
A Appendix

The following sections provide additional details about the experiments as well as a brief glimpse
into other analyses that we are actively pursuing for future work.

A.1 An intuitive introduction to persistent homology

Persistent homology was developed as a ‘shape descriptor’ for real-world data sets, where the
idealised notions of algebraic topology do not necessarily apply any more. This is illustrated by the
subsequent figure, which deals with a point cloud that has a roughly circular shape. Notice that this
shape is immediately recognisable to humans, but from the perspective of algebraic topology, it is
merely a collection of points with a trivial shape.

We observe that we can analyse this point cloud by picking an appropriate scale parameter. More
precisely, if we start connecting points that are within a certain distance ε to each other, we obtain a
nested sequence of simplicial complexes (in our context, this term is synonymous with a graph) as
we increase ε. This is a special type of filtration—a filtration based on pairwise distances, and the
resulting simplicial complexes are depicted above. It is now possible to calculate Betti numbers for
each of these complexes. Since we are only dealing with 2D points, there are only two relevant Betti
numbers, namely β0 and β1, corresponding to the number of connected components and the number
of cycles, respectively. Suppose now that we track these numbers for each one of the steps in the
filtration; moreover, suppose we have a way of making the individual steps in the filtration as small
as possible such that we never miss any changes in β0 and β1. For every topological feature—every
component and every cycle—we can thus measure precisely when a feature was created and when it
was destroyed.

Persistence diagram. This information is collected in the persistence diagram, which summarises
all topological activity. In this example, the persistence diagram of the 1-dimensional topological
features contains a few points, each one of them corresponding to one specific cycle in the data.
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A persistence diagram of
the 1-dimensional topologi-
cal features (cycles).

The axes correspond to the scale parameter (their actual values can
be safely ignored for this illustrative example). The x-axis shows the
threshold at which a cycle was created, i.e. at which there is a ‘hole’
in the corresponding simplicial complex, while the y-axis depicts
the threshold at which this hole is destroyed, i.e. closed. We do not
specifically indicate this here, but cycles are destroyed whenever all
points that are involved in their creation are connected to each other.
Put differently, this means that we ignore cycles created by individual
triangles of points, for example, as they are qualitatively different
from cycles created by arranging points in such a circular shape (there
are more technical reasons for this restriction). In any case, the
persistence diagram demonstrates that virtually all cycles—depicted
as points—occur at small scales, except for one. This coincides with
our intuition: we do not perceive such a point cloud to have a lot of
large-scale cycles. The persistence diagram thus serves as an intuitive
feature descriptor: points that occur at large scales are far removed from the diagonal (and have a
high persistence), whereas the small-scale features cluster around the diagonal.

The interesting fact is that knowing the persistence diagram also makes it possible for us to ‘guess’ the
number of relevant scales of a point cloud! In this example, we would possibly state that there is only
one useful scale at which to analyse the data, namely the scale for which the cycle structure becomes
topologically apparent. In general, this will differ based on the data set. Persistent homology does not
force us to prefer a scale, making it suitable for the analysis of real-world data sets. The ingenious
realisation of Edelsbrunner et al. [26] was that there is no reason to ‘guess’ scales or compute Betti
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numbers per step, as we described it above. Instead, it is possible to obtain information about all
potential scales by a single pass through the data, making this a highly-efficient algorithm (at least as
long as the dimension of the input data is bounded; calculating topological features for dimensions
d� 3 efficiently is still a topic of ongoing research).

Persistence images. Since the metric structure of persistence diagrams is known to be complex [43],
various kernel-based and ‘vectorisation’ methods exist. In the main text, we focus on persistence
images [1], a technique that essentially estimates the density of a persistence diagram and uses a
grid to obtain a fixed-size representation. Such representations may then be used for downstream
processing tasks. As a worked example, consider the following persistence diagram. After rotating
it so that the diagonal becomes the new x-axis, we can perform density estimates with different
resolutions. The density estimator, which is by default a Gaussian kernel, can be adjusted as well,
but Adams et al. [1] mention that this does not have a large influence on the results (whereas the
resolution should be sufficiently large to capture differences). In the main paper, we use a smoothing
value of σ = 1 and a resolution of r = 20, resulting in 400-dimensional vectors. We also calculated
different resolutions and smoothing values, but the results are virtually identical, unless the resolution
is decreased too much: recall that a single persistence diagram of one participant has around 10,000
features; reducing them to a, say, 5× 5 image results in a large loss of information.

A.2 Properties of cubical complexes

Figure A.3 depicts the differences between cubical complexes and simplicial complexes. The cubical
complex is ‘aligned’ with a regular grid and does not force us to choose between an interpolation
scheme. For a simplicial complex, however, the calculation of topological features in dimensions 1
and 2 necessitates the creation of 2-simplices, i.e. triangles. This, in turn, requires us to ‘pick’
between two triangulation schemes that result in different connectivities between the original vertices.
In the worst case, this could lead to subtle differences in filtrations, since the new edges need to be
weighted accordingly.

A.3 fMRI pre-processing

The fMRI data acquisition used the following parameters: gradient-echo EPI sequence: TR = 2 s,
TE = 30 ms, flip angle = 90°, matrix = 64× 64, slices = 32, and interleaved slice acquisition. Data
were collected using the standard Siemens 32-channel head coil for adults and older children. One
of two custom 32-channel phased-array head coils was used for younger children (smallest coil:
N = 3; M = 3.91, SD = 0.42 years old; smaller coil: N = 28; M = 4.07, SD = 0.42, years old).
Acquisition parameters differed slightly across participants but all fMRI data were re-sampled to have
the same voxel size, namely 3 mm isotropic with 10% slice gap. A T1-weighted structural image was
also collected for all subjects (MPRAGE sequence: GRAPPA = 3, slices = 176, resolution = 1 mm
isotropic, adult coil FOV = 256 mm, child coils FOV = 192 mm). Imaging data were pre-processed
using fMRIPrep v1.1.8 [30].

A.4 Baselines

As additional comparison partners, we calculate a time point correlation matrix and a spatial correla-
tion matrix (see Section 3). These matrices are calculated from the time-varying fMRI data of a single
participant, which is a 4D tensor indexed by time steps and spatial coordinates. By ‘unravelling’ the
spatial dimensions of the tensor (using a row-major ordering, for example), the 4D tensor becomes
a 2D tensor, i.e. a matrix in which each row corresponds to a single time step, and the columns
correspond to voxels in the aforementioned order. From this m×N matrix, where m denotes the
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Figure A.3: If we use a cubical complex (left; only a single square cell is shown) we do not have to
choose an interpolation scheme for voxel-based data. Function values can be stored in the vertices (a,
b, c, d) and interpolation happens along the edges. For simplicial complexes, however, we need
to convert the square into a triangle (the same issue occurs in higher dimensions with cubes and
tetrahedra, respectively). This conversion to triangles leaves us with two ways of interpolating that
will typically lead to different results. In one case, we are interpolating between a and c, in the other
case between b and d. Neither one of these edges exist in the original data, though.

Figure A.4: A schematic illustration of the parcels used to make the computation of a full correlation
matrix computationally feasible. This only pertains to the BASELINE-PP method.

number of time steps as in the main paper and N denotes the total number of voxels, we can calculate
Pearson product-moment correlation coefficients. If we do this for the original matrix, we obtain an
m×m time point correlation matrix, which we denote by BASELINE-TT (i.e. a time-by-time matrix).

Conversely, we can transpose the matrix to obtain a voxel-by-voxel correlation matrix—referred
to as a full correlation matrix (FCMA). This matrix has dimensions N × N , though, which is
computationally prohibitive for most applications. As a more feasible calculation, we calculate the
spatial correlation matrix from a parcellated data set. We use 100 parcels from 17 functional networks
Schaefer et al. [54], depicted in Figure A.4, so that we obtain a 100× 100 correlation matrix, which
we refer to as BASELINE-PP to indicate that parcellated data was used to obtain this matrix.

As additional comparison partners, we follow a more conventional topological data analysis pipeline
and calculate persistence images from a set of correlation matrices. The matrix is treated as the
adjacency matrix of a fully-connected graph, and we use a filtration that is specifically geared towards
the analysis of such ‘correlation graphs’ [18]. Following our own pipeline, we convert the resulting
persistence diagrams into persistence images (using smoothing values σ ∈ {0.1, 1.0} and resolutions
r ∈ {10, 20}, respectively), and report the best performance for the age prediction task. We denote
the corresponding methods by TT-CORR-TDA and PP-CORR-TDA, depending on which correlation
matrix was used for the calculation.

Last, as an ablation study, we use parcellated data with the same parcels as above and assign the
respective values to the original cubical volume; each voxel corresponding to the same parcel is
assigned the same value. This has the effect of coarsening information but also removing noise; while
not decreasing the number of voxels in the data, it will decrease the number of topological features
that have to be considered. We mark the results obtained using this technique with PARCELLATED.

A.5 Age prediction experimental details

For the age prediction experiment from Section 5.1, we use a ridge regression classifier with internal
leave-one-out cross-validation [12] for its regularisation strength parameter C ∈ {0.1, 1.0, 10.0}.
Internally, the classifier optimises the R2 score, i.e. the coefficient of determination. We report the
correlation coefficient in the table in order to be aligned with the reporting in previous publications,
though. We standardise all features prior to using them for the classifier. The classifier is then used in
a leave-one-out cross-validation scheme.

Since the input features have different cardinalities (the parcellated voxel-by-voxel matrix, for
example, has a cardinality of 1002, which will lead to severe overfitting, we reduce the baseline
matrices to 100 dimensions using principal component analysis. Moreover, to demonstrate the impact
of our topological summary statistics, we only use summary statistics from the second half of the
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Table A.1: Additional experimental results for the age prediction tasks. In contrast to the table in the
main paper, here we show both the correlation coefficient (CC; higher values are preferable ↑) and
the mean squared error (MSE; lower values are preferable) whenever available.

Method BM OM XM

CC ↑ MSE ↓ CC ↑ MSE ↓ CC ↑ MSE ↓
BASELINE-TT 0.09 10.15 0.02 13.81 0.24 7.19
BASELINE-PP 0.41 6.23 0.40 6.40 0.40 6.65
TT-CORR-TDA 0.17 10.04 0.11 12.57 0.23 9.76
PP-CORR-TDA 0.25 10.34 0.27 9.68 0.23 9.94

SRM 0.44 6.05 — — — —

‖D‖1 0.46 4.27 0.67 2.95 0.48 4.17
‖D‖1 parcellated 0.32 4.91 0.50 4.06 0.34 4.76
‖D‖∞ 0.61 3.38 0.77 2.20 0.73 2.53
‖D‖∞ parcellated 0.67 2.99 0.50 4.04 0.33 4.81

time series, resulting in less than 100 features. We observe that the results are highly stable; even
reducing the number of selected features to less than 10 has no noticeable effect on the resulting
regression model, indicating the informativeness of topology for this task.

Table A.1 shows extended results for this experiment, including MSE values (another goodness-of-fit
measure) that were excluded from the table in the main paper because the incomparability to existing
methods. To reproduce the values in this table, please use the provided predict age.py script.

A.6 Proof of the stability theorem

Proof. Let V := [0, 1]3; this is not a restriction because fMRI volumes are bounded, so they are
always homeomorphic to this ‘standard cube’. Hence, V is a compact metric space that can be
triangulated. Since f and g are continuous functions (at least this is the ‘idealised’ view in which
we have access to an infinite number of samples), the stability follows from the main theorem of
Cohen-Steiner et al. [20]. �

A.7 Across-cohort variability analysis

For the across-cohort variability analysis, Figure A.5 shows the ‘raw’ curves for each of the masks,
annotated with the respective events. As described in Section 5.2.2, we pool variability for all events
and analyse the resulting histograms. This construction loses some information, but is a simple way
to assess overall differences in variability.

A.8 Curvature analysis

The curvature κ of a differentiable curve measures how sharply the trajectory curves at a given point
on the curve. A circle, for example, always has curvature of 1 at each point, while a straight line, by
contrast, always has a curvature of 0. We hypothesise that the curvature of brain state trajectories can
help to further characterise subjects by looking at topological activity from a geometric point of view.

Let x(t) be the x-coordinate of a brain trajectory (as shown in Figure 4) at time t and y(t) its
respective y-coordinate. Furthermore, let us define ẋ as the first derivative of x with respect to t;
equivalently, ẍ denotes the second derivative. Curvature can then be expressed as

κ =
|ẋÿ − ẏẍ|

(ẋ2 + ẏ2)
3
2

(3)

Notice that curvature is an inherently local quantity. We computed κ for all brain state trajectories of
all cohorts and for all three segmentation masks. We then investigated the differences in κ around
event boundaries, similar to the variability analysis in Section 5.2.2. Figure A.6 shows the distribution
of curvature values when stratifying the subjects into adults and non-adults. We find significant
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Figure A.5: Across-cohort variability curves for the different masks. The dotted lines represent the
events. Generally, events are aligned with local extrema of the curves.
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Figure A.6: Distribution of brain state trajectory curvature values at event boundaries. The distri-
butions differ significantly for BM (pKS = 0.00406 and pt = 0.0327) and OM (pKS = 0.0276 and
pt = 0.0402), but not so for XM (pKS = 0.0861 and pt = 0.282).

differences (at the α = 0.05 level) in the distribution of values in terms of a two-sided Kolmogorov–
Smirnov test (pKS) and in terms of a T -test (pt) for both BM and OM, whereas the differences in XM
are not considered to be significant.
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