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Abstract

When designing new molecules with particular properties, it is not only important
what to make but crucially how to make it. These instructions form a synthesis
directed acyclic graph (DAG), describing how a large vocabulary of simple building
blocks can be recursively combined through chemical reactions to create more
complicated molecules of interest. In contrast, many current deep generative models
for molecules ignore synthesizability. We therefore propose a deep generative
model that better represents the real world process, by directly outputting molecule
synthesis DAGs. We argue that this provides sensible inductive biases, ensuring that
our model searches over the same chemical space that chemists would also have
access to, as well as interpretability. We show that our approach is able to model
chemical space well, producing a wide range of diverse molecules, and allows
for unconstrained optimization of an inherently constrained problem: maximize
certain chemical properties such that discovered molecules are synthesizable.

1 Introduction

Designing and discovering new molecules is key for addressing some of world’s most pressing
problems: creating new materials to tackle climate change, developing new medicines, and providing
agrochemicals to the world’s growing population. The molecular discovery process usually proceeds
in design-make-test-analyze cycles, where new molecules are designed, made in the lab, tested in
lab-based experiments to gather data, which is then analyzed to inform the next design step [29].

There has been a lot of recent interest in accelerating this feedback loop, by using machine learning
(ML) to design new molecules [3, 14, 23, 35, 38, 39, 52, 64, 67, 70, 71, 82]. We can break up these
developments into two connected goals: G1. Learning strong generative models of molecules
that can be used to sample novel molecules, for downstream screening and scoring tasks; and G2.
Molecular optimization: Finding molecules that optimize properties of interest (e.g. binding affinity,
solubility, non-toxicity, etc.). Both these goals try to reduce the total number of design-make-test-
analyze cycles needed in a complementary manner, G1 by broadening the number of molecules that
can be considered in each step, and G2 by being smarter about which molecule to pick next.

Significant progress towards these goals has been made using: (a) representations ranging from
strings and grammars [23, 44, 67], to fragments [35, 53] and molecular graphs [46, 47, 72]; and (b)
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model classes including latent generative models [16, 23, 44, 49] and autoregressive models [46, 67].
However, in these approaches to molecular design, there is no explicit indication that the designed
molecules can actually be synthesized; the next step in the design-make-test-analyze cycle and the
prerequisite for experimental testing. This hampers the application of computer-designed compounds
in practice, where rapid experimental feedback is essential. While it is possible to address this with
post-hoc synthesis planning [21, 32, 65, 68, 73], this is unfortunately very slow.
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Figure 1: An example synthesis DAG
for paracetamol [19] Note that we are
ignoring some reagents, conditions and
details of chirality for simplicity.

One possibility to better link up the design and make steps,
in ML driven molecular generation, is to explicitly in-
clude synthesis instructions in the design step. Based on
similar ideas to some of the discrete enumeration algo-
rithms established in chemoinformatics, which construct
molecules from building blocks via virtual chemical re-
actions [11, 27, 31, 75, 76], such models were recently
introduced [7, 43]. Bradshaw et al. [7] proposed a model
to choose which reactants to combine from an initial pool,
and employed an autoencoder for optimization. However,
their model was limited to single-step reactions, whereas
most molecules require multi-step syntheses (e.g. see Fig-
ure 1). Korovina et al. [43] performed a random walk on a
reaction network, deciding which molecules to assess the
properties of using Bayesian optimization. However, this
random walk significantly limits the ability of that model
to optimize molecules for certain properties.1

In this work to address this gap, we present a new archi-
tecture to generate multi-step molecular synthesis routes
and show how this model can be used for targeted opti-
mization. We (i) explain how one can represent synthetic
routes as directed acyclic graphs (DAGs), (ii) propose a
novel hierarchical neural message passing procedure that exchanges information among multiple
levels in such a synthesis DAG, and (iii) develop an efficient serialization procedure for synthesis
DAGs. Finally, we show how our approach leads to encoder and decoder networks which can both
be integrated into widely used architectures and frameworks such as latent generative models (G1)
[42, 59, 74], or reinforcement learning-based optimization procedures to sample and optimize (G2)
novel molecules along with their synthesis pathways. Compared with models not constrained to also
generate synthetically tractable molecules, competitive results are obtained.

2 Formalizing Molecular Synthesis

We begin by formalizing a multi-step reaction synthesis as a DAG (see Figure 1).2

Synthesis pathways as DAGs At a high level, to synthesize a new molecule MT , one needs to
perform a series of reaction steps. Each reaction step takes a set of molecules and physically combines
them under suitable conditions to produce a new molecule. The set of molecules that react together
are selected from a pool of molecules that are available at that point. This pool consists of a large set
of initial, easy-to-obtain starting molecules (building blocks) and the intermediate products already
created. The reaction steps continue in this manner until the final molecule MT is produced, where
we make the assumption that all reactions are deterministic and produce a single primary product.

For example, consider the synthesis pathway for paracetamol, in Figure 1, which we will use as a
running example to illustrate our approach. Here, the initial, easy-to-obtain building block molecules

1Concurrent to the present work, Gottipati et al. [24] and Horwood and Noutahi [30] propose to optimize
molecules via multi-step synthesis using reinforcement learning (RL). However, both approaches are limited to
linear synthesis trees, where intermediates are only reacted with a fixed set of starting materials, instead of also
reacting them with other intermediates. We believe these works, which focus more on improving the underlying
RL algorithms, are complementary to the model presented here, and we envision combining them in future work.

2We represent synthesis routes as DAGs (directed acyclic graphs) such that there is a one-to-one mapping
between each molecule and each node, even if it occurs in multiple reactions (see the Appendix for an example).
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Adding a building block node is
always followed by one action
picking the associated molecule

Adding a product node is followed by adding edges
into it until the "create intermediate product" or
"create final product" action is selected.

'B' 'P' 'P' 'P''B' 'B' 'B'
? ?

Figure 2: An example of how we can serialize the construction of the DAG shown in Figure 1, with
the corresponding DAG at that point in the sequence shown for three different time-points in the grey
circles. The serialized construction sequence consists of a sequence of actions. These actions can be
classified into belonging to three different types: (A1) node addition, (A2) building block molecular
identity, and (A3) connectivity choice. By convention we start at the building block node that is
furthest from the final product node, sampling randomly when two nodes are at equivalent distances.

are shown in blue boxes. Reactions are signified with arrows, which produce a product molecule
(outlined in green) from reactants. These product molecules can then become reactants themselves.

In general, this multi-step reaction pathway forms a synthesis DAG, which we shall denote M.
Specifically, note that it is directed from reactants to products, and it is not cyclic, as we do not need
to consider reactions that produce already obtained reactants.

3 Our Models

Here we describe a generative model of synthesis DAGs. This model can be used flexibly as part of a
larger architecture or model, as shown in the second half of this section.

3.1 A probabilistic generative model of synthesis DAGs

We begin by first describing a way to serialize the construction of synthesis DAGs, such that a DAG
can be iteratively built up by our model predicting a series of actions. We then describe our model,
which parameterizes probability distributions over each of these actions. Further details including
specific hyperparameters along with a full algorithm are deferred to the Appendix.3

Serializing the construction of DAGs Consider again the synthesis DAG for paracetamol shown
in Figure 1; how can the actions necessary for constructing this DAG be efficiently ordered into a
sequence to obtain the final molecule? Figure 2 shows such an approach. Specifically, we divide
actions into three types: A1. Node-addition (shown in yellow): What type of node (building block
or product) should be added to the graph?; A2. Building block molecular identity (in blue): Once a
building block node is added, what molecule should this node represent?; A3. Connectivity choice (in
green): What reactant nodes should be connected to a product node (i.e., what molecules should be
reacted together)?

As shown in Figure 2 the construction of the DAG then happens through a sequence of these actions.
Building block ('B') or product nodes ('P') are selected through action type A1, before the identity
of the molecule they contain is selected. For building blocks this consists of choosing the relevant
molecule through an action of type A2. Product nodes’ molecular identity is instead defined by
the reactants that produce them, therefore action type A3 is used repeatedly to either select these
incoming reactant edges, or to decide to form an intermediate ( 6→I) or final product ( 6→F ). In forming
a final product all the previous nodes without successors are connected up to the final product node,
and the sequence is complete.

In creating a DAG,M, we will formally denote this sequence of actions, which fully defines its
structure, as M = [V 1, V 2, V 3, . . . , V L]. We shall denote the associated action types as A =
[A1, A2, A3, . . . , AL] with Al ∈ {A1,A2,A3}, and note that these are also fully defined by the

3Code is provided at https://github.com/john-bradshaw/synthesis-dags.
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Figure 3: A depiction of how we use neural networks to parameterize the probability of picking
actions at stages 1-6 of Figure 2 (note that as stage 1 always suggests a building block node it is
automatically completed). A shared RNN for the different action networks receives an embedding
of the previous action chosen and creates a context vector for the action network. When using our
model as part of an autoencoder network then the initial hidden layer is parameterized by the latent
space sample, z. Each type of action network chooses a subsequent action to take (with actions that
are impossible being masked out, such as selecting an already existing building block or creating an
intermediate product before connecting up any reactants). The process continues until the ‘create
final product’ node is selected (see Figure 3 in the Appendix). Graph neural networks are used for
computing embeddings of molecules where required.

previous actions chosen (e.g. after choosing a building block identity you always go back to adding a
new node). The molecules corresponding to the nodes produced so far we will denote as Mi, with
i referencing the order in which they are created. We will also abuse this notation and use M<l to
describe the set of molecule nodes existing at the time of predicting action l. Finally, we shall denote
the set of initial, easy-to-obtain building blocks asR.

Defining a probabilistic distribution over construction actions We are now ready to define a
probabilistic distribution overM. We allow our distribution to depend on a latent variable z ∈ Rd,
the setting of which we shall ignore for now and discuss in the sections that follow. We propose an
auto-regressive factorization over the actions:

pθ(M|z) =
L∏
l=1

pθ(Vl|V<l, z) (1)

Each pθ(Vl|V<l, z) is parameterized by a neural network, with weights θ. The structure of this
network is shown in Figure 3. It consists of a shared RNN module that computes a ‘context’ vector.
This ‘context’ vector then gets fed into a feed forward action-network for predicting each action. A
specific action-network is used for each action type, and the action type also constrains the actions that
can be chosen from this network: V l|Al=A1 ∈ {'B', 'P'}, V l|Al=A2 ∈ R, and V l|Al=A3 ∈ M<l ∪ {6→I
, 6→F}. The initial hidden layer of the RNN is initialized by z and we feed in the previous chosen
action embedding as input to the RNN at each step. Please see the Appendix for further details
including pseudocode for the entire generative procedure in detail as a probabilistic program (Alg. 1).

Action embeddings For representing actions to our neural network we need continuous embed-
dings, h ∈ Rd. Actions can be grouped into either (i) those that select a molecular graph (be that a
building block, g ∈ R, or a reactant already created, g′ ∈ M<l); or (ii) those that perform a more
abstract action on the DAG, such as creating a new node ('B', 'P'), producing an intermediate product
( 6→I), or lastly producing a final product (6→F ). For the abstract actions the embeddings we use are
each distinct learned vectors that are parameters of our model.

With actions involving a molecular graph, instead of learning embeddings for each molecule we
compute embeddings that take the structure of the molecular graph into account. Perhaps the simplest
way to do this would be using fixed molecule representations such as Morgan fingerprints [50, 60].
However, Morgan fingerprints, being fixed, cannot learn which characteristics of a molecule are
important for our task. Therefore, for computing molecular embeddings we instead choose to use
deep graph neural networks (GNN), specifically Gated Graph Neural Networks [45] (GGNNs). GNNs
can learn which characteristics of a graph are important and have been shown to perform well on a
variety of tasks involving small organic molecules [18, 22].

4



Reaction prediction When forming an intermediate or final product we need to obtain the molecule
that is formed from the reactants chosen. At training time we can simply fill in the correct molecule
using our training data. However at test time this information is not available. We assume however
we have access to an oracle, Product(·), that given a set of reactants produces the major product
formed (or randomly selects a reactant if the reaction does not work). For this oracle we could use
any reaction predictor method [6, 12, 13, 17, 20, 34, 40, 41, 63, 66, 79]. In our experiments we
use the Molecular Transformer [63], as it currently obtains state-of-the-art performance on reaction
prediction [63, Table 4]. Further details of how we use this model are in the Appendix.

It is worth pointing out that current reaction predictor models are not perfect, sometimes predicting
incorrect reactions. By treating this oracle as a black-box however, our model can take advantage of
any future developments of these methods or use alternative predictors for other reasons, such as to
control the reaction classes used.

3.2 Variants of our model

Having introduced our general model for generating synthesis DAGs of (molecular) graphs (DoGs),
we detail two variants: an autoencoder (DoG-AE) for learning continuous embeddings (G1), and a
more basic generator (DoG-Gen) for performing molecular optimization via fine-tuning or reinforce-
ment learning (G2).

3.2.1 DoG-AE: Learning a latent space over synthesis DAGs

For G1, we are interested in learning mappings between molecular space and latent continuous
embeddings. This latent space can then be used for exploring molecular space via interpolating
between two points, as well as sampling novel molecules for downstream screening tasks. To do
this we will use our generative model as the decoder in an autoencoder structure, which we shall
call DoG-AE. We specify a Gaussian prior over our latent variable z, where each z ∼ p(z) can be
thought of as describing different types of synthesis pathways.

The autoencoder consists of a stochastic mapping from z to synthesis DAGs and a separate encoder,
qφ(z | M) a stochastic mapping from synthesis DAGs,M, to latent space. Using our generative
model of synthesis DAGs, described in the previous subsection, as our decoder (with the latent
variable initializing the hidden state of the RNN as shown in Figure 3), we are left to define both our
autoencoder loss and encoder.

Autoencoder loss We choose to optimize our autoencoder model using a Wasserstein autoencoder
(WAE) objective with a negative log likelihood cost function [74],

min
φ,θ

EM∼p(M)Eqφ(z|M)

[
− log pθ(M | z)

]
+ λD(qφ(z), p(z)), (2)

where following Tolstikhin et al. [74] D(·, ·) is a maximum mean discrepancy (MMD) divergence
measure [25] and λ = 10; alternative autoencoder objectives could easily be used instead.

Encoder At a high level, our encoder consists of a two-step hierarchical message passing procedure
described in Figure 4: (1) Molecular graph message passing; (2) Synthesis graph message passing.
Given a synthesis DAGM, each moleculeM within that pathway can itself be represented as a graph:
each atom a is a node and each bond ba,a′ between atoms a and a′ is an edge. As we did for the
decoder, we can embed these molecular graphs into continuous space using any graph neural network,
in practice we choose to use the same network as the decoder (also sharing the same weights).

Given these initial molecular graph embeddings e0M (now node embeddings for the DAG), we
would like to use them to embed the entire synthesis DAGM. We do so by passing the molecular
embeddings through another second step of message passing (the synthesis graph message passing),
this time across the synthesis DAG. Specifically, we use the message function gm to compute
messages as mt

M =gm(et−1M , et−1N(M)), where N(M) are the predecessor molecules inM (i.e., the
reactants used to create M ), before updating the DAG node embeddings with this message using
the function etM =ge(m

t
M , e

t−1
M ). After T ′ iterations we have the final DAG node embeddings eT

′

M ,
which we aggregate as µ=gµ(E

T ′

M) and σ2=exp(glog σ2(ET
′

M)). These parameterize the mean and
variance of the encoder as: qφ(z | M) :=N (µ,σ2).
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Figure 4: The encoder embeds the DAG of Graphs (DoG) into a continuous latent space. It does
this using a two-step hierarchical message passing procedure. In step 1 (Molecular graph message
passing) it computes initial embeddings for the DAG nodes by forming graph-level embeddings
using a GNN on the molecular graph associated with each node. In step 2 (Synthesis graph message
passing) a message-passing algorithm is again used, however, this time on the synthesis DAG itself,
passing messages forward. In our experiments we use GGNNs [45] for both message passing steps
(see the Appendix for further details). The final representation of the DAG is taken from the node
embedding of the final product node.

We are again flexible about the architecture details of the message passing procedure (i.e., the
architecture of the GNN functions gm, ge, gµ, glog σ2 ). We leave these specifics up to the practitioner
and describe in the Appendix details about the exact model we use in our experiments, where similar
to the GNN used for the molecular embeddings, we use a GGNN [45] like architecture.

3.2.2 DoG-Gen: Molecular optimization via fine-tuning

For molecular optimization, we consider a model trained without a latent space; we use our prob-
abilistic generator of synthesis DAGs and fix z=0, we call this model DoG-Gen. We then adopt
the hill-climbing algorithm from Brown et al. [8, §7.4.6] [51, 67], an example of the cross-entropy
method [15], or also able to be viewed as a variant of REINFORCE [80] with a particular reward
shaping (other RL algorithms could also be considered here). For this, our model is first pre-trained
via maximum likelihood to match the training dataset distribution p(M). For optimization, we can
then fine-tune the weights θ of the decoder: this is done by sampling a large number of candidate
DAGs from the model, ranking them according to a target, and then fine-tuning our model’s weights
on the top K samples (see Alg. 2 in the Appendix for full pseudocode of this procedure).

4 Experiments

We now evaluate our approach to generating synthesis DAGs on two connected goals set out in the
introduction: (G1) can we model the space of synthesis DAGs well and using DoG-AE interpolate
within that space, and (G2) can we find optimized molecules for particular properties using DoG-Gen
and the fine-tuning technique set out in the previous section. To train our models, we create a dataset
of synthesis DAGs based on the USPTO reaction dataset [48]. We detail the construction of this
dataset in the Appendix (§ C.1). We train both our models on the same dataset and find that DoG-AE
obtains a reconstruction accuracy (on our held out test set) of 65% when greedily decoding (i.e.
picking the most probable action at each stage of decoding).

4.1 Generative modeling of synthesis DAGs

We begin by assessing properties of the final molecules produced by our generative model of synthesis
DAGs. Ignoring the synthesis allows us to compare against previous generative models for molecules
including SMILES-LSTM (a character-based autoregressive language model for SMILES strings)[67],
the Character VAE (CVAE) [23], the Grammar VAE (GVAE) [44], the GraphVAE [72], the Junction
Tree Autoencoder (JT-VAE) [35], the Constrained Graph Autoencoder (CGVAE) [47], and Molecule
Chef [7].4 Further details about the baselines are in the Appendix. These models cover a wide range
of approaches for modeling structured molecular graphs. Aside from Molecule Chef, which is limited

4We reimplemented the CVAE and GVAE models in PyTorch and found that our implementation is signifi-
cantly better than [44]’s published results. We believe this is down to being able to take advantage of some of the
latest techniques for training these models (for example β-annealing[1, 28]) as well as hyperparameter tuning.
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Table 1: Table showing the percentage of valid molecules generated and then conditioned on this
the uniqueness, novelty and normalized quality [8, §3.3] (all as %, higher better) as well as FCD
score (Fréchet ChemNet Distance, lower better) [54]. For each model we generate the molecules by
decoding from 20k prior samples from the latent space.

Model Name Validity (↑) Uniqueness (↑) Novelty (↑) Quality (↑) FCD (↓)
DoG-AE 100.0 98.3 92.9 95.5 0.83
DoG-Gen 100.0 97.7 88.4 101.6 0.45

Training Data 100.0 100.0 0.0 100.0 0.21

SMILES LSTM [67] 94.8 95.5 74.9 101.93 0.46
CVAE [23] 96.2 97.6 76.9 103.82 0.43
GVAE [44] 74.4 97.8 82.7 98.98 0.89
GraphVAE [72] 42.2 57.7 96.1 94.64 13.92
JT-VAE [35] 100.0 99.2 94.9 102.34 0.93
CGVAE [47] 100.0 97.8 97.9 45.64 14.26
Molecule Chef [7] 98.9 96.7 90.0 99.0 0.79

to one step reactions and so is unable to cover as much of molecular space as our approach, these
other baselines do not provide synthetic routes with the output molecule.

As metrics we report those proposed in previous works [7, 35, 44, 47, 67]. Specifically, validity
measures how many of the generated molecules can be parsed by the chemoinformatics software
RDKit [56]. Conditioned on validity, we consider the proportions of generated molecules that are
unique (within the sample), novel (different to those in the training set), and pass the quality filters
(normalized relative to the training set) proposed in Brown et al. [8, §3.3]. Finally we measure the
Fréchet ChemNet Distance (FCD) [54] between generated and training set molecules. We view these
metrics as useful sanity checks, showing that sensible molecules are produced, albeit with limitations
[8], [57, §2]. We include additional checks in the Appendix.

Table 1 shows the results. Generally we see that many of these models perform comparably with no
model performing better than all of the others on all of the tasks. The baselines JT-VAE and Molecule
Chef have relatively high performance across all the tasks, although by looking at the FCD score
it seems that the molecules that they produce are not as close to the original training set as those
suggested by the simpler character based SMILES models, CVAE or SMILES LSTM. Encouragingly,
we see that the models we propose provide comparable scores to many of the models that do not
provide synthetic routes and achieve good performance on these sanity checks.

The latent space of synthesis DAGs. The advantage of our model over the others is that it directly
generates synthesis DAGs, indicating how a generated molecule could be made. To visualize the
latent space of DAGs we start from a training synthesis DAG and walk randomly in latent space until
we have output five different synthesis DAGs. We plot the combination of these DAGs, which can be
seen as a reaction network, in Figure 5. We see that as we move around the latent space many of the
synthesis DAGs have subgraphs that are isomorphic, resulting in similar final molecules.

4.2 Optimizing synthesizable molecules

We next look at how our model can be used for the optimization of molecules with desirable
properties. To evaluate our model, we compare its performance on a series of 10 optimization tasks
from GuacaMol [8, §3.2] against the three best reported models Brown et al. [8, Table 2] found: (1)
SMILES LSTM [67], which does optimization via fine-tuning; (2) GraphGA [33], a graph genetic
algorithm (GA); and (3) SMILES GA [81], a SMILES based GA. We train all methods on the same
data, which is derived from USPTO and, as such, should give a strong bias for synthesizability.

We note that we should not expect our model to find the best molecule if judged solely on the
GuacaMol task score; our model has to build up molecules from set building blocks and pre-learned
reactions, which although reflecting the real-life process of molecule design, means that it is operating
in a more constrained regime. However, the final property score is not the sole factor that is important
when considering a proposed molecule. Molecules also need to: (i) exist without degrading or

7



O

N+

O-

F

NN+

O

-O

N

O

ONNN+

O

-O

NN+

O

-O

N

O

Cl

O O

×51

Ethyl
formate

2,6-Dimethylpiperazine

1-Fluoro-4-nitrobenzene

FormamideChloroacetyl
chloride

Acetylacetone

Acetyl chloride

NH2O
×27

Key
reactant molecule

in original data

outside original
data

Nodes

Edges

Colors

product molecule

Input DAG/Initial
Reconstruction
DAG 2
DAG 3
DAG 4
DAG 5

O

Cl

Cl

NH

NH

NN+

O

-O

NH

NH2N NH

×31

×222

×333

×162 ×102

O O

O

Cl

O

NNN+

O

-O

Product 1

Product 2

Product 3

Product 4

Product 5
Figure 5: Using a variant of the DoG-AE model, as we randomly walk in the latent space we decode
out to similar DAGs nearby, unseen in training. Reactions and nodes that exist in our original dataset
are outlined in solid lines, whereas those that have been discovered by our model are shown with
dashed lines.

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n

Gr
ap

h 
GA

SM
IL

ES
 L

ST
M

SM
IL

ES
 G

A
Do

G-
Ge

n0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Amlodipine
Aripiprazole Deco Hop

Osimertinib Ranolazine
Perindopril

Scaffold Hop
Sitagliptin

Valsartan

Zaleplon

Synthesize score (higher score bars occlude lower)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Best in trainBest in train

Figure 6: The score of the best molecule found by the different approaches over a series of ten
GuacaMol benchmark tasks [8, §3.2], with the task name labeled above each set of bars. GuacaMol
molecule scores (y-axis) range between 0 and 1, with 1 being the best. We also use colors to indicate
the synthesizability score of the best molecule found. Note that bars representing a molecule within a
higher synthesizability score bucket (e.g blue) will occlude lower synthesizability score bars (e.g.
red). The dotted gray lines represent the scores of the best molecule in our training set.

reacting further (i.e., be sufficiently stable), and (ii) be able to actually be created in practice (i.e.,
be synthesizable). To quantify (i) we consider using the quality filters proposed in Brown et al. [8,
§3.3]. To quantify (ii) we use Computer-Aided Synthesis Planning [4, 21, 68]. Specifically, we run a
retrosynthesis tool on each molecule to see if a synthetic route can be found, and if so how many
steps are involved 5. We also measure an aggregated synthesizability score over each step (see § C.2
in the Appendix), with a higher synthesizability score indicating that the individual reactions are
closer to actual reactions and so hopefully more likely to work. All results are calculated on the top
100 molecules found by each method for each GuacaMol task.

The results of the experiments are shown in Figures 6 and 7 and Table 2 (see the Appendix for further
results). In Figure 6 we see that, disregarding synthesis, in general Graph GA and SMILES LSTM
produce the best scoring molecules for the GuacaMol tasks. However, corroborating the findings
of [21, FigureS6], we note that the GA methods regularly suggest molecules where no synthesis
routes can be found. Our model, because it decodes synthesis DAGs, consistently finds high-scoring
molecules while maintaining high synthesis scores. Furthermore, Figure 7 shows that a high fraction
of molecules produced by our method pass the quality checks (consistent with the amount in the
training data), whereas for some of the other methods the majority of molecules can fail.

5Note, like reaction predictors, these tools are imperfect, but still (we believe) offer a sensible current method
for evaluating our models.
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Figure 7: The fraction of the top 100 molecules proposed that pass the quality filters, over a series of
ten GuacaMol tasks [8, §3.2]. The fraction of molecules in our initial training set (used for training
the models) that pass the filters is shown by the dotted gray line.

Table 2: Table showing metrics quantifying the stability and synthesizability of the molecules
suggested by each method for the GuacaMol optimization tasks. The metrics we use include: the
fraction of molecules for which a synthetic route is found, the mean synthesizability score, the median
number of synthesis steps (for synthesizable molecules), and the fraction of molecules that pass the
quality filters from Brown et al. [8, §3.3]. The metrics are computed using the aggregation of the top
100 molecules for each GuacaMol task over all of the ten GuacaMol tasks we consider.

Frac. Synthesizable (↑) Synth. Score (↑) Median # Steps (↓) Quality (↑)
DoG-Gen 0.9 0.76 4 0.75

Graph GA 0.42 0.33 6 0.36
SMILES LSTM 0.48 0.39 5 0.49
SMILES GA 0.29 0.25 3 0.39

5 Related Work

In computer-aided molecular discovery there are two main approaches for choosing the next molecules
to evaluate, virtual screening [11, 55, 58, 69, 75, 77, 78] and de novo design [26, 62]. De novo design,
whilst enabling the searching over large chemical spaces, can lead to unstable and unsynthesizable
molecules [8, 21, 26]. Works to address this in the chemoinformatics literature have built algorithms
around virtual reaction schemes [27, 76]. However, with these approaches there is still the problem
of how best to search through this action space, a difficult discrete optimization problem, and so these
algorithms often resorted to optimizing greedily one-step at a time or using GAs.

Neural generative approaches [23, 52, 67] have attempted to tackle this latter problem by designing
models to be used with Bayesian optimization or RL based search techniques. However, these
approaches have often lead to molecules containing unrealistic moieties [8, 21]. Extensions have
investigated representing molecules with grammars [14, 44], or explicitly constrained graph represen-
tations [35–37, 47, 53, 61], which while fixing the realism somewhat, still ignores synthesizability.

ML models for generating or editing graphs (including DAGs) have also been developed for other
application areas, such as citation networks, community graphs, network architectures or source code
[2, 9, 10, 83, 84]. DAGs have been generated in both a bottom-up (e.g. [84]) and top-down (e.g. [10])
manner. Our approach is perhaps most related to Zhang et al. [84], which develops an autoencoder
model for DAGs representing neural network architectures. However, synthesis DAGs have some key
differences to those typically representing neural network architectures or source code, for instance
nodes represent molecular graphs and should be unique within the DAG.

6 Conclusions

In this work, we introduced a novel neural architecture component for molecule design, which by
directly generating synthesis DAGs alongside molecules, captures how molecules are made in the lab.
We showcase how the component can be mixed and matched in different paradigms, such as WAEs
and RL, demonstrating competitive performance on various benchmarks.

9



Broader Impact

Molecular de novo design, the ability to faster discover new advanced materials, could be an important
tool in addressing many present societal challenges, such as global health and climate change. For
example, it could contribute towards a successful transition to clean energy, through the development
of new materials for energy production (e.g. organic photovoltaics) and storage (e.g. flow batteries).
We hope that our methods, by producing synthesizable molecules upfront, are a contribution to the
research in this direction.

An application area for molecule de novo design we are particularly enthusiastic about and believe
could lead to large positive societal outcomes is drug design. By augmenting the capabilities of
researchers in this area we can reduce the cost of discovering new drugs for treating diseases. This
may be particularly helpful in the development of treatments for neglected tropical diseases or orphan
diseases, in which currently there are often poorer economic incentives for developing drugs.

Whilst we are excited by these positive benefits that faster molecule design could bring, it is also
important to be mindful of possible risks. We can group these risks into two categories, (i) use of the
technology for negative downstream applications (for instance if our model was used in the design
of new chemical weapons), and (ii) negative side effects of the technology (for instance including
the general downsides of increased automation, such as an increased chance of accidents). If not
done carefully, increased automation can have a negative impact on jobs, and in our particular case
may lead to a reduction in the control and understanding of the molecular design process. We hope
that this can be mitigated by communicating clearly about near-term capabilities, using and further
developing sensible benchmarks/metrics, as well as the development of tools to better explain the ML
decision making process.

Acknowledgments and Disclosure of Funding

This work was supported by The Alan Turing Institute under the EPSRC grant EP/N510129/1. We
are also grateful to The Alan Turing Institute for providing compute resources. JB also acknowledges
support from an EPSRC studentship. We are thankful to Gregor Simm and Bernhard Schölkopf for
helpful discussions.

References
[1] Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy.

Fixing a broken ELBO. In Proceedings of the 35th International Conference on Machine
Learning (ICML), pages 159–168, 2018.

[2] David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with doubly-recurrent
neural networks. International Conference on Learning Representations (ICLR), 2017.

[3] Rim Assouel, Mohamed Ahmed, Marwin H Segler, Amir Saffari, and Yoshua Bengio. DE-
Factor: Differentiable edge factorization-based probabilistic graph generation. arXiv preprint
arXiv:1811.09766, 2018.

[4] Krisztina Boda, Thomas Seidel, and Johann Gasteiger. Structure and reaction based evaluation
of synthetic accessibility. Journal of computer-aided molecular design, 21(6):311–325, 2007.

[5] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning, 2016.

[6] John Bradshaw, Matt J Kusner, Brooks Paige, Marwin HS Segler, and José Miguel Hernández-
Lobato. A generative model for electron paths. In International Conference on Learning
Representations (ICLR), 2019.

[7] John Bradshaw, Brooks Paige, Matt J Kusner, Marwin HS Segler, and José Miguel Hernández-
Lobato. A model to search for synthesizable molecules. In Advances in Neural Information
Processing Systems (NeurIPS) 32, 2019.

10



[8] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. GuacaMol: bench-
marking models for de novo molecular design. Journal of chemical information and modeling,
59(3):1096–1108, 2019.

[9] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi Ray. CODIT: Code editing with
tree-based NeuralMachine translation. arXiv preprint arXiv:1810.00314, 2018.

[10] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.
In Advances in Neural Information Processing Systems (NeurIPS) 31, 2018.

[11] Florent Chevillard and Peter Kolb. SCUBIDOO: a large yet screenable and easily searchable
database of computationally created chemical compounds optimized toward high likelihood of
synthetic tractability. Journal of chemical information and modeling, 55(9):1824–1835, 2015.

[12] Connor W Coley, Regina Barzilay, Tommi S Jaakkola, William H Green, and Klavs F Jensen.
Prediction of organic reaction outcomes using machine learning. ACS central science, 3(5):
434–443, 2017.

[13] Connor W Coley, Wengong Jin, Luke Rogers, Timothy F Jamison, Tommi S Jaakkola, William H
Green, Regina Barzilay, and Klavs F Jensen. A graph-convolutional neural network model for
the prediction of chemical reactivity. Chemical Science, 10(2):370–377, 2019.

[14] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. In International Conference on Learning Representations
(ICLR), 2018.

[15] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

[16] Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. In International Conference on Machine Learning Deep Generative Models Workshop,
2018.

[17] Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network for chemical
reaction prediction. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 750–760, 2019.

[18] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems (NeurIPS) 28,
pages 2224–2232, 2015.

[19] Frank Ellis. Paracetamol: a curriculum resource. Royal Society of Chemistry, 2002.

[20] David Fooshee, Aaron Mood, Eugene Gutman, Mohammadamin Tavakoli, Gregor Urban,
Frances Liu, Nancy Huynh, David Van Vranken, and Pierre Baldi. Deep learning for chemical
reaction prediction. Molecular Systems Design & Engineering, 3(3):442–452, 2018.

[21] Wenhao Gao and Connor W Coley. The synthesizability of molecules proposed by generative
models. Journal of Chemical Information and Modeling, 2020.

[22] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference
on Machine Learning (ICML), pages 1263–1272, 2017.

[23] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a Data-Driven
continuous representation of molecules. ACS Cent Sci, 4(2):268–276, February 2018.

[24] Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao
Liu, Karam MJ Thomas, Simon Blackburn, Connor W Coley, Jian Tang, et al. Learning
to navigate the synthetically accessible chemical space using reinforcement learning. arXiv
preprint arXiv:2004.12485, 2020.

11



[25] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. Journal of Machine Learning Research (JMLR), 13(1):
723–773, 2012.

[26] Markus Hartenfeller and Gisbert Schneider. Enabling future drug discovery by de novo design.
Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(5):742–759, 2011.

[27] Markus Hartenfeller, Heiko Zettl, Miriam Walter, Matthias Rupp, Felix Reisen, Ewgenij
Proschak, Sascha Weggen, Holger Stark, and Gisbert Schneider. DOGS: reaction-driven de
novo design of bioactive compounds. PLoS Comput Biol, 8(2):e1002380, 2012.

[28] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations
(ICLR), 2017.

[29] Jörg Holenz. Lead Generation: Methods, Strategies, and Case Studies. Wiley-VCH, 2016.

[30] Julien Horwood and Emmanuel Noutahi. Molecular design in synthetically accessible chemical
space via deep reinforcement learning. arXiv preprint arXiv:2004.14308, 2020.

[31] Lina Humbeck, Sebastian Weigang, Till Schäfer, Petra Mutzel, and Oliver Koch. Chipmunk: A
virtual synthesizable small-molecule library for medicinal chemistry, exploitable for protein–
protein interaction modulators. ChemMedChem, 13(6):532–539, 2018.

[32] Wolf-Dietrich Ihlenfeldt and Johann Gasteiger. Computer-assisted planning of organic syntheses:
The second generation of programs. Angew. Chem. Int. Ed., 34(23-24):2613–2633, 1996.

[33] Jan H Jensen. A graph-based genetic algorithm and generative model/Monte Carlo tree search
for the exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

[34] Wengong Jin, Connor W Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic
reaction outcomes with Weisfeiler-Lehman network. In Advances in Neural Information
Processing Systems (NeurIPS) 30, 2017.

[35] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In Proceedings of the 35th International Conference on Machine
Learning (ICML), pages 2323–2332, 2018.

[36] Wengong Jin, Regina Barzilay, and Tommi S Jaakkola. Multi-Resolution autoregressive Graph-
to-Graph translation for molecules. arXiv preprint arXiv:1907.11223v1, 2019.

[37] Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi Jaakkola. Learning multimodal Graph-
to-Graph translation for molecular optimization. In International Conference on Learning
Representations (ICLR), 2019.

[38] Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen,
Kuzma Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads: Applying deep
adversarial autoencoders for new molecule development in oncology. Oncotarget, 8(7):10883,
2017.

[39] Hiroshi Kajino. Molecular hypergraph grammar with its application to molecular optimization.
In Proceedings of the 36th International Conference on Machine Learning (ICML), pages
3183–3191, 2019.

[40] Matthew A Kayala and Pierre Baldi. ReactionPredictor: prediction of complex chemical
reactions at the mechanistic level using machine learning. Journal of chemical information and
modeling, 52(10):2526–2540, 2012.

[41] Matthew A Kayala, Chloé-Agathe Azencott, Jonathan H Chen, and Pierre Baldi. Learning to
predict chemical reactions. Journal of chemical information and modeling, 51(9):2209–2222,
2011.

[42] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

12



[43] Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos,
Jeff Schneider, and Eric P Xing. ChemBO: Bayesian optimization of small organic molecules
with synthesizable recommendations. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

[44] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In Proceedings of the 34th International Conference on Machine Learning
(ICML), pages 1945–1954, 2017.

[45] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

[46] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep
generative models of graphs. arXiv preprint arXiv:1803.03324, 2018.

[47] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L Gaunt. Constrained graph
variational autoencoders for molecule design. In Advances in Neural Information Processing
Systems (NeurIPS) 31, 2018.

[48] Daniel Mark Lowe. Extraction of chemical structures and reactions from the literature. PhD
thesis, University of Cambridge, 2012.

[49] Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. GraphNVP: An
invertible flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

[50] HL Morgan. The generation of a unique machine description for chemical structures-a technique
developed at chemical abstracts service. Journal of Chemical Documentation, 5(2):107–113,
1965.

[51] Daniel Neil, Marwin Segler, Laura Guasch, Mohamed Ahmed, Dean Plumbley, Matthew Sell-
wood, and Nathan Brown. Exploring Deep Recurrent Models with Reinforcement Learning for
Molecule Design. In International Conference on Learning Representations (ICLR) Workshop
Track, February 2018. URL https://openreview.net/forum?id=HkcTe-bR-.

[52] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):48, 2017.

[53] Marco Podda, Davide Bacciu, and Alessio Micheli. A deep generative model for fragment-
based molecule generation. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2020.

[54] Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Günter Klambauer.
Fréchet ChemNet Distance: A metric for generative models for molecules in drug discovery.
Journal of Chemical Information and Modeling, 58(9):1736–1741, 2018. doi: 10.1021/acs.jcim.
8b00234.

[55] Edward O Pyzer-Knapp, Changwon Suh, Rafael Gómez-Bombarelli, Jorge Aguilera-
Iparraguirre, and Alán Aspuru-Guzik. What is high-throughput virtual screening? A perspective
from organic materials discovery. Annual Review of Materials Research, 45:195–216, 2015.

[56] RDKit, online. RDKit: Open-source cheminformatics. http://www.rdkit.org. [Online;
accessed 01-June-2019].

[57] Philipp Renz, Dries Van Rompaey, Jörg Kurt Wegner, Sepp Hochreiter, and Günter Klambauer.
On Failure Modes of Molecule Generators and Optimizers. 4 2020. doi: 10.26434/chemrxiv.
12213542.v1. URL https://chemrxiv.org/articles/preprint/On_Failure_Modes_
of_Molecule_Generators_and_Optimizers/12213542.

[58] Jean-Louis Reymond, Lars Ruddigkeit, Lorenz Blum, and Ruud van Deursen. The enumeration
of chemical space. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(5):
717–733, 2012.

[59] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31st International
Conference on Machine Learning (ICML), pages 1278–1286, 2014.

13

https://openreview.net/forum?id=HkcTe-bR-
http://www.rdkit.org
https://chemrxiv.org/articles/preprint/On_Failure_Modes_of_Molecule_Generators_and_Optimizers/12213542
https://chemrxiv.org/articles/preprint/On_Failure_Modes_of_Molecule_Generators_and_Optimizers/12213542


[60] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. J. Chem. Inf. Model., 50
(5):742–754, May 2010.

[61] Bidisha Samanta, DE Abir, Gourhari Jana, Pratim Kumar Chattaraj, Niloy Ganguly, and
Manuel Gomez Rodriguez. NeVAE: A deep generative model for molecular graphs. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1110–1117,
2019.

[62] Gisbert Schneider. De novo molecular design. John Wiley & Sons, 2013.

[63] Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter,
Costas Bekas, and Alpha A. Lee. Molecular Transformer: A model for uncertainty-calibrated
chemical reaction prediction. ACS Central Science, 5(9):1572–1583, 2019. doi: 10.1021/
acscentsci.9b00576.

[64] Ari Seff, Wenda Zhou, Farhan Damani, Abigail Doyle, and Ryan P Adams. Discrete object
generation with reversible inductive construction. In Advances in Neural Information Processing
Systems (NeurIPS) 32, 2019.

[65] Marwin Segler, Mike Preuß, and Mark P Waller. Towards AlphaChem: Chemical synthesis
planning with tree search and deep neural network policies. arXiv preprint arXiv:1702.00020,
2017.

[66] Marwin HS Segler and Mark P Waller. Neural-symbolic machine learning for retrosynthesis
and reaction prediction. Chemistry–A European Journal, 23(25):5966–5971, 2017.

[67] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating fo-
cused molecule libraries for drug discovery with recurrent neural networks. arXiv preprint
arXiv:1701.01329, 2017.

[68] Marwin HS Segler, Mike Preuss, and Mark P Waller. Planning chemical syntheses with deep
neural networks and symbolic AI. Nature, 555(7698):604–610, 2018.

[69] Brian K Shoichet. Virtual screening of chemical libraries. Nature, 432(7019):862, 2004.

[70] Gregor NC Simm and José Miguel Hernández-Lobato. A generative model for molecular
distance geometry. arXiv preprint arXiv:1909.11459, 2019.

[71] Gregor NC Simm, Robert Pinsler, and José Miguel Hernández-Lobato. Reinforcement learning
for molecular design guided by quantum mechanics. arXiv preprint arXiv:2002.07717, 2020.

[72] Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards generation of small graphs
using variational autoencoders. In Věra Kůrková, Yannis Manolopoulos, Barbara Hammer,
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