
We thank the reviewers for their positive, kind, and constructive feedback! The two main points of criticism concerned1

(1) the lack of neuroscience background information, and (2) missing discussion and comparison to prior work. Due to2

page limitations, these points were insufficiently addressed. In a revision, we will provide additional details here as well3

as more citations concerning prior work in TDA and neuroscience.4

Differences/comparison to previous work: We are the first TDA paper to work directly with fMRI input data (using5

cubical complexes). Prior work uses auxiliary representations such as networks extracted from correlation matrices [2, 7].6

Moreover, previous studies often use other measuring modalities such as structural MRI for anatomical analyses [1], or7

diffusion MRI/DTI for studying white matter integrity [2]. Our cubical persistence formulation is the first of its kind in8

the context of functional MRI measuring brain activity during a movie-watching task. We will make this delineation9

more clear in a revision.10

Method BM OM XM

BASELINE-TT 0.09 0.02 0.24
BASELINE-PP 0.41 0.40 0.40

SRM 0.44 — —

TT-TDA 0.16 0.08 0.24
PP-TDA 0.19 0.24 0.23

‖D‖1 0.46 0.67 0.48
‖D‖∞ 0.61 0.77 0.73

Performance of baselines, standard TDA approaches, and our
method for the age prediction task.

Inspired by this feedback, we also prepared experiments using a more con-11

ventional formulation of TDA methods based on correlation graphs of the12

data, which we created from correlation matrices using a correlation distance13

filtration [3] (terminology follows the paper; time-based: TT-TDA; voxel-14

based, parcellated: PP-TDA). The new values in the table are highlighted; the15

remaining rows are duplicated from the table in the paper. We observe that16

the time-based correlation matrix/graph is improved by topological feature17

extraction, while the voxel-based (parcellated) correlations are not improved.18

This demonstrates the advantage of using the input data directly, instead of19

requiring auxiliary representations.20

Reviewer 1: Thank you very much for your exuberant feedback, we really21

appreciate it! Concerning the weaknesses that you mentioned: indeed, there22

is no direct ‘link’ between our approach and classical approaches; however, our topological features ‘live’ in the original23

space of the data and can be localised [5, 8], i.e. endowed with a minimal geometry. Other topological approaches,24

which use correlation graphs as intermediaries, do not have features that directly relate back to the data. We plan to25

explore this in the future and we are convinced that our approach will also open up other avenues of inquiry. We will26

also run our approach on synthetically-generated data sets [4] for verification and validation (in order to study the27

limitations of our approach).28

Reviewer 3: Thank you very much for your positive feedback! Concerning the weakness that you mentioned, please29

see our general points above—in a revision, we will delineate this work better from related papers. Thanks for the links30

to additional papers; we will cite and discuss them accordingly. • Dimensions of the data: Thanks for highlighting this;31

we will add it to the paper! The 4D volume of each participant has dimensions 65× 77× 60× 168 (as described in the32

paper, we are not considering all 168 time steps). • Neuroscience background: We will add an appropriate section to the33

paper or the supplemental materials. • Contributions: We are the first work utilising cubical persistent homology in the34

context of fMRI. We use theoretical tools with a strong mathematical foundation and apply them in a novel way. This35

results in dynamic representations (previous work only considered static representations), the brain state trajectories,36

whose calculation combines topological features with the diffusion geometry method PHATE [6], yielding a novel set37

of features that were previously not considered in the literature. As we show in the paper, these trajectories are capable38

of capturing the dynamics of cognition. We will emphasise these contributions more in the revision.39

Reviewer 4 Thank you very much for your constructive feedback! We will delineate our work (novel cubical persistence40

calculations) better from existing work (requiring auxiliary representations such as networks). • Generalisability: While41

we focussed on one data set for this initial submission, our method can be applied to any neuroimaging data set. A key42

feature is its abstraction—as we show in the prediction task, this may help counteract noise and intra-subject variability.43

We are convinced that other applications in neuroscience, using metrics other than age prediction, can benefit from our44

approach (which is why we will make all code available). Thus, we think that our work paves the way for a different45

sort of topology-based neuroscience methods that are based on direct feature extractions from the data. We will explore46

the feasibility of our work on other modalities (such as EEG) in the future (presently, they are out of scope for this47

work). • Time series visualisation: We will extend the description of this approach and provide examples.48
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