both the scores and coordinates of proposals progressively to bootstrap the quality of predicted
bounding boxes (Sec. 3.3). The overall loss function of UWSOD is:

L = LSSOPG + LOM + LSWBBFT, (1)

where LSSOPG and LSWBBFT are the loss functions of the proposed SSOPG and SWBBFT, which
will discuss in the remainder of this section. And LOM is the loss function of object mining
phase.Object mining phase [7, 29] forks the proposal features into two streams, i.e., classification
stream and detection stream, producing two score matrices Xc, Xd ∈ RR×C by two fully-connected
layers, respectively. Both score matrices are normalized by softmax functions σ(·) over categories
and proposals, respectively. Then the element-wise product of the output of the two streams is again
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a score matrix: Xs = σ(Xc)� σ(Xd). To acquire image-level classification scores, a sum pooling
is applied: yk =

∑R
r=1X

s
rk. Then we obtain a cross-entropy loss function LOM:

LOM =

nc∑
i=1

{
ti logyi + (1− ti) log(1− yi)

}
, (2)

where t ∈ {0, 1}nc

is the image-level one-hot labels, nc is the number of categories, and ti is the
ground-truth labels of whether an object of category i is presented in the image.

3.2 Self-supervised object proposal generator (SSOPG)

We propose an anchor-based self-supervised object proposal generator (SSOPG), which takes full-
image feature maps as input and outputs a set of rectangular object proposals, each with an objectness
score. Anchors are regression references and classification candidates to predict object proposals.
Generating anchors with the sliding window manner in feature maps has been widely adopted by
anchor-based various detectors [2–4]. SSOPG use a small fully convolutional network to map
each sliding window anchor to a low-dimensional feature, as in [2]. To this end, SSOPG has a
3 × 3 convolutional layer with 256 channels followed by two sibling 1 × 1 convolutional layers
for objectness classification and regression, respectively. Formally, we denote na as the number of
anchors in each location, and h and w as the height and width of feature maps, respectively. Thus,
the regression layer has 4na outputs encoding the coordinates of na boxes, and the objectness layer
outputs na scores that estimate the probability of object for each proposal. Given a feature maps
with spatial size (h × w), SSOPG outputs object proposals Bp ∈ <nahw×4 and objectness scores
Sp ∈ <nahw×1. For inference, we apply non-maximum suppression (NMS) on Bp and pass the
top-npinfer object proposals Bp

infer to the RoIPooling layers.

We leverage self-supervised learning to train SSOPG with supervision created by UWSOD without
additional human effort or external modules. Our intuition is that as WSOD is able to discover
category-specific object, it also has the potential to learn objectness instances. To this end, we
attach a new objectness detection branch to the proposal features with two sibling fully-connected
layers for objectness classification and regression, respectively. Given the output from instance
refinement phase, i.e., bounding boxes Br ∈ <np

infer×nc×4 and scores Sr ∈ <np
infer×nc

, we generate
pseudo-ground-truth objectness boxes B̂obn = {Br

ij |i = arg maxi S
r
ij , j = {k|tk = 1}}, where

Br
ij and Sr

ij denote the ith predicted bounding box and score for jth category. With B̂obn, we label
object proposals Bp

infer with an IoU ratio of λobn and sample nobntrain positive and negative training
proposals, respectively. Finally, we select the top-kobn predicted boxes from objectness detection
branch as pseudo-ground-truth proposal boxes B̂p to supervise the above proposal generator, where
kobn = |{ti|ti = 1}|. We label object proposals Bp by an IoU ratio of λp with B̂p and sample nptrain
positive and negative training proposals, respectively. The overall loss function of SSOPG is:

LSSOPG =
∑
i

LBCE(Sobn
i , T obn

i ) +
∑
i

LsmoothL1(Bobn
i , B̄obn

i )

+
∑
i

LBCE(Sp
i , T

p
i ) +

∑
i

LsmoothL1(Bp
i , B̄

p
i )

, (3)

where T obn
i and B̄obn

i are the classification and regression targets of the ith object proposal for
objecness detection branch, and T p

i and B̄p
i are the targets for object proposal generator. LBCE is the

binary sigmoid cross-entropy loss and LsmoothL1 is the smooth L1 loss as with [2].

3.3 Step-wise bounding-box fine-tune (SWBBFT)

Most state-of-the-art WSOD methods only apply classifier refinement [8] to rescore object proposals,
which may result in low-quality predicted bounding boxes. As they heavily rely on the quality of
candidate boxes generated by object proposal algorithms, which limit further improvement with large
margins. Although recent methods in [17–20] integrate bounding-box regression in WSOD, they
either require external modules or additional supervision, and fail to consider the trade-off between
the precision and recall requirements in different refinement branches.

5



To reduce mislocalizations, we propose step-wise bounding-box fine-tuning (SWBBFT), which
progressively selects high-confidence object proposals as positive samples to refine both detection
scores and coordinates. Our intuition is that the former branches in instance refinement have large
ambiguity of selecting positive and negative samples, as their pseudo-ground-truth labels are noisy
and do not cover object well. Thus, we step-wisely learn instance refinement from low-quality to
high-quality positive samples. To this end, based on vanilla classifier refinement [8], we first add
bounding-box regression to each branch, which enables fine-tune both scores and coordinates in
all refinement branches. We use a series of IoU thresholds λf = {λfi, . . . , λfnf} to label positive
and negative proposals and optimize each branch at separate IoU level, where nf is the number of
refinement branches. Thus, the corresponding loss function is:

LSWBBFT =

nf∑
r=1

(∑
i

yT r
i
LCE(Sr

i , T
r
i ) +

∑
i

LsmoothL1(Br
i , B̄

r
i )
)
, (4)

where T r
i and B̄r

i are the classification and regression targets for the ith object proposal in the rth
branch, respectively, and LCE is the softmax cross-entropy loss. To acquire training targets for
each branch, we directly use the highest-score detection results from the preceding predictions as
pseudo-ground-truth bounding boxes [8].

We restrict λf to be in descending order, i.e., {λfi ≤ · · · ≤ λfnf}. The descending order λf offers a
good trade-off between the precision and recall requirements in different refinement branches. As the
former branches establish a high-recall set of positive samples, while the successive branches receive
high-precision positive samples. Step-wise fashion guarantees a sequence of effective refinement
branches of increasing quality. As the set of positive samples decreases quickly with λf , we sample
all branches to guarantee that they have a fixed proportion for positive and negative samples.

3.4 Multi-rate resampling pyramid (MRRP)

Aggregating multi-scale information is critical for detectors to exploit context and achieve bet-
ter performance in challenging conditions. Existing WSOD methods leverage multi-scale image
pyramids [21] to remedy the scale-variation problem. However, it neglects the in-network feature
hierarchy to handle large variation of scale.

Inspired by spatial pyramid pooling [73] and its successful variances in fully supervised learning [74–
77], we construct a multi-rate resampling pyramid (MRRP) to aggregate multi-scale contextual
information, in which each level shares the same parameters. Our intuition is that integrating
information from other receptive field helps widen the scales, thus it can alleviate such ambiguities
and reduce information uncertainty in the local area. Thus, we use a large range of receptive fields to
describe objects at different scales. Regarding current backbone models, they commonly set receptive
fields at the same size with a regular sampling grid on a feature map. Therefore, we generalize trident
block [77] to iteratively replicates nm parallel streams for several stages of backbones, which share
the same structures and parameters, but have various dilation rates αm = {αm

i , . . . , α
m
nm}. Taking

the 4th and 5th stages of backbone as an example, we first replicate the original 4th stage nm times
with various dilation rates, and for each output feature map repeat the replicating operation in the 5th

stage. Finally, MRRP output (ns)
(nm) feature maps in total, where ns is the number of MRRP stages.

The proposed MRRP is used in UWSOD framework by two ways. The direct way is to average
all feature maps for the successive processes. For the second way, we use SSOPG to generate
object proposals on each feature map separately and apply NMS to all object proposals together. In
RoIPool layer, the top npinfer object proposals are map to their own feature maps to extract proposal
features. Although it does not directly using entire resampling pyramid, scale-invariant features are
still distilled into CNN by optimization of the shared parameters.

4 Quantitative evaluations

4.1 Datasets

We evaluate the proposed design principles on PASCAL VOC 2007, 2012 [86] and MS COCO [87],
which are widely-used benchmark datasets. PASCAL VOC 2007 consists of 5, 011 trainval images,
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1st epoch 2nd epoch 4th epoch 8th epoch 16th epoch 40th epoch

Figure 3: Visualize of the proposed SSOPG. The first and third rows show the top-50 object proposals
generated by SSOPG. The second and forth rows show the pseudo-ground-truth proposal boxes.

Table 1: Ablation study on the VOC 2007 test set in terms of mAP and CorLoc.
SSOPG SWBBFT MRRP CorLoc (%) mAP (%)

ContextLocNet [29] – – – 55.1 36.3

a – – – 55.7 36.7

b np
train = 1024, np

infer = 1024 – – 50.8 32.1
c np

train = 2048, np
infer = 2048 – – 50.9 32.3

d np
train = 4096, np

infer = 4096 – – 50.8 32.1

e np
train = 2048, np

infer = 2048 nf = 3, λf = {0.30, 0.40, 0.50} – 60.5 41.8
f np

train = 2048, np
infer = 2048 nf = 4, λf = {0.35, 0.40, 0.45, 0.50} – 60.8 42.1

g np
train = 2048, np

infer = 2048 nf = 5, λf = {0.30, 0.35, 0.40, 0.45, 0.50} – 60.5 42.0

h np
train = 2048, np

infer = 2048 nf = 4, λf = {0.35, 0.40, 0.45, 0.50} nm = 2, αm = {1, 2} 62.4 43.3
i np

train = 2048, np
infer = 2048 nf = 4, λf = {0.35, 0.40, 0.45, 0.50} nm = 3, αm = {1, 2, 4} 62.6 44.0

j np
train = 2048, np

infer = 2048 nf = 4, λf = {0.35, 0.40, 0.45, 0.50} nm = 3, αm = {1, 2, 4}∗ 63.0 44.0
k np

train = 2048, np
infer = 2048 nf = 4, λf = {0.35, 0.40, 0.45, 0.50} nm = 4, αm = {1, 2, 4, 8} 62.8 43.6

and 4, 092 test images over 20 categories. PASCAL VOC 2012 consists of 11, 540 trainval images,
and 10, 991 test images over 20 categories. Following the standard settings of WSOD, we use trainval
set with only image-level labels for training. We also evaluate our approach on MS COCO, which is
consists of 80 object categories. Our experiments use 118k training set with image-level labels for
training, and 5k validation set for testing. Only image-level annotations are used in training.

4.2 Evaluation Protocol

Two protocols are used for evaluation: mean Average Precision (mAP) and CorLoc. The mAP follows
standard PASCAL VOC protocol to report the mAP at 50% Intersection-over-Union (IoU) of the
detected boxes with the ground-truth ones. CorLoc quantifies the localization performance by the
percentage of images that contain at least one object instance with at least 50% overlapped to the
ground-truth. For PASCAL VOC, we evaluate CorLoc and mAP on trainval and testing, respectively.
For MS COCO, we report standard COCO metrics, including AP at different IoU thresholds.

4.3 Implementation details

We use VGG16 and WS-ResNet [28] backbones, which is initialized with the weights pre-trained on
ImageNet ILSVRC [88]. We use synchronized SGD training on 4 GPUs. A mini-batch involves 1
images per GPU. We use a step learning rate decay schema with decay weight of 0.1 and step size
of 140, 000 iterations. The total number of training iterations is 200, 000. We adopt 2× training
schedules for MS COCO. In the multi-scale setting, we use scales range from 480 to 1216 with stride
32. To improve the robustness, we randomly adjust the exposure and saturation of the images by up to
a factor of 1.5 in the HSV space. A random crop with 0.9 of the size of the original images is applied.
We freeze all pre-trained convolutional layers in backbones unless specified otherwise. The test
scores are the average of scales of {480, 576, 672, 768, 864, 960, 1056, 1152} and flips. Detection
results are post-processed by NMS with threshold of 0.5. We use the following parameter settings
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Table 2: Comparison with the state-of-the-art methods on PASCAL VOC 2007, 2012 and MS COCO.

Method Bakcbone
PASCAL VOC 2007 PASCAL VOC 2012 MS COCO

mAP (%) CorLoc (%) mAP (%) CorLoc (%) Avg. Precision, IoU:
0.5:0.95 0.5 0.75

WSOD with external object proposal modules or additional data

Multi-Fold MIL [6] AlexNet 30.2 52.0 – – – – –
WSDDN [7] VGG16 34.8 53.5 – – 9.5 19.2 8.2
ContextLocNet [29] VGG-F 36.3 55.1 35.3 54.8 11.1 22.1 10.7
WCCN [64] VGG16 42.8 56.7 37.9 – – – –
Jie et al. [34] VGG16 41.7 56.1 38.3 58.8 – – –
TST [56] AlexNet 33.8 59.5 – – – – –
SGWSOD [78] VGG16 43.5 62.9 39.6 62.9 – – –
TS2C [32] VGG16 44.3 61.0 40.0 64.4 – – –
CSC C5 [31] VGG16 43.0 62.2 37.1 61.4 12.9 23.8 13.2
WS-JDS [48] VGG16 45.6 64.5 39.1 63.5 – – –
Oquab et al. [79] AlexNet – – 11.7 – – – –
OICR [8] VGG16 41.2 60.6 37.9 62.1 – – –
K-EM [80] VGG16 46.1 65.0 – – – – –
MELM [41] VGG16 47.3 61.4 42.4 – – – –
ZLDN [38] VGG16 47.6 61.2 42.9 61.5 – – –
GAL-fWSD512 [47] VGG16 47.5 66.1 – – – – –
ML-LocNet [42] VGG16 48.4 67.0 42.2 66.3 – 16.2 –
WSRPN [11] VGG16 45.3 63.8 40.8 64.9 – – –
PCL [36] VGG16 43.5 – – – 8.5 19.4 –
Kosugi et al. [37] VGG16 47.6 66.7 43.4 66.7 – – –
C-MIL [43] VGG16 50.5 65.0 46.7 67.4 – – –
Pred Net [44] VGG16 52.9 70.9 48.4 69.5 – – –
OICR W-RPN [12] VGG16 46.9 – 43.2 67.5 – – –
SDCN [49] VGG16 48.3 66.8 43.5 67.9 – – –
Sona et al. [81] VGG16 45.4 – – – – – –
WSOD2 [18] VGG16 53.6 69.5 47.2 71.9 10.8 22.7 –
OICR+GAM+REG [35] VGG16 48.6 66.8 – – – – –
C-MIDN [50] VGG16 52.6 68.7 50.2 71.2 9.6 21.4 –
OIM+IR [39] VGG16 50.1 67.2 45.3 67.1 – – –
Ren et al. [20] VGG16 54.9 68.8 52.1 70.9 12.4 25.8 10.5
Zeni et al. [82] VGG16 49.7 65.7 – 66.3 – – –
PG-PS [13] VGG16 51.1 69.2 48.3 68.7 – 20.7 –

WSOD without external object proposal modules or additional data

Shi et al. [83] – – 36.2 – – – – –
Beam Search [62] VGG16 25.7 – 26.5 – – – –
OM+MIL [33] AlexNet 23.4 41.2 29.1 – – – –
OPG [84] VGG16 28.8 43.5 – – – – –
SPAM-CAM [63] VGG16 27.5 – – – – – –

UWSOD VGG16 44.0 63.0 45.1 65.2 2.5 9.3 1.1
WSR18 45.0 63.8 46.2 65.7 3.1 10.1 1.4

FSOD

Fast RCNN [85] VGG16 66.9 – 65.7 – 18.9 38.6 –
Faster RCNN [2] VGG16 69.9 – 67.0 – 21.2 41.5 –

WSOD with Cls-agnostic GT-bbox Known

OICR + GAM + REG[35] VGG16 54.3 81.3 53.9 82.1 13.7 27.1 12.5
Ren et al. [20] VGG16 62.2 87.1 62.1 88.9 14.1 28.9 12.7

UWSOD VGG16 67.7 93.3 65.3 91.1 15.3 32.4 12.8
WSR18 69.7 92.5 66.1 92.3 13.7 27.9 12.5

in all the experiments, unless specified otherwise. We set the labeling threshold λobn and λp to 0.5
and 0.7, respectively. For SWBBFT, We se the number of fine-tune branches nf to 4, and λf to
{0.3, 0.4, 0.5, 0.6}. We apply MRRP on the last stage of backbone with nm = 3 and αm = {1, 2, 4}.

4.4 Ablation study

We validate the contribution of each design components on PASCAL VOC 2007 in Tab. 1. We
use ContextLocNet [29] as our baseline, which is widely used in recent WSOD methods. Our
implementation of WSDDN in row (a) has superior performance, which may due to larger mini-batch
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size and epochs. For rows (b-d), we report the results of applying SSOPG with various parameters,
which show competitive performance compared to the original (a). We observe that decreasing
object proposals generated by SSOPG drops the performance, as the recall rate is not sufficient
enough to support accuracy object mining in WSOD. Rows (e-g) show the results of applying
SWBBFT, which provides performance boosting from row (c). The benefits are mainly from: First,
the proposed step-wise learning paradigm progressively selects high-confidence object proposals as
positive samples for refining. Second, each refinement branch has bounding-box regressor to refine
bounding-box coordinates step-wisely. Rows (h-k) show that the proposed MRRP further improves
both the localization and detection performance. It demonstrates that MRRP remedies the scale
variations issue by the in-network feature hierarchy. MRRP in row (j) maps object proposals to their
own pyramid level, which also achieves competitive results compared to row (i), which averages all
feature maps. As shown in Fig. 3, the initial proposals are spatially scattered. With more training
epochs, SSOPG rapidly learns to generate proposals that are clustered around object gradually.

4.5 Comparison with the state of the arts

We compared our proposed method with previous methods based on a single backbone. In Tab. 2,
we first compare the results on Pascal VOC 2007 in terms of mAP and CorLoc. As shown in the
bottom of Tab. 2, the proposed UWSOD significantly outperforms the state-of-the-art methods that
do not use external modules or additional data. This indicates the efficiency of UWSOD. Compared
to other methods with external object proposals or data, UWSOD also achieves competitive results.
We also report the performance on Pascal VOC 2012 in Tab. 2. UWSOD consistently outperforms
other self-contained methods and achieves new state-of-the-art results. The benefits are mainly from
effectively learning object proposal generation, bounding-box fine-tuning and scale-invariant features.
The last column of Tab. 2 shows the results on MS COCO. The low performance is mainly due to
that COCO dataset has more complex scenes and larger category set.

4.6 Upper-bound performance analysis

As WSOD is upper bounded in its capacity for object localization, we further analyze the upper-bound
performance of WSOD methods with ground-truth bounding boxes (GT-bbox Known).The upper
bound of recent state-of-the-art methods, e.g., [35, 20], are Fast R-CNN [85], as they all heavily
rely on external object proposal algorithms. Different to them, UWSOD learns to generate object
proposals and has upper-bound performance as with Faster R-CNN [2]. We further introduce a
regression-disentangled learning setting to decouple proposal classification and regression tasks. In
detail, we remove the class annotation from the ground-truth bounding-box labels during training,
termed Cls-agnostic GT-bbox Known. Thus, WSOD still need to capture coarse object location,
while predicted boxes have ground-truth regression supervision to fine-tune themselves. As shown
in the bottom part of Tab. 2, the performance of UWSOD approaches its upper bound of GT-bbox
Known, which also demonstrates that UWSOD has the fully-supervised-level capacity. We find that
the accurate bounding-box localization is one of the main obstacles to reduce the performance gap
between UWSOD and its fully supervised counterpart.

5 Conclusion

In this paper, we propose a unified WSOD framework, termed UWSOD, to develop a high-capacity
general detection model with only image-level labels, which is self-contained and does not require
external modules or additional supervision. We focus on three important components, i.e., object
proposal generation, bounding-box fine-tuning and scale-invariant features. Extensive experiments
on PASCAL VOC and MS COCO show that the proposed method competitive results with the
state-of-the-art WSOD methods while not requiring external modules or additional supervision. We
also demonstrate that UWSOD obtains higher upper-bound performance than other WSOD methods
and has fully-supervised-level capacity, which brings larger potential to reduce the performance gap
between WSOD and FSOD methods.
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Broader Impact

WSOD aims at leveraging weakly supervised learning to train object detectors, which significantly
reduces the human labelling effort. Therefore, WSOD has the potential of handling thousands
of real-world categories and taking advantage of large-scale weak annotations. In this work, we
develop a unified high-capacity generic object detector with image-level labels, termed UWSOD,
and exploit three important components, i.e., object proposal generation, bounding-box fine-tuning
and scale-invariant features, all of which are rarely touched in WSOD before. Our method has both
practical and methodological contributions to facilitate the development of this area.

• For the academia, the superior capacity of our method demonstrates that WSOD has potential
to achieve competitive results compared to FSOD.

• For the industry, the proposed UWSOD method enables to utilize the image-level annotations
cheaply available on the Internet to learn detectors.

• For the community, we hope to give new insight into other tasks under weak supervision to
achieve promising performance.
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