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This supplement complements the paper Probabilistic Linear Solvers for Machine Learning and
is structured as follows. Section S1 explains the approach of probabilistic numerics to model
(deterministic) numerical problems probabilistically in more depth. Section S2 introduces different
variants of Kronecker products used to define matrix-variate normal distributions in Section S3.
Section S4 details the matrix-based inference procedure of probabilistic linear solvers based on matrix-
vector product observations. It also contains some more explanation regarding prior construction and
stopping criteria. Section S5 and Section S6 outline theoretical results from the paper and properties
of the proposed covariance class, in particular detailed proofs. Finally, Section S7 provides some
background for the application of probabilistic linear solvers to the solution of discretized partial
differential equations. To provide a clear exposition to the reader in some sections we restate results
from the literature. References referring to sections, equations or theorem-type environments within
this document are tagged with ‘S’, while references to, or results from the main paper are stated as is.

Preliminaries and Notation We consider the linear system Ax∗ = b, where A ∈ Rn×nsym is
symmetric positive definite. The random variables A,H and x model the linear operatorA, its inverse
H = A−1 and the solution x∗. Algorithm 1 chooses actions S = [s1, . . . , sk] ∈ Rn×k given by its
policy π(s | A,H, x,A, b) and computes observations Y = [y1, . . . ,yk] ∈ Rn×k given by a linear
projection yi = Asi in each iteration 0 < i ≤ k.

S1 Probabilistic Modelling of Deterministic Problems

At first glance it might seem counterintuitive to frame a numerical problem in the language of
probability theory. After all, when considering the exact problemAx∗ = b all quantities involved
A,x∗, and b are deterministic. However, the distribution of the random variables A,H and x
represents epistemic uncertainty arising from finite computational resources. With a finite budget
only a limited amount of information can be obtained aboutA (e.g. via matrix-vector products). In
particular, for a sufficiently large problem a priori the inverseH = A−1 and the solution x∗, while
deterministic and computable in finite time, are not known. This uncertainty about the inverse is
captured by the prior distribution of H. In the Bayesian framework the belief about the inverse H is
then iteratively updated given new observations yi = Asi.

The motivation for also estimatingA becomes clear if one considers the following. Usually in large-
scale applications, the matrixA is never actually formed in memory due to computational constraints.
Instead only the matrix-vector product v 7→ Av is available. Therefore without further computation,
the value of any given matrix entry Aij is in fact uncertain. Further, generally other properties of
the matrixA such as its eigenspectrum are also not readily available. The probabilistic framework
provides a principled way of incorporating prior knowledge aboutA and makes assumptions about
the problem explicit. Relating the prior model A and H is important here to allow Algorithm 1 to
take such prior information into account in its policy. Finally, the strongest argument for a model
A may yet be the incorporation of noise. Suppose we only have access to yi = (A +Ei)si with
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additive noise Ei. This is a common occurrence in application, where the linear system to be
solved arises from an approximation itself or ifA is constructed from data. Concrete examples are
batched empirical risk minimization problems or stochastic quadratic optimization. In this setting the
probabilistic linear solver must estimate the trueA via its observations.

The application of probabilistic inference to numerical problems goes back well into the last century
[1–3] and has recently seen a resurgence in research interest in the form of probabilistic numerics.
Overviews discussing motivations and historical perspectives can be found in Hennig et al. [4] and
Oates and Sullivan [5]. Hennig [6] gives additional insight into the statistical interpretation of linear
systems.

S2 The Kronecker Product and its Variants

We will now introduce different types of Kronecker products needed for constructing covariances for
matrix-variate distributions. In order to transfer results from probabilistic modelling of vector-variate
random variables to the matrix-variate case, we need two types of vectorization operations, i.e.
bijections between spaces of matrices and vector spaces.

Let vec : Rm×n → Rmn, denote the column-wise stacking operator [7], defined as

vec(X) = (X11, X21, . . . , Xm1, X12, . . . , Xmn)ᵀ ∈ Rmn.

Further, define svec : Rn×nsym → R 1
2n(n+1), the column-wise symmetric stacking operator [8] given by

svec(X) = (X11,
√

2X21, . . . ,
√

2Xn1, X22,
√

2X32, . . . ,
√

2Xn2, . . . , Xnn)ᵀ ∈ R
1
2n(n+1).

To translate between the two representations following Schäcke [9] we also define the matrixQ ∈
R 1

2n(n+1)×n2

such that for all symmetric matricesX ∈ Rn×nsym , we haveQ vec(X) = svec(X) and
vec(X) = Qᵀ svec(X). Note, that Q has orthonormal rows, i.e. QQᵀ = I . For convenience we
also name the inverse operations mat := vec−1 and smat := svec−1.

S2.1 Kronecker Product

We make extensive use of Kronecker-type structures for covariance matrices of matrix-variate
distributions in this paper. The Kronecker product A � B [10] of two matrices A ∈ Rm1×n1 and
B ∈ Rm2×n2 is given by

A � B =

 A11B . . . A1n1B
...

. . .
...

Am11B . . . Am1n1
B

 ∈ R(m1m2)×(n1n2)

The Kronecker product satisfies the characteristic property

(A � B) vec(X) = vec(BXAᵀ), (S1)

for X ∈ Rn2×n1 . Characteristic properties of Kronecker-type products are useful to turn matrix
equations into vector equations. We state a set of properties of the Kronecker product next without
proof. More detail on Kronecker products can be found in Van Loan [10].
Proposition S1 (Properties of the Kronecker Product [10])
The Kronecker product satisfies the following identities:

∃A,B : A � B 6= B � A (S2)
(A � B)ᵀ = Aᵀ � Bᵀ (S3)

(A � B)−1 = A−1 � B−1 (S4)
(A+B) � C = A � C +B � C (S5)

(A � B)(C � D) = (AC) � (BD) (S6)
tr(A � B) = tr(A) tr(B) (S7)

A ∈ Rm×msym ,B ∈ Rn×nsym =⇒ A � B ∈ Rmn×mnsym (S8)

A � B = (LAL
ᵀ
A) � (LBL

ᵀ
B) = (LA � LB)(LᵀA � LᵀB) (S9)

A � B = (UAΛAU
ᵀ
A) � (UBΛBU

ᵀ
B) = (UA � UB)(ΛA � ΛB)(UᵀA � UᵀB) (S10)
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S2.2 Box Product

The box product A�B ∈ R(m1m2)×(n1n2) can be defined via its characteristic property
(A�B) vec(Y ) = vec(BY ᵀAᵀ) (S11)

for Y ∈ Rn1×n2 . See also Olsen et al. [11] for details.
Proposition S2 (Properties of the Box Product [11])
The box product satisfies the following identities:

∃A,B : A�B 6= B �A (S12)
(A�B)ᵀ = Bᵀ �Aᵀ (S13)

(A�B)−1 = B−1 �A−1 (S14)
(A+B) �C = A�C +B �C (S15)

(A�B)(C �D) = (AD) � (BC) (S16)
(A�B)(C � D) = (AD) � (BC) (S17)
(A � B)(C �D) = (AC) � (BD) (S18)

tr(A�B) = tr(AB) (S19)

S2.3 Symmetric Kronecker Product

The symmetric Kronecker product A��B of two square matrices A,B ∈ Rn×n is defined via its
characteristic property forX ∈ Rn×nsym as

(A��B) svec(X) =
1

2
svec(BXAᵀ +AXBᵀ) (S20)

or equivalently

A��B =
1

2
Q(A � B +B � A)Qᵀ.

Proposition S3 (Properties of the Symmetric Kronecker Product [8, 9])
The symmetric Kronecker product satisfies the following identities:

A��B = B ��A (S21)
(A��B)ᵀ = Aᵀ ��Bᵀ (S22)

(A��A)−1 = A−1 ��A−1 (S23)
(A+B) ��C = A��C +B ��C (S24)

(A��B)(C ��D) =
1

2
(AC ��BD +AD ��BC) (S25)

A ∈ Rn×nsym ,B ∈ Rn×nsym =⇒ A��B ∈ R
1
2n(n+1)× 1

2n(n+1)
sym (S26)

A��A = (LAL
ᵀ
A) �� (LAL

ᵀ
A) = (LA ��LA)(LᵀA ��LᵀA) (S27)

A��A = (UAΛAU
ᵀ
A) �� (UAΛAU

ᵀ
A) = (UA ��UA)(ΛA �� ΛA)(UᵀA ��UᵀA) (S28)

Note, that the symmetric Kronecker product represented as a 1
2n(n+ 1)× 1

2n(n+ 1) matrix is in
general not symmetric.

Further properties can be found in Alizadeh et al. [8] and Schäcke [9]. We prove the following
technical results for mixed expressions of Kronecker-type products, which we will make use of later.
Corollary S1 (Mixed Kronecker Product Identities)
LetA ∈ Rn×nsym ,B,C ∈ Rn×k andX ∈ Rk×k such that (CXBᵀ)ᵀ = CXBᵀ, then it holds that

Qᵀ(A��A)Q(B � C) vec(X) =
1

2
(AB � AC +AC �AB) vec(X) (S29)

(Bᵀ � Cᵀ)Qᵀ(A��A)Q =
1

2
(BᵀA � CᵀA+BᵀA�CᵀA). (S30)

(Bᵀ � Cᵀ)Qᵀ(A��A)Q(B � C) vec(X) =
1

2
(BᵀAB � CᵀAC +BᵀAC �CᵀAB) vec(X).

(S31)

3



Now, assumeA to be invertible, rank(C) = k and Y ∈ Rk×n such that (Y C)ᵀ = Y C, then for

G = (In � Cᵀ)Qᵀ(A��A)Q(In � C)

G−1
right = (2A−1 −C(CᵀAC)−1Cᵀ) � (CᵀAC)−1

we haveGG−1
right vec(Y ) = vec(Y ), i.e. G−1

right is the right inverse ofG. Finally, forD,E ∈ Rn×n

and Z ∈ Rn×nsym such that (EAZADᵀ)ᵀ = EAZADᵀ, we have

(Aᵀ ��Aᵀ)Q(D � E)Qᵀ(A��A) svec(Z) = (AᵀDA) �� (AᵀEA) svec(Z). (S32)

Proof. LetX ∈ Rk×k such that (CXBᵀ)ᵀ = CXBᵀ, then

Qᵀ(A��A)Q(B � C) vec(X) = Qᵀ(A��A)Q vec(CXBᵀ)

= Qᵀ(A��A) svec(CXBᵀ)

= Qᵀ svec(ACXBᵀA)

=
1

2
vec(ACXBᵀA+ABXᵀCᵀA)

=
1

2
(AB � AC +AC �AB),

further it holds forW ∈ Rn×nsym

(Bᵀ � Cᵀ)Qᵀ(A��A)Q vec(W ) = (Bᵀ � Cᵀ)Qᵀ svec(AWA)

= vec(CᵀAWAB)

=
1

2
(CᵀAWAB +CᵀAᵀW ᵀAᵀB)

=
1

2
(BᵀA � CᵀA+BᵀA�CᵀA),

and using the properties of the Kronecker and the Box product we obtain

(Bᵀ � Cᵀ)Qᵀ(A��A)Q(B � C) vec(X) = (Bᵀ � Cᵀ)
1

2
(BᵀA � CᵀA+BᵀA�CᵀA) vec(X)

=
1

2
(BᵀA � CᵀA+BᵀA�CᵀA) vec(X).

Now letA be invertible, let C have full rank and choose Y ∈ Rk×n arbitrarily such that (Y C)ᵀ =
Y C. Then using Proposition S1 and Proposition S2 we obtain

(In � Cᵀ)Qᵀ(A��A)Q(In � C)(2A−1 −C(CᵀAC)−1Cᵀ) � (CᵀAC)−1 vec(Y )

=
1

2
(A � CᵀAC +AC �CᵀA)(2A−1 −C(CᵀAC)−1Cᵀ) � (CᵀAC)−1) vec(Y )

= (In � Ik −
1

2
AC(CᵀAC)−1Cᵀ � Ik +AC(CᵀAC)−1 �Cᵀ − 1

2
AC(CᵀAC)−1 �Cᵀ) vec(Y )

= (In � Ik −
1

2
AC(CᵀAC)−1Cᵀ � Ik +

1

2
AC(CᵀAC)−1 �Cᵀ) vec(Y )

= vec(Y )− 1

2
(Y C(CᵀAC)−1CᵀA−CᵀY ᵀ(CᵀAC)−1CᵀA)

= vec(Y )

Lastly, by assumption it holds that

(Aᵀ ��Aᵀ)Q(D � E)Qᵀ(A��A) svec(Z) = (A��A)Q vec(EAZADᵀ)

= svec(AEAZADᵀA)

=
1

2
(AEAZADᵀA+ADAZAEᵀA)

= (ADA��AEA) svec(Z).

This concludes the proof.
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S3 The Matrix-variate Normal Distribution

In order for our probabilistic linear solvers to infer the true latent A or its inverse H = A−1,
we need a distribution expressing the belief of the solver over those latent quantities at any given
point. A Gaussian distribution over matrices will play this role, motivated by the linear nature of the
observations. This section closely follows Gupta and Nagar [12].

Definition S1 (Matrix-variate Normal Distribution [12])
LetX0 ∈ Rm×n and let V ∈ Rmsym andW ∈ Rn×nsym be positive-definite. We say a random matrix X
has a matrix-variate normal distribution with meanX0 and covariance V � W , iff

vec(Xᵀ) ∼ Nmn(vec(Xᵀ0 ),V � W ).

We write as a shorthand X ∼ N (X0,V � W ).

Note, that the matrices V andW represent the covariance between rows and columns of X, respec-
tively. Since we model symmetric matrices in this work, we also introduce a Gaussian distribution
over Rn×nsym .

Definition S2 (Symmetric Matrix-variate Normal Distribution [12])
Let X0,W ∈ Rn×nsym such that W is positive-definite, then the random matrix X has a symmetric
matrix-variate normal distribution, iff

svec(X) ∼ N 1
2n(n+1)(svec(X0),W ��W ).

We write X ∼ N (X0,W ��W ).

It follows immediately from the definition that realizations of a symmetric matrix-variate normal
distribution are symmetric matrices. This distribution also emerges naturally by conditioning a
matrix-variate normal distribution on the linear constraint X = Xᵀ.

S4 Probabilistic Linear Solvers

Probabilistic linear solvers (PLS) [6, 13, 14] infer posterior beliefs over the matrix A, its inverse
H or the solution x∗ = Hb of a linear system via linear observations Y = AS. We consider
matrix-based inference [14] in this work. Assuming a prior p(A) or p(H), actions S and linear
observations Y such methods return posterior distributions p(A | S,Y ) or p(H | S,Y ).

S4.1 Matrix-based Inference

The generic matrix-based inference procedure of probabilistic linear solvers is a consequence of
the matrix-variate version of the following standard result for Gaussian inference under linear
observations.

Theorem S1 (Linear Gaussian Inference [15])
Let v ∼ N (µ,Σ), where µ ∈ Rn and Σ ∈ Rn×nsym positive-definite, and assume we are given
observations of the form

Bv + b = y ∈ Rm,

whereB ∈ Rm×n and b ∈ Rm. Assuming a Gaussian likelihood

p(y | B,v, b) = N (y;Bv + b,Λ),

for Λ ∈ Rmsym positive definite, results in the posterior distribution

p(v | y,B, b) = N
(
v;µ+ ΣBᵀ(BΣBᵀ + Λ)−1(y −Bµ− b),

Σ−ΣBᵀ(BΣBᵀ + Λ)−1BΣ
)
.

Further, the marginal distribution of y is given by

p(y) = N (y;Bµ+ b,BΣBᵀ + Λ).
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S4.1.1 Asymmetric Model

Corollary S2 (Asymmetric matrix-based Gaussian Inference [16, 6, 14])
Assume a prior p(A) = N (A;A0,V0 � W0) and exact observations of the form Y = AS,
corresponding to a Dirac likelihood p(Y | A,S) = δ(Y −AS), then the posterior p(A | S,Y ) =
N (A;Ak,Σk) is given by

Ak = A0 + ∆0U
ᵀ

Σk = V0 � W0(In − SUᵀ)

where ∆0 = Y −A0S and U = W0S(SᵀW0S)−1.

Proof. In vectorized form the likelihood is given by

p(vec(Y ᵀ) | vec(Aᵀ), vec(Sᵀ)) = δ(vec(Y ᵀ)−vec(SᵀAᵀ)) = δ(vec(Y ᵀ)−(I � Sᵀ) vec(Aᵀ))

Using the Definition S1 of the matrix-variate normal distribution, applying Theorem S1 and using
property (S6) of the Kronecker product in Proposition S1 leads to

vec(Aᵀk) = vec(Aᵀ0) + (V0 � W0)(I � S)((I � Sᵀ)(V0 � W0)(I � S))−1(vec(Y ᵀ)− (I � Sᵀ) vec(Aᵀ0))

= vec(Aᵀ0) + (V0 � W0S)(V0 � SᵀW0S)−1 vec(∆ᵀ0)

= vec(Aᵀ0) + (In � W0S(SᵀW0S)−1) vec(∆ᵀ0)

= vec(Aᵀ0 +U∆ᵀ0)

and further analogously, additionally using bilinearity of the Kronecker product, we obtain

Σk = V0 � W0 − (V0 � W0)(I � S)((I � Sᵀ)(V0 � W0)(I � S))−1(I � Sᵀ)(V0 � W0)

= V0 � W0 − (V0 � W0S)(V0 � SᵀW0S)−1(V0 � SᵀW0)

= V0 � W0 − V0 � (W0S(SᵀW0S)−1SᵀW0)

= V0 � W0(I − SUᵀ).
This concludes the proof.

S4.1.2 Symmetric Model

Corollary S3 (Symmetric Matrix-based Gaussian Inference [16, 6, 14])
Assume a symmetric prior p(A) = N (A;A0,W0 �� W0) and exact observations of the form
Y = AS, corresponding to a Dirac likelihood p(Y | A,S) = δ(Y − AS), then the posterior
p(A | S,Y ) = N (A;Ak,Σk) is given by

Ak = A0 + ∆0U
ᵀ +U∆ᵀ0 −USᵀ∆0U

ᵀ = A0 +UV ᵀ + V Uᵀ

Σk = W0(In − SUᵀ) ��W0(In − SUᵀ)

where ∆0 = Y −A0S, U = W0S(SᵀW0S)−1 and V = (In − 1
2US

ᵀ)∆0.

Proof. A proof can be found in the appendix of Hennig [6]. We rederive it here in our notation. By
assumption the likelihood takes the vectorized form

p(vec(Y ᵀ) | svec(A), vec(Sᵀ)) = δ(vec(Y ᵀ)−vec(SᵀAᵀ)) = δ(vec(Y ᵀ)−(I � Sᵀ)Qᵀ svec(A))

Applying Theorem S1 gives

svec(Ak) = svec(A0) + (W0 ��W0)Q(In � S)G−1(vec(Y ᵀ)− (I � Sᵀ)Qᵀ svec(A0))

= svec(A0) + (W0 ��W0)Q(In � S)G−1 vec(∆ᵀ0)

Σk = W0 ��W0 − (W0 ��W0)Q(In � S)G−1(In � Sᵀ)Qᵀ(W0 ��W0),

where ∆0 = Y −A0S and the Gram matrix is given by

G = (In � Sᵀ)Qᵀ(W0 ��W0)Q(In � S) ∈ Rnk×nk.

Now since (∆ᵀ0S)ᵀ = ∆ᵀ0S, we have by Corollary S1 that the right inverse ofG is given by

G−1
right = (2W−1

0 − S(SᵀW0S)−1Sᵀ) � (SᵀW0S)−1
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and therefore using (S6) and (S29) we obtain

svec(Ak) = svec(A0) + (W0 ��W0)Q(In � S)G−1
right vec(∆ᵀ0)

= svec(A0) +QQᵀ(W0 ��W0)Q(2W−1
0 − S(SᵀW0S)−1Sᵀ) � S(SᵀW0S)−1 vec(∆ᵀ0)

= svec(A0) +Q
1

2

(
(2I −USᵀ) � U +U � (2I −USᵀ)

)
vec(∆ᵀ0)

= svec(A0) + svec(U∆ᵀ0(I − 1

2
USᵀ)ᵀ + (I − 1

2
USᵀ)∆0U

ᵀ)

= svec(A0 + ∆0U
ᵀ +U∆ᵀ0 −USᵀ∆0U

ᵀ).

Further by definition it holds that

UV ᵀ + V Uᵀ = U∆ᵀ0(In −
1

2
SUᵀ) + (In −

1

2
USᵀ)∆0U

ᵀ = ∆0U
ᵀ +U∆ᵀ0 −USᵀ∆0U

ᵀ.

For the covariance we obtain using the right inverse of the Gram matrix and (S32) that

Σk = W0 ��W0 − (W0 ��W0)Q(In � S)G−1(In � Sᵀ)Qᵀ(W0 ��W0)

= W0 ��W0 − (2W0 −W0S(SᵀW0S)−1SᵀW0) �� (W0S(SᵀW0S)−1SᵀW0)

= (W0 −W0S(SᵀW0S)−1SᵀW0) �� (W0 −W0S(SᵀW0S)−1SᵀW0)

= W0(In − SUᵀ) ��W0(In − SUᵀ).

S4.2 Matrix-variate Prior Construction

From a practical point of view it is important to be able to construct a prior for A and H from an initial
guess x0 for the solution. This reduces down to finding A0 and H0 symmetric positive definite,
such that A0 = H−1

0 and x0 = H0b for the covariance class derived in Section 3. We provide a
computationally efficient construction of such a prior here.
Proposition S4
Let x0 ∈ Rn and b ∈ Rn \ {0}. Assume xᵀ0b > 0, then for α < bᵀx0

bᵀb ,

H0 = αI +
1

(x0 − αb)ᵀb
(x0 − αb)(x0 − αb)ᵀ

is symmetric positive definite andH0b = x0. Further it holds that

A0 = H−1
0 = α−1I − α−1

(x0 − αb)ᵀx0
(x0 − αb)(x0 − αb)ᵀ.

Ifxᵀ0b < 0 orxᵀ0b = 0, then forx1 = −x0 orx1 = bᵀb
bᵀAbb respectively, it holds that ‖x1 − x∗‖2A <

‖x0 − x∗‖2A, i.e. x1 is a strictly better initialization than x0.

Proof. LetH0 as above. ThenH0b = αb+x0−αb = x0. The second term of the sum in the form
ofH0 is of rank 1. Its non-zero eigenvalue is given by

λ =
1

(x0 − αb)ᵀb
(x0 − αb)ᵀ(x0 − αb) =

1

xᵀ0b− αbᵀb
‖x0 − αb‖22 ≥ 0

since by assumption xᵀ0b > 0 and α < bᵀx0

bᵀb . Now by Weyl’s theorem it holds that λmin(A) +
λmin(E) ≤ λmin(A+E) and thereforeH0 is positive definite. By the matrix inversion lemma we
have for γ = α−1

(x0−αb)ᵀb that

A0 = H−1
0 = α−1(I − γ

1 + γ‖x0 − αb‖22
(x0 − αb)(x0 − αb)ᵀ)

= α−1I − α−2

(x0 − αb)ᵀb+ α−1‖x0 − αb‖22
(x0 − αb)(x0 − αb)ᵀ

= α−1I − α−1

(x0 − αb)ᵀx0
(x0 − αb)(x0 − αb)ᵀ.
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Finally, we obtain

‖x0 − x∗‖2A = (x0 −A−1b)ᵀA(x0 −A−1b) = xᵀ0Ax0 + bᵀA−1b− 2bᵀx0.

Therefore if either xᵀ0b < 0 or xᵀ0b = 0, then x1 = −x0 or x1 = bᵀb
bᵀAbb, respectively are closer to

x∗ inA norm by positive definiteness ofA. This concludes the proof.

S4.3 Stopping Criteria

In addition to the classic stopping criteria ‖Axk − b‖2 ≤ max(δrtol‖b‖2, δatol) it is natural from a
probabilistic viewpoint to use the induced posterior covariance of x. LetM ∈ Rn×nsym be a positive-
definite matrix, then by linearity and the cyclic property of the trace it holds that

Ex∗ [‖x∗ − E[x]‖2M ] = Ex∗ [(x∗ − E[x])ᵀM(x∗ − E[x])]

= tr(Ex∗ [(x∗ − E[x])ᵀM(x∗ − E[x])])

= Ex∗ [tr((x∗ − E[x])ᵀM(x∗ − E[x]))]

= Ex∗ [M tr((x∗ − E[x])(x∗ − E[x])ᵀ)]

= tr(MEx∗ [(x∗ − E[x])(x∗ − E[x])ᵀ])

= tr(M(Cov[x∗ − E[x]] + (Ex∗ [x∗]− E[x])ᵀ(Ex∗ [x∗]− E[x])))

= tr(M Cov[x∗]) + ‖Ex∗ [x∗]− E[x]‖2M .

Assuming calibration holds, i.e. x∗ ∼ N (E[x],Cov[x]), we can bound the (relative) error by
terminating when tr(M Cov[x]) ≤ max(δrtol‖b‖, δatol) either in l2-norm forM = I or inA-norm
forM = A.

We can efficiently evaluate the required tr(M Cov[x]) without ever forming Cov[x] in memory from
already computed quantities. At iteration k we have Cov[x] = Cov[Hb] = 1

2 (WH
k (bᵀWH

k b) +

(WH
k b)(W

H
k b)

ᵀ) and therefore

tr(M Cov[x]) =
1

2

(
(bᵀWH

k b) tr
(
MWH

k

)
+ (WH

k b)
ᵀM(WH

k b)
)
.

Given the update for the covariance of the inverse view, we obtain the following recursion for its trace

tr
(
MWH

k

)
= tr

(
MWH

k−1

)
− 1

yᵀkW
H
k−1yk

tr
(
(WH

k−1yk)ᵀM(WH
k−1yk)

)
.

Computing the trace in this iterative fashion adds at most three matrix-vector products and three inner
products for arbitraryM all other quantities are computed for the covariance update anyhow.

For our proposed covariance class (3) we obtain forM = I and Ψ = ψI that

tr
(
WH

0

)
= tr

(
A−1

0 Y (Y ᵀA−1
0 Y )−1Y ᵀA−1

0 + (I − Y (Y ᵀY )−1Y ᵀ)Ψ(I − Y (Y ᵀY )−1Y ᵀ)
)

= tr
(
(Y ᵀA−1

0 Y )−1Y ᵀA−1
0 A−1

0 Y
)

+ ψ tr
(
(I − Y (Y ᵀY )−1Y ᵀ)(I − Y (Y ᵀY )−1Y ᵀ)

)
= tr

(
(Y ᵀA−1

0 Y )−1Y ᵀA−1
0 A−1

0 Y
)

+ ψ tr
(
I − Y (Y ᵀY )−1Y ᵀ

)
= tr

(
(Y ᵀA−1

0 Y )−1Y ᵀA−1
0 A−1

0 Y
)

+ ψ(n− k),

which for a scalar prior meanA0 = αI reduces to tr
(
WH

0

)
= α−1k + ψ(n− k).

S4.4 Implementation

In order to maintain numerical stability when performing low rank updates to symmetric positive def-
inite matrices, as is the case in Algorithm 1 for the mean and covariance estimates, it is advantageous
use a representation based on the Cholesky decomposition. One can perform the rank-2 update for
the mean estimate and the rank-1 downdate for the covariance in Corollary S3 in each iteration of the
algorithm for their respective Cholesky factors instead (see also Seeger [17]). The rank-2 update can
be seen as a combination of a rank-1 up- and downdate by recognizing that

uvᵀ + vuᵀ =
1

2
((u+ v)(u+ v)ᵀ − (u− v)(u− v)ᵀ).

Similar updates arise in Quasi-Newton methods for the approximate (inverse) Hessian [18]. Having
Cholesky factors of the mean and covariance available has the additional advantage that downstream
sampling or the evaluation of the probability density function is computationally cheap.
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S5 Theoretical Properties: Proofs for Section 2.3

In this section we provide detailed proofs for the theoretical results on convergence and the connection
of Algorithm 1 to the method of conjugate gradients. We restate each theorem here as a reference to
the reader. We begin by proving an intermediate result giving an interpretation to the posterior mean
of A and H at each step of the method.

Proposition S5 (Subspace Equivalency)
Let Ak and Hk be the posterior means defined as in Section 2.1 and assume A0 and H0 are
symmetric. Then for 1 ≤ k ≤ n it holds that

AkS = Y and HkY = S, (S33)

i.e. Ak and Hk act like A and A−1 on the spaces spanned by the actions S, respectively the
observations Y .

Proof. SinceA0 andH0 are symmetric so are the expressions ∆AS and ∆ᵀHY . We have that

AkS = (A0 + ∆AU
ᵀ
A +UA∆ᵀA −UAS

ᵀ∆AU
ᵀ
A)S

= A0S + ∆AI +UA∆ᵀAS −UAS
ᵀ∆AI

= A0S + Y −A0S

= Y .

In the case of the inverse model we obtain

HkY = (H0 + ∆HU
ᵀ
H +UH∆ᵀH −UHY

ᵀ∆HU
ᵀ
H)Y

= H0Y + ∆HI +UH∆ᵀHY −UHY
ᵀ∆HI

= H0Y + S −H0Y

= S

S5.1 Conjugate Directions Method

Theorem 1 (Conjugate Directions Method)
Given a prior p(H) = N (H;H0,W

H
0 ��WH

0 ) such that H0,W
H
0 ∈ Rn×nsym positive definite, then

actions si of Algorithm 1 areA-conjugate, i.e. for 0 ≤ i, j ≤ k with i 6= j it holds that sᵀiAsj = 0.

Proof. SinceH0 is assumed to be symmetric, the form of the posterior mean in Section 2.1 implies
that Hk is symmetric for all 1 ≤ k ≤ n. Now conjugacy is shown by induction. To that end, first
consider the base case k = 2. We have

sᵀ2As1 = −rᵀ1H1As1 = −(rᵀ0 + α1y
ᵀ
1 )H1As1 = −

(
rᵀ0H1 −

sᵀ1r0

sᵀ1y1
yᵀ1H1

)
y1

= −rᵀ0s1 + sᵀ1r0 = 0

where we used (S33) and the definition of αi in Algorithm 1. Now for the induction step, assume that
sᵀiAsj = 0 for all i 6= j such that 1 ≤ i, j ≤ k. We obtain for 1 ≤ j ≤ k that

sᵀk+1Asj = −rᵀkHkAsj = −
( ∑

1≤l≤k

αlyl + r0

)ᵀ
Hkyj = −

∑
1≤l≤k

αly
ᵀ
l sj − r

ᵀ
0sj

= −αjyᵀj sj − r
ᵀ
0sj = sᵀj rj−1 − rᵀ0sj = sᵀj

( ∑
1≤l<j

αlyl + r0

)
− rᵀ0sj

= sᵀj r0 − rᵀ0sj = 0

where we used the update equation of the residual ri in Algorithm 1, the definition of αi, the induction
hypothesis and (S33). This proves the statement.
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S5.2 Relationship to the Conjugate Gradient Method

Theorem 2 (Connection to the Conjugate Gradient Method)
Given a scalar prior meanA0 = H−1

0 = αI with α > 0, assume (1) and (2) hold, then the iterates
xi of Algorithm 1 are identical to the ones produced by the conjugate gradient method.

Proof. The proof outlined here is closely related to the proofs connecting Quasi-Newton methods to
the conjugate gradient method [19, 6], but makes different assumptions on the prior distribution.

We begin by recognizing that the choice of step length αi in Algorithm 1 is identical to the one
in the conjugate gradient method [18]. Hence, it suffices to show that si ∝ sCG

i . Theorem 1
established that Algorithm 1 is a conjugate directions method. Now by assumption A0 = αI and
H0 = A−1

0 , therefore s1 = −αIr0 ∝ −r0 = sCG
1 . It suffices show that si lies in the Krylov

space Ki(A, r0) = {r0,Ar0, . . . ,A
i−1r0} for all 0 < i ≤ n. This completes the argument, since

Ki(A, r0) is an i-dimensional subspace of Rn and thusA-conjugacy uniquely determines the search
directions up to scaling, asA is positive definite.

To complete the proof we proceed as follows. The posterior mean of the inverse model Hi−1 at
step i − 1 maps an arbitrary vector v ∈ Rn to span(H0v,H0Y1:i−1,S1:i−1,W

H
0 Y1:i−1). This

follows directly from its form in given in Section 2.1. By assumption H0 = A−1
0 = α−1I ,

therefore using (1) and (2) we have span(WH
0 Y1:i−1) = span(Y1:i−1). This implies Hi−1 maps

to span(v,S1:i−1,Y1:i−1) and thus si ∈ span(ri−1,S1:i−1,Y1:i−1). We will now show that
span(ri−1,S1:i−1,Y1:i−1) ⊂ Ki(A, r0) by induction, completing the argument.

We begin with the base case. Since H0 is assumed to be scalar, we have s1 ∝ r0 ∈ K0(A, r0)
and therefore y1 = As1 and r1 = r0 + α1y1 are in K1(A, r0). For the induction step assume
span(ri−1,S1:i−1,Y1:i−1) ⊂ Ki(A, r0). The definition of the policy of Algorithm 1 gives

si = −E[H]ri−1 ∝Hi−1ri−1 ∈ span(ri−1,S1:i−1,Y1:i−1) ⊂ Ki(A, r0),

where we used the induction hypothesis. This implies that yi = Asi ∈ Ki+1(A, r0) and ri =
ri−1 + αiyi ∈ Ki+1(A, r0) by the definition of the Krylov space. Therefore, span(ri,S1:i,Y1:i) ⊂
Ki+1(A, r0). This completes the proof.

S6 Prior Covariance Class: Proofs for Section 3

S6.1 Hereditary Positive-Definiteness

Proposition 1 (Hereditary Positive Definiteness [20, 16])
LetA0 ∈ Rn×nsym be positive definite. Assume the actions S areA-conjugate andW A

0 S = Y , then
for i ∈ {0, . . . , k − 1} it holds thatAi+1 is symmetric positive definite.

Proof. This is shown in Hennig and Kiefel [16]. We give an identical proof in our notation as a
reference to the reader. By Theorem 7.5 in Dennis and Moré [20] it holds that if Ai is positive
definite and sᵀi+1W

A
i si+1 6= 0, thenAi+1 is positive definite if and only if det(Ai+1) > 0. By the

matrix determinant lemma and the recursive formulation of the posterior we have

det(Ai+1) = det(Ai)

(
1

(sᵀi+1W
A
i si+1)2

(
(yᵀi+1A

−1
i W

A
i si+1)2

− (yᵀi+1A
−1
i yi+1)(sᵀi+1W

A
i A
−1
i W

A
i si+1) + (sᵀi+1W

A
i A
−1
i W

A
i si+1)(yᵀi+1si+1)

))
Hence it suffices to show that

0 < (yᵀi+1A
−1
i W

A
i si+1)2 − (yᵀi+1A

−1
i yi+1)(sᵀi+1W

A
i A
−1
i W

A
i si+1)

+ (sᵀi+1W
A
i A
−1
i W

A
i si+1)(yᵀi+1si+1),

which simplifies to

yᵀi+1A
−1
i yi+1 −

(yᵀi+1A
−1
i W

A
i si+1)2

sᵀi+1W
A
i A
−1
i W

A
i si+1

< yᵀi+1si+1

10



Now byW A
0 S = Y , we haveW A

i si+1 = W A
0 si+1 = yi+1 and the above reduces to

0 < sᵀi+1Asi+1,

which is fulfilled by the assumption that A is positive definite. Thus Ai+1 is positive definite.
Symmetry follows immediately from the form of the posterior mean.

S6.2 Posterior Correspondence

Definition 1
LetAi andHi be the means of A and H at step i. We say a prior induces posterior correspondence if

A−1
i = Hi (S34)

for all steps 0 ≤ i ≤ k of the solver. If only

A−1
i Y = HiY , (S35)

we say that weak posterior correspondence holds.

S6.2.1 Matrix-variate Normal Prior

We begin by establishing posterior correspondence in the case of general matrix-variate normal priors,
i.e. the inference setting detailed in Corollary S2. We begin by proving a general non-constructive
condition and close with a sufficient condition for correspondence with limits the possible choices of
covariance factors to a specific class.

Lemma S1 (General Correspondence)
Let 1 ≤ k ≤ n, W A

0 ,W
H
0 symmetric positive-definite and assume A−1

0 = H0, then (S34) holds if
and only if

0 = (AS −A0S)
[
(SᵀW A

0 A
−1
0 AS)−1SᵀW A

0 A
−1
0 − (SᵀAᵀWH

0 AS)−1SᵀAᵀWH
0

]
. (S36)

Proof. By the matrix inversion lemma we have

0 = A−1
k −Hk

=
(
A0 + (Y −A0S)(SᵀW A

0 S)−1SᵀW A
0

)−1 −H0 − (S −H0Y )(Y ᵀWH
0 Y )−1Y ᵀWH

0

= A−1
0 −A

−1
0 (Y −A0S)(SᵀW A

0 S + SᵀW A
0 A
−1
0 (Y −A0S))−1SᵀW A

0 A
−1
0

−A−1
0 −A

−1
0 (A0S − Y )(Y ᵀWH

0 Y )−1Y ᵀWH
0

= −A−1
0 (Y −A0S)

[
(SᵀW A

0 A
−1
0 Y )−1SᵀW A

0 A
−1
0 − (Y ᵀWH

0 Y )−1Y ᵀWH
0

]
,

where we used the assumption H0 = A−1
0 . Left-multiplying with −A0 and using Y = AS

completes the proof.

Corollary S4 (Correspondence at Convergence)
Let k = n,H0 = A−1

0 and assume S has full rank, i.e. the linear solver has performed n linearly
independent actions, then (S34) holds for any symmetric positive-definite choice ofW A

0 andWH
0 .

Proof. By assumption, SᵀW A
0 A
−1
0 and SᵀAᵀWH

0 are invertible. Then by Lemma S1 the corre-
spondence condition (S34) holds.

Theorem S2 (Sufficient Condition for Correspondence)
Let 1 ≤ k ≤ n arbitrary and assumeH0 = A−1

0 . AssumeWA
0 ,A0,W

H
0 satisfy

0 = Sᵀ(W A
0 A
−1
0 −AᵀWH

0 ) (S37)

or equivalently letB〈S〉⊥ ∈ Rn×k be a basis of the orthogonal space 〈S〉⊥ spanned by the actions.
For Φ ∈ R(n−k)×n arbitrary, if

WH
0 = A−ᵀ(W A

0 A
−1
0 −B〈S〉⊥Φ) (S38)
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and the commutation relations

[A0,A] = 0 (S39)

[W A
0 ,A] = 0 (S40)

[B〈S〉⊥Φ,A] = 0 (S41)

are fulfilled, thenWH
0 is symmetric and (S34) holds.

Proof. By assumptionW A
0 is symmetric positive-definite and (S37) is equivalent to SᵀW A

0 A
−1
0 =

SᵀAᵀWH
0 , which implies (S36). Now, assumption (S37) is equivalent to columns of the difference

W A
0 A
−1
0 −AᵀWH

0 lying in L, i.e. we can choose a basisB〈S〉⊥ and coefficient matrix Φ such that

W A
0 A
−1
0 −AᵀWH

0 = B〈S〉⊥Φ.

Rearranging the above gives (S38). With the commutation relations and

[A,B] = 0 ⇐⇒ [A−1,B] = 0 ⇐⇒ [A,B−1] = 0 ⇐⇒ [A−1,B−1] = 0

it holds that

(WH
0 )ᵀ = W A

0 A
−1
0 A−1 −B〈S〉⊥ΦA−1 = A−ᵀW A

0 A
−1
0 −A−ᵀB〈S〉⊥Φ = WH

0

henceWH
0 is symmetric. Finally, by Lemma S1 posterior mean correspondence (S34) holds.

If we want to ensure correspondence for all iterations, (S41) is trivially satisfied. The question now
becomes what form canA0 andW A

0 take in order to ensure symmetricWH
0 . This comes down to

finding matrices which commute withA.
Lemma S2 (Commuting Matrices of a Symmetric Matrix)
Let r ∈ N,M ∈ Rn×n andA ∈ Rn×n symmetric. AssumeM has the form

M = pr(A) =

r∑
i=0

ciA
i

for a set of coefficients ci ∈ R, then M and A commute. If A has n distinct eigenvalues, M is
diagonalizable and [M ,A] = 0, then

M = pn−1(A),

i.e. M is a polynomial inA of degree at most n− 1.

Proof. The first result follows immediately since

W A
0 A = pr(A)A =

r∑
i=0

ciA
i+1 = Apr(A) = AW A

0 .

Assume now that A has n distinct eigenvalues λ0, . . . , λn−1, M is diagonalizable and M and A
commute. Now, if and only if [A,M ] = 0, then A and M are simultaneously diagonalizable by
Theorem 5.2 in Conrad [21], i.e. we can find a common basis in which bothA andM are represented
by diagonal matrices. Hence, the set of matrices commuting withA forms an n-dimensional subspace
Un ⊂ Rn×n. Now, by the first part of this proof {I,A, . . . ,An−1} ⊂ Un. It remains to be shown,
that this set forms a basis of Un. By isomorphism of finite dimensional vector spaces this is equivalent
to proving that

{b0, b1, . . . , bn−1} :=


1

...
1

 ,

 λ0

...
λn−1

 , . . . ,

λ
n−1
0
...

λn−1
n−1




forms a basis of Rn. It suffices to show that all bi are independent. Assume the contrary, then∑n−1
i=0 αibi = 0 for some α0, . . . , αn−1 ∈ R, such that not all αi = 0. This implies that the

polynomial
∑n−1
i=0 αix

i has n zeros λ0, . . . , λn−1. This contradicts the fundamental theorem of
algebra, concluding the proof.
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The above suggests that tractable choices ofA0 andW A
0 for the non-symmetric matrix-variate prior,

which imply symmetricWH
0 , are of polynomial form inA.

Example S1 (Posterior Correspondence Covariance Class)
Tractable choices of the prior parameters in the A view, which satisfy posterior correspondence and
the commutation relations are for example

A0 = c0I and W A
0 =

n−1∑
i=1

ciA
i,

where H0 = A−1
0 with ci ∈ R. Motivated by tr(A)

!
= tr(A0) an initial choice could be c0 =

n−1 tr(A).

Finally, note that in practice we do not actually requireW A
0 . We only ever need access toW A

0 S.

S6.2.2 Symmetric Matrix-variate Normal Prior

We now turn to the symmetric model, which we assumed throughout the paper, given in Corollary S3.
We prove Theorem 3, the main result of this section demonstrating weak posterior correspondence
for the symmetric Kronecker covariance, by employing the matrix inversion lemma for the posterior
mean Ak. We begin by establishing a set of technical lemmata first, which mainly expand terms
appearing during matrix block inversion.
Lemma S3 (Symmetric Posterior Inverse)
Under the assumptions of Corollary S3, the inverse of the posterior mean is given by

A−1
k = A−1

0 −A
−1
0 [UA VA]

[
UᵀAA

−1
0 UA I +UᵀAA

−1
0 VA

I + V ᵀAA
−1
0 UA V ᵀAA

−1
0 VA

]−1 [
UᵀA
V ᵀA

]
A−1

0

where

UA := W A
0 S(SᵀW A

0 S)−1 ∈ Rn×k,

VA := (I − 1

2
UAS

ᵀ)(Y −A0S) = (I − 1

2
UAS

ᵀ)∆A ∈ Rn×k.

Proof. We rewrite the rank-2 update in Section 2.1 as follows

Ak = A0 +UAV
ᵀ
A + VAU

ᵀ
A = A0 + [UA VA]

[
0 I
I 0

] [
UᵀA
V ᵀA

]
.

Then the statement follows directly from the matrix inversion lemma.

Next, we expand the terms inside the blocks of the matrix to be inverted in Lemma S3. This leads to
the following lemma.
Lemma S4
Given the assumptions of Corollary S3, letW A

0 andA0 be symmetric and assume (2) and (1) hold.
Define

Λ = SᵀW A
0 S

Π = SᵀW A
0 A
−1
0 ∆A,

then Λ ∈ Rm×m and Λ + Π ∈ Rm×m are symmetric and invertible and we obtain

Λ + Π = SᵀW A
0 A
−1
0 AS = SᵀAA−1

0 AS = SᵀAWH
0 AS (S42)

Π = ∆ᵀAA
−1
0 AS (S43)

UᵀAA
−1
0 ∆A = Λ−1Π (S44)

∆ᵀAS = Sᵀ∆A (S45)

UA = ASΛ−1 (S46)

UᵀAA
−1
0 UA = Λ−1(Λ + Π)Λ−1 (S47)
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I +UᵀAA
−1
0 VA = Λ−1(Λ + Π)(I − 1

2
Λ−1Sᵀ∆A) (S48)

I + V ᵀAA
−1
0 UA = (I − 1

2
∆ᵀASΛ−1)(Λ + Π)Λ−1 (S49)

V ᵀAA
−1
0 VA = Π− 1

2

(
(Λ + Π)Λ−1Sᵀ∆A + ∆ᵀASΛ−1(Λ + Π)

)
(S50)

+
1

4
∆ᵀASΛ−1(Λ + Π)Λ−1Sᵀ∆A (S51)

Proof. We begin by proving that Λ and Λ + Π are symmetric and invertible. We have by Sylvester’s
rank inequality that Λ is invertible. For symmetricW A

0 , Λ is symmetric by definition. We have that

Λ + Π = SᵀW A
0 S + SᵀW A

0 A
−1
0 (AS −A0S) = SᵀW A

0 A
−1
0 AS = SᵀAA−1

0 AS

= SᵀW A
0 A
−1
0 AS = SᵀAWH

0 AS

Thus, by Sylvester’s rank inequality Λ + Π is invertible. Given symmetric A0, it is symmetric.
Further, it holds that

Π = Λ + Π−Λ = SᵀAA−1
0 AS − SᵀAS = ∆ᵀAA

−1
0 AS

UᵀAA
−1
0 ∆A = (SᵀW A

0 S)−1SᵀW A
0 A
−1
0 ∆A = Λ−1Π

∆ᵀAS = (AS −A0S)ᵀS = SᵀAS − SᵀA0S

UA = W A
0 S(SᵀW A

0 S)−1 = ASΛ−1

UᵀAA
−1
0 UA = Λ−1SᵀAA−1

0 ASΛ−1 = Λ−1(Λ + Π)Λ−1

I +UᵀAA
−1
0 VA = I + Λ−1SᵀAA−1

0 (I − 1

2
UAS

ᵀ)∆A = I + Λ−1SᵀAA−1
0 (I − 1

2
ASΛ−1Sᵀ)∆A

= I + Λ−1SᵀAA−1
0 (AS −A0S)− 1

2
Λ−1SᵀAA−1

0 ASΛ−1Sᵀ∆A

= Λ−1(Λ + Π)− 1

2
Λ−1(Λ + Π)Λ−1Sᵀ∆A = Λ−1(Λ + Π)(I − 1

2
Λ−1Sᵀ∆A)

I + V ᵀAA
−1
0 UA = (I +UᵀAA

−1
0 VA)ᵀ = (Λ−1(Λ + Π)(I − 1

2
Λ−1Sᵀ∆A))ᵀ

= (I − 1

2
∆ᵀASΛ−1)(Λ + Π)Λ−1,

where we used that Λ and Λ + Π are symmetric. Finally, we have that

V ᵀAA
−1
0 VA = ∆ᵀA(I − 1

2
SUᵀA)A−1

0 (I − 1

2
UAS

ᵀ)∆A

= ∆ᵀA(I − 1

2
SΛ−1SᵀA)A−1

0 (I − 1

2
ASΛ−1Sᵀ)∆A

= ∆ᵀAA
−1
0 (I − 1

2
ASΛ−1Sᵀ)∆A −

1

2
∆ᵀASΛ−1SᵀAA−1

0 (I − 1

2
ASΛ−1Sᵀ)∆A

= (SᵀAA−1
0 − Sᵀ)

(
I − 1

2
ASΛ−1Sᵀ)∆A −

1

2
∆ᵀASΛ−1SᵀAA−1

0 ∆A

+
1

4
∆ᵀASΛ−1SᵀAA−1

0 ASΛ−1Sᵀ∆A

= SᵀAA−1
0 ∆A − Sᵀ∆A −

1

2
SᵀAA−1

0 ASΛ−1Sᵀ∆A +
1

2
SᵀASΛ−1Sᵀ∆A

− 1

2
∆ᵀASΛ−1SᵀAA−1

0 ∆A +
1

4
∆ᵀASΛ−1SᵀAA−1

0 ASΛ−1Sᵀ∆A

= SᵀAA−1
0 AS − SᵀAS − Sᵀ∆A −

1

2
(Λ + Π)Λ−1Sᵀ∆A +

1

2
Sᵀ∆A

− 1

2
∆ᵀASΛ−1SᵀAA−1

0 ∆A +
1

4
∆ᵀASΛ−1SᵀAA−1

0 ASΛ−1Sᵀ∆A

= Π− 1

2
Sᵀ∆A −

1

2
(Λ + Π)Λ−1Sᵀ∆A −

1

2
∆ᵀASΛ−1SᵀAA−1

0 (AS −A0S)
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+
1

4
∆ᵀASΛ−1SᵀAA−1

0 ASΛ−1Sᵀ∆A

= Π− 1

2
Sᵀ∆A −

1

2
(Λ + Π)Λ−1Sᵀ∆A −

1

2
∆ᵀASΛ−1(Λ + Π) +

1

2
∆ᵀASΛ−1Λ

+
1

4
∆ᵀASΛ−1SᵀAA−1

0 ASΛ−1Sᵀ∆A

= Π− 1

2

(
(Λ + Π)Λ−1Sᵀ∆A + ∆ᵀASΛ−1(Λ + Π)

)
+

1

4
∆ᵀASΛ−1(Λ + Π)Λ−1Sᵀ∆A,

where we dropped some of the terms temporarily for clarity of exposition.

We will now use these intermediate results to perform block inversion on the 2k × 2k matrix to be
inverted in Lemma S3.

Lemma S5
Given the assumptions of Corollary S3, additionally assume (1) and (2) hold. Let

T =

[
T11 T12

T21 T22

]
=

[
UᵀAA

−1
0 UA I +UᵀAA

−1
0 VA

I + V ᵀAA
−1
0 UA V ᵀAA

−1
0 VA

]−1

,

then the block matrices Tij ∈ Rm×m are given by

T11 = Λ(Λ + Π)−1Λ− (I − 1

2
Sᵀ∆AΛ−1)(I − 1

2
Λ−1∆ᵀAS)

T12 = (I − 1

2
Sᵀ∆AΛ−1)

T21 = T ᵀ12 = (I − 1

2
Λ−1∆ᵀAS)

T22 = −Λ−1.

Proof. Let

K = T−1 =

[
UᵀAA

−1
0 UA I +UᵀAA

−1
0 VA

I + V ᵀAA
−1
0 UA V ᵀAA

−1
0 VA

]
,

then the inverse of the Schur complementD = K/(UᵀAA
−1
0 UA) is given by

D−1 = (K22 −K21K
−1
11 K12)−1

=
(
V ᵀAA

−1
0 VA − (I + V ᵀAA

−1
0 UA)(UᵀAA

−1
0 UA)−1(I +UᵀAA

−1
0 VA)

)−1

=
(
V ᵀAA

−1
0 VA − (I − 1

2
∆ᵀASΛ−1)(Λ + Π)(I − 1

2
Λ−1Sᵀ∆A)

)−1

=
(
V ᵀAA

−1
0 VA − (Λ− 1

2
∆ᵀAS)Λ−1(Λ + Π)Λ−1(Λ− 1

2
Sᵀ∆A)

)−1

=
(
V ᵀAA

−1
0 VA − (Λ + Π) +

1

2

(
∆ᵀASΛ−1(Λ + Π) + (Λ + Π)Λ−1Sᵀ∆A

)
− 1

4
∆ᵀASΛ−1(Λ + Π)Λ−1Sᵀ∆A

)−1

= (Π−Λ−Π)−1

= −Λ−1,

where we used Lemma S4. By block matrix inversion and again with Lemma S4 we obtain

T11 = (UᵀAA
−1
0 UA)−1 + (UᵀAA

−1
0 UA)−1(I +UᵀAA

−1
0 VA)D−1(I + V ᵀAA

−1
0 UA)(UᵀAA

−1
0 UA)−1

= Λ(Λ + Π)−1Λ + Λ(I − 1

2
Λ−1Sᵀ∆A)D−1(I − 1

2
∆ᵀASΛ−1)Λ

= Λ(Λ + Π)−1Λ + (Λ− 1

2
Sᵀ∆A)D−1(Λ− 1

2
∆ᵀAS)
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as well as

T12 = −(UᵀAA
−1
0 UA)−1(I +UᵀAA

−1
0 VA)D−1

= −Λ(Λ + Π)−1ΛΛ−1(Λ + Π)(I − 1

2
Λ−1Sᵀ∆A)D−1

= −(Λ− 1

2
Sᵀ∆A)D−1

T21 = T ᵀ12 = −D−ᵀ(Λ− 1

2
∆ᵀAS)

and finally T22 = D−1 = −Λ−1.

Lemma S6
Given the assumptions of Corollary S3, additionally assume (1) and (2) hold. Let

F = A−1
0 [UA VA]

[
T11 T12

T21 T22

] [
UᵀA
V ᵀA

]
A−1

0 ,

where T is chosen as in Lemma S5, then if SᵀAS = I , we have

F = A−1
0 AS(I + Π)−1SᵀAA−1

0 − SSᵀ.

Proof. By expanding the quadratic and using Lemma S5, we obtain the terms

F11 := A−1
0 UAT11U

ᵀ
AA
−1
0

= A−1
0 UAΛ(Λ + Π)−1ΛUᵀAA

−1
0 −A

−1
0 UA(I − 1

2
Sᵀ∆AΛ−1)(I − 1

2
Λ−1∆ᵀAS)UᵀAA

−1
0

= A−1
0 AS(Λ + Π)−1SᵀAA−1

0 −A
−1
0 ASΛ−1(I − 1

2
Sᵀ∆AΛ−1)(I − 1

2
Λ−1∆ᵀAS)Λ−1SᵀAA−1

0

= A−1
0 AS(Λ + Π)−1SᵀAA−1

0 −A
−1
0 ASΛ−2SᵀAA−1

0

+
1

2
A−1

0 ASΛ−1(Sᵀ∆AΛ−1 + Λ−1∆ᵀAS)Λ−1SᵀAA−1
0

− 1

4
A−1

0 ASΛ−1Sᵀ∆AΛ−2∆ᵀASΛ−1SᵀAA−1
0

F12 := A−1
0 UAT12V

ᵀ
AA

−1
0

= A−1
0 UA(I − 1

2
Sᵀ∆AΛ−1)V ᵀAA

−1
0

= A−1
0 ASΛ−1(I − 1

2
Sᵀ∆AΛ−1)∆ᵀA(I − 1

2
SUᵀA)A−1

0

= A−1
0 ASΛ−1(I − 1

2
Sᵀ∆AΛ−1)∆ᵀA(I − 1

2
SΛ−1SᵀA)A−1

0

= A−1
0 ASΛ−1∆ᵀAA

−1
0 −

1

2
A−1

0 ASΛ−1(Sᵀ∆AΛ−1∆ᵀA + ∆ᵀASΛ−1SᵀA)A−1
0

+
1

4
A−1

0 ASΛ−1Sᵀ∆AΛ−1∆ᵀASΛ−1SᵀAA−1
0

F21 := F ᵀ12 = A−1
0 (I − 1

2
ASΛ−1Sᵀ)∆A(I − 1

2
Λ−1∆ᵀAS)Λ−1SAA−1

0

= A−1
0 ∆AΛ−1SᵀAA−1

0 −
1

2
A−1

0 (∆AΛ−1∆ᵀAS +ASΛ−1Sᵀ∆A)Λ−1SᵀAA−1
0

+
1

4
A−1

0 ASΛ−1Sᵀ∆AΛ−1∆ᵀASΛ−1SᵀAA−1
0

F22 := A−1
0 VAT22V

ᵀ
AA

−1
0

= −A−1
0 (I − 1

2
UAS

ᵀ)∆AΛ−1∆ᵀA(I − 1

2
SUᵀA)A−1

0

= −A−1
0 (I − 1

2
ASΛ−1Sᵀ)∆AΛ−1∆ᵀA(I − 1

2
SΛ−1SᵀA)A−1

0
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= −A−1
0 ∆AΛ−1∆ᵀAA

−1
0 +

1

2
A−1

0 (ASΛ−1Sᵀ∆AΛ−1∆ᵀA + ∆AΛ−1∆ᵀASΛ−1SᵀA)A−1
0

− 1

4
A−1

0 ASΛ−1Sᵀ∆AΛ−1∆ᵀASΛ−1SᵀAA−1
0

Assuming SᵀAS = I , it holds that

F11 = A−1
0 AS(I + Π)−1SᵀAA−1

0 −A
−1
0 ASSᵀAA−1

0 +
1

2
A−1

0 AS(Sᵀ∆A + ∆ᵀAS)SᵀAA−1
0

− 1

4
A−1

0 ASSᵀ∆A∆ᵀASS
ᵀAA−1

0

F12 = A−1
0 ASSᵀAA−1

0 −A
−1
0 ASSᵀ − 1

2
A−1

0 AS(Sᵀ∆A∆ᵀA + ∆ᵀASS
ᵀA)A−1

0

+
1

4
A−1

0 ASSᵀ∆A∆ᵀASS
ᵀAA−1

0

F21 = A−1
0 ASSᵀAA−1

0 − SSᵀAA
−1
0 −

1

2
A−1

0 (∆A∆ᵀAS +ASSᵀ∆A)SᵀAA−1
0

+
1

4
A−1

0 ASSᵀ∆A∆ᵀASS
ᵀAA−1

0

F22 = A−1
0 ∆AS

ᵀ −A−1
0 ∆AS

ᵀAA−1
0 +

1

2
(ASSᵀ∆A∆ᵀA + ∆A∆ᵀASS

ᵀA)A−1
0

− 1

4
A−1

0 ASSᵀ∆A∆ᵀASS
ᵀAA−1

0 ,

which leads to

F11 + F12 = A−1
0 AS(I + Π)−1SᵀAA−1

0 −A
−1
0 ASSᵀ +

1

2
A−1

0 AS(Sᵀ∆AS
ᵀA− Sᵀ∆A∆ᵀA)A−1

0

F21 + F22 = A−1
0 ∆AS

ᵀ +
1

2
A−1

0 AS(Sᵀ∆A∆ᵀA − S
ᵀ∆AS

ᵀA)A−1
0

= A−1
0 ASSᵀ − SSᵀ +

1

2
A−1

0 AS(Sᵀ∆A∆ᵀA − S
ᵀ∆AS

ᵀA)A−1
0 .

Finally, adding up the individual terms we obtain

F = F11 + F12 + F21 + F22 = A−1
0 AS(I + Π)−1SᵀAA−1

0 − SSᵀ.

Theorem 2 (Weak Posterior Correspondence)
Let WH

0 ∈ Rn×nsym be positive definite. Assume H0 = A−1
0 , and that W A

0 ,A0,W
H
0 satisfy (1) and

(2), then weak posterior correspondence holds for the symmetric Kronecker covariance.

Proof. First note that without loss of generality SᵀAS = I , i.e. only the direction of the action
matters in Algorithm 1 not its magnitude. This can be seen from the forms of Ak and Hk in
Section 2.1. Any positive factor α > 0 of sk cancels in the update expressions. Expanding the right
hand side we have using (S33), that HkY = S. Then by Lemma S3, Lemma S6 and SᵀAS = I ,
the left hand side evaluates to

A−1
k Y = (A−1

0 − F )Y

= (A−1
0 −A

−1
0 AS(I + Π)−1SᵀAA−1

0 + SSᵀ)AS

= A−1
0 AS −A−1

0 AS + S

= S

= HkY .

This concludes the proof.

This theorem shows that for a certain choice of symmetric matrix-variate normal prior the estimated
inverse of the matrixHk corresponds to the inverse of the estimated matrixA−1

k . It also shows that
both act likeA−1 on the space spanned by Y , consistent with the interpretation of the two being the
best guess for the inverseA−1.
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S7 Galerkin’s Method for PDEs

In the spirit of applying machine learning in the sciences [22], we briefly outlined an application of
Algorithm 1 to the solution of partial differential equations in Section 4. As an example we considered
the Dirichlet problem for the Poisson equation given by{

−∆u(x, y) = f(x, y) (x, y) ∈ int Ω

u(x, y) = u∂Ω(x, y) (x, y) ∈ ∂Ω
(S52)

where Ω is a connected open region with sufficiently regular boundary and u∂Ω : ∂Ω→ R defines
the boundary conditions. The corresponding weak solution of (S52) is given by u ∈ V such that for
all test functions v ∈ V

a(u, v) :=

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx =: f(v), (S53)

where a(·, ·) is a bilinear form. Next, one derives the Galerkin equation by choosing a finite-
dimensional subspace V� ⊂ V and corresponding basis e�1 , . . . , e

�
n . Then (S53) reduces to finding

u ∈ V� such that for all i ∈ {1, . . . , n} it holds that a(u, e�i ) =
∑n
j=1 uja(e�j , e

�
i ) = f(e�i ) which

is a linear system Au = f with the entries of the Gram matrix given by Aij = a(e�j , e
�
i ) and

fi = f(e�i ).

S7.1 Operator View

The operator view provides another motivation for placing a distribution over the matrixA of a linear
system. When approximating the solution to a PDE, as we do here, then solution-based inference
for linear systems [13, 14] can be viewed as placing a Gaussian process prior over the solution
u : Ω → R [23]. The matrix-based approach [6] instead can be interpreted as placing a Gaussian
measure [24] on the infinite-dimensional space of the differential operator instead. This induces
a Gaussian distribution on the Gram matrix A modelling the uncertainty about the actions of the
(discretized) differential operator.

Definition S3 (Infinite-dimensional Gaussian Measures [24])
Let W be a topological vector space with Borel probability measure µ, then µ is Gaussian, iff for
each continuous linear functional f ∈W ∗, the pushforward µ ◦ f−1 is a Gaussian measure on R, i.e.
f is a Gaussian random variable on (W,BW , µ).

This definition and further detail on Gaussian measures in infinite-dimensional spaces can be found
in the book by Bogachev [24]. We now model the differential operator as a random variable on the
space of bounded linear operators and show that this induces a distribution on the Gram matrix arising
from discretization via Galerkin’s method.

Theorem S3 (Gaussian Measures on the Space of Bounded Linear Operators)
Let V be a Hilbert space and let W = B(V, V ) be the space of bounded linear operators from V
to V with Borel probability measure µ and let A be a Gaussian random variable on (W,BW , µ).
Consider the operator equation

Au = f

and let a : V × V → R, (u, v) 7→ 〈Au, v〉V = 〈f, v〉V be its corresponding bilinear form. Let V�
be an n-dimensional subspace of V , then the resulting Gram matrix A ∈ Rn×n is matrix-variate
Gaussian.

Proof. Since V is Banach, so is W . Define the functional aW : W → R given by aW (A, u, v) =
a(u, v) for fixed u, v ∈ V . The map aW (·, u, v) is linear by linearity of the inner product and
bounded since using the Cauchy-Schwarz inequality, it holds that

|aW (A, u, v)| = |〈Au, v〉V | ≤ ‖Au‖V ‖v‖V ≤ ‖A‖W ‖u‖V ‖v‖V = C‖A‖W .

Therefore aW (·, u, v) ∈ W ∗ for all u, v ∈ V . By Definition S3 of a Gaussian measure the push
forward µ ◦ a−1

W is a Gaussian measure on R for all u, v ∈ V , in particular also for a basis {vi}ni=1
of V�. Therefore the Gram matrix A given by Aij = a(vi, vj) = aW (A, vi, vj) is matrix-variate
Gaussian since its components are Gaussian.
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Remark S1
The Laplacian ∆ : H2(Ω)→ L2(Ω) is a bounded linear operator on the Sobolev space H2(Ω). Note,
that in general differential operators are in fact not bounded. Hence, the simple argument above does
not generalize to arbitrary differential operators.
Remark S2
If the bilinear form a in addition to being continuous is also weakly coercive, then by the Lax-Milgram
theorem the operator equation has a unique solution. A symmetric and weakly coercive operator
implies a symmetric positive-definite Gram matrix.

S7.2 Discretization Refinement

The linear systemAu = f arises from discretizing (S52) using Galerkin’s method on a given mesh �
defined via a finite-dimensional subspace V� ⊂ V such that u ∈ V�. By solving this problem using
a probabilistic linear solver we obtain a posterior distribution over the inverseH of the discretized
differential operatorA. Our goal is to leverage the obtained information about the solution on the
coarse mesh to extrapolate to a refined discretization, similar in spirit to multi-grid methods [25]. This
approach can be seen as an instance of transfer learning and could be used for adaptive probabilistic
mesh refinement strategies based on the uncertainty about the solution in a certain region of the mesh.

Consider a fine mesh � given by V�, where n� = dim(V�) > dim(V�) = n� such that V� ⊂ V� ⊂
V . We would like to transfer information from solving the problem on the coarse mesh V� to the
solution of the discretized PDE on the fine mesh V�. To do so we compute the predictive distribution
on the fine mesh, given the belief over the inverse differential operator on the coarse mesh, i.e.

p(H�) =

∫
p(H� | H�)p(H�) dH�.

Define the prolongation operator P : Rn� → Rn� given by Pij = 〈e�i , e�j 〉 satisfying P ᵀP = I ∈
Rn�×n� , implying it is injective. The distribution over the inverse operator on the fine mesh given
the inverse operator on the coarse mesh is given by

p(H� | H�) = N (H�;PH�P
ᵀ,Λ) (S54)

where Λ ∈ Rn�×n�sym positive definite models the numerical uncertainty induced by the coarser
discretization. This corresponds to the assumption that solving the problem on a coarser grid
approximates the solution on a fine grid projected to the coarse grid.

Now assume we have a posterior distribution over the inverse differential operator on the coarse grid
from a solve of the coarse problem using Algorithm 1, given by

p(H�) = N (H�;Hk
�,W

k
� ��W k

�).

The projection in (S54) is a linear map, since by the characteristic property of the Kronecker product
(S1) we have

svec(PH�P
ᵀ) = Q(P � P )Qᵀ svec(H�).

Therefore by Theorem S1 the predictive distribution is also closed-form and Gaussian.
Proposition S6 (Predictive Distribution on Fine Mesh)
Let p(H�) = N (H�;Hk

�,W
k
� ��W k

�) be a prior on H� and assume a likelihood of the form (S54).
Then the predictive distribution is given by p(H�) = N (H�;H0

�,Σ
0
�), where

H0
� = PHk

�P
ᵀ,

Σ0
� = PW k

�P
ᵀ �� PW k

�P
ᵀ + Λ.

Proof. By Theorem S1 we obtain for the mean and covariance of the predictive distribution

H0
� = PHk

�P
ᵀ

Σ0
� = Q(P � P )Qᵀ(W k

� ��W k
�)Q(P ᵀ � P ᵀ)Qᵀ + Λ

=
1

2
Q(PW k

�P
ᵀ � PW k

�P
ᵀ + PW k

�P
ᵀ � PW k

�P
ᵀ)Qᵀ + Λ

= PW k
�P
ᵀ �� PW k

�P
ᵀ + Λ

where we used (S31) and the symmetry ofW k
� .
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For general Λ the covariance of the predictive distribution does not have symmetric Kronecker form,
making its use as a prior for a new solve on the fine mesh challenging. We aim to exploit structural
assumptions on Λ and results on nearest Kronecker products to a sum of Kronecker products to
remedy this shortcoming in the future.
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