
Supplementary material
Appendix A discusses the technical considerations of schemes for constructing a path X from data.
Appendix B proves universal approximation of the Neural CDE model, and is substantially more
technical than the rest of this paper. Appendix C proves that the Neural CDE model subsumes
alternative ODE models which depend directly and nonlinearly on the data. Appendix D gives the
full details of every experiment, such as choice of optimiser, hyperparameter searches, and so on.

A Other schemes for constructing the path X

To evaluate the model as discussed in Section 3.2, X must be at least continuous and piecewise
differentiable.

A.1 Differentiating with respect to the time points

However, there is a technical caveat in the specific case that derivatives with respect to the initial
time t0 are required, and that training is done with the adjoint method. In this case the derivative
with respect to t0 is computed using, and thus requires, derivatives of the vector field with respect
to t.

To be precise, suppose we have a Neural CDE as before:

zt = zt0 +

∫ t

t0

fθ(zs)dXs for t ∈ (t0, tn].

Let L be some (for simplicity scalar-valued) function of ztn , for example a loss. Consider

gθ,X(z, s) = fθ(z)
dX

ds
(s)

as before, and let

as =
dL

dzs
,

which is vector-valued, with size equal to the size of zs, the number of hidden channels.

Then, applying [15, Equation 52] to our case:

dL

dt0
=

dL

dtn
−
∫ t0

tn

as ·
∂gθ,X
∂s

(zs, s)ds

=
dL

dtn
−
∫ t0

tn

as · fθ(zs)
d2X

ds2
(s)ds, (6)

where · represents the dot product.

In principle we may make sense of equation (6) when d2X/ds2 is merely measure valued, but in
practice most code is only set up to handle classical derivatives. If derivatives with respect to t0 are
desired, then practically speaking X must be at least twice differentiable.

A.2 Adaptive step size solvers

There is one further caveat that must be considered. Suppose X is twice differentiable, but that the
second derivative is discontinuous. For example this would be accomplished by taking X to be a
quadratic spline interpolation.

If seeking to solve equation (6) with an adaptive step-size solver, we found that the solver would
take a long time to compute the backward pass, as it would have to slow down to resolve each jump
in d2X/ds2, and then speed back up in the intervals in-between.

13

A.3 Natural cubic splines

This is then the reason for our selection of natural cubic splines: by ensuring that X is twice
continuously differentiable, the above issue is ameliorated, and adaptive step size solvers operate
acceptably. Cubic splines give essentially the minimum regularity for the techniques discussed in
this paper to work ‘out of the box’ in all cases.

Other than this smoothness, however, there is little that is special about natural cubic splines. Other
possible options are for example Gaussian processes [10, 11] or kernel methods [12]. Furthermore,
especially in the case of noisy data it need not be an interpolation scheme – approximation and
curve-fitting schemes are valid too.

B Universal Approximation

The behaviour of controlled differential equations are typically described through the signature
transform (also known as path signature or simply signature) [20] of the driving process X .
We demonstrate here how a (Neural) CDE may be reduced to consideration of just the signature
transform, in order to prove universal approximation.

The proof is essentially split into two parts. The first part is to prove universal approximation with
respect to continuous paths, as is typically done for CDEs. The second (lengthier) part is to interpret
what this means for the natural cubic splines that we use in this paper, so that we can get universal
approximation with respect to the original data as well.
Definition B.1. Let τ, T ∈ R with τ < T and let v ∈ N. Let V1([τ, T];Rv) represent the space of
continuous functions of bounded variation. Equip this space with the norm

X̂ 7→
∥∥∥X̂∥∥∥

V
=
∥∥∥X̂∥∥∥

∞
+
∣∣∣X̂∣∣∣

BV
.

This is a somewhat unusual norm to use, as bounded variation seminorms are more closely aligned
with L1 norms than L∞ norms.
Definition B.2. For any X̂ ∈ V1([τ, T];Rv) let Xt = (X̂t, t) ∈ V1([τ, T];Rv+1). We choose to
use the notation of ‘removing the hat’ to denote this time augmentation, for consistency with the
main text which uses X for the time-augmented path.

Definition B.3. For any N, v ∈ N, let κ(N, v) =
∑N
i=0(v + 1)i.

Definition B.4 (Signature transform). For any k ∈ N and any y ∈ Rk, let M(y) ∈ Rk(v+1)×(v+1)

be the matrix

M(y) =

y1 0 0 · · · 0
y2 0 0 · · · 0
...

...
...

...
yk 0 0 · · · 0
0 y1 0 · · · 0

0
... 0

...
0 yk 0 · · · 0

. . .
0 0 0 · · · y1

...
...

... · · ·
...

0 0 0 · · · yk

Fix N ∈ N and X ∈ V1([τ, T];Rv+1). Let y0,X,N : [τ, T]→ R be constant with y0,X,N

t = 1.

For all i ∈ {1, . . . , N}, iteratively let yi,X,N : [τ, T]→ R(v+1)i be the value of the integral

yi,X,Nt = yi,X,Nτ +

∫ t

τ

M(yi−1,X,N
s)dXs for t ∈ (τ, T],

with yi,X,Nτ = 0 ∈ R(v+1)i .

14

Then we may stack these together:

yX,N = (y0,X,N , . . . , yN,X,N) : [τ, T]→ Rκ(N,v),

M̃(yX,N) = (0,M ◦ y0,X,N , . . . ,M ◦ yN−1,X,N) : [τ, T]→ Rκ(N,v)×v.

Then yX,N is the unique solution to the CDE

yX,Nt = yX,Nτ +

∫ t

τ

M̃(yX,N)sdXs for t ∈ (τ, T],

with yX,Nτ = (1, 0, . . . , 0).

Then the signature transform truncated to depth N is defined as the map

SigN : V1([τ, T];Rv+1)→ Rκ(N,v),

SigN : X 7→ yX,NT .

If this seems like a strange definition, then note that for any a ∈ Rk and any b ∈ Rv that M(a)b is
equal to a flattened vector corresponding to the outer product a ⊗ b. As such, the signature CDE is
instead typically written much more concisely as the exponential differential equation

yX,Nt = yX,Nτ +

∫ t

τ

yX,Ns ⊗ dXs for t ∈ (τ, T],

however we provide the above presentation for consistency with the rest of the text, which does not
introduce ⊗.

Definition B.5. Let V1
0 ([τ, T];Rv) =

{
X ∈ V1([τ, T];Rv)

∣∣X0 = 0
}

.

With these definitions out of the way, we are ready to state the famous universal nonlinearity property
of the signature transform. We think [22, Theorem 4.2] gives the most straightforward proof of this
result. This essentially states that the signature gives a basis for the space of functions on compact
path space.
Theorem B.6 (Universal nonlinearity). Let τ, T ∈ R with τ < T and let v, u ∈ N.

Let K ⊆ V1
0 ([τ, T];Rv) be compact. (Note the subscript zero.)

Let SigN : V1([τ, T];Rv+1)→ Rκ(N,v) denote the signature transform truncated to depth N .

Let
JN,u =

{
` : Rκ(N,v) → Ru

∣∣∣ ` is linear
}
.

Then ⋃
N∈N

{
X̂ 7→ `(SigN (X))

∣∣∣ ` ∈ JN,u}
is dense in C(K;Ru).

With the universal nonlinearity property, we can now prove universal approximation of CDEs with
respect to controlling paths X .
Theorem B.7 (Universal approximation with CDEs). Let τ, T ∈ R with τ < T and let v, u ∈ N.
For any w ∈ N let

Fw =
{
f : Rw → Rw×(v+1)

∣∣∣ f is continuous
}
,

Lw,u = {` : Rw → Ru | ` is linear} ,
ξw =

{
ζ : Rv+1 → Rw

∣∣ ζ is continuous
}
.

For any w ∈ N, any f ∈ Fw and any ζ ∈ ξw and any X̂ ∈ V1([τ, T];Rv), let zf,ζ,X : [τ, T]→ Rw
be the unique solution to the CDE

zf,ζ,Xt = zf,ζ,Xτ +

∫ t

τ

f(zf,ζ,Xs)dXs for t ∈ (τ, T],

15

with zf,ζ,Xτ = ζ(Xτ).

Let K ⊆ V1([τ, T];Rv) be compact.

Then ⋃
w∈N

{
X̂ 7→ `(zf,ζ,XT)

∣∣∣ f ∈ Fw, ` ∈ Lw,u, ζ ∈ ξw}
is dense in C(K;Ru).

Proof. We begin by prepending a straight line segment to every element of K. For every X̂ ∈ K,
define X̂∗ : [τ − 1, T]→ Rv by

X̂∗t =

{
(t− τ + 1)X̂τ t ∈ [τ − 1, τ),

X̂t t ∈ [τ, T].

Similarly define X∗, so that a hat means that time is not a channel, whilst a star means that an extra
straight-line segment has been prepended to the path.

Now let K∗ =
{
X̂∗

∣∣∣ X̂ ∈ K} . Then K∗ ⊆ V1
0 ([τ − 1, T];Rv) and is also compact. Therefore by

Theorem B.6, ⋃
N∈N

{
X̂∗ 7→ `(SigN (X∗))

∣∣∣ ` ∈ JN,u}
is dense in C(K∗;Ru).

So let α ∈ C(K;Ru) and ε > 0. The map X̂ 7→ X̂∗ is a homeomorphism, so we may find
β ∈ C(K∗;Ru) such that β(X̂∗) = α(X̂) for all X̂ ∈ K. Next, there exists some N ∈ N and
` ∈ JN,u such that γ defined by γ : X̂∗ 7→ `(SigN (X∗)) is ε-close to β.

By Definition B.4 there exists f ∈ Fκ(N,v) so that SigN (X∗) = yX
∗

T for all X∗ ∈ K∗, where yX
∗

is the unique solution of the CDE

yX
∗

t = yX
∗

τ−1 +

∫ t

τ−1

f(yX
∗

s)dX∗s for t ∈ (τ − 1, T],

with yX
∗

τ−1 = (1, 0, . . . , 0).

Now let ζ ∈ ξ be defined by ζ(Xτ) = yX
∗

τ , which we note is well defined because the value of yX
∗

t
only depends on Xτ for t ∈ [τ − 1, τ].

Now for any X ∈ K let zX : [τ, T]→ Rw be the unique solution to the CDE

zXt = zXτ +

∫ t

τ

f(zXs)dXs for t ∈ (τ, T],

with zXτ = ζ(Xτ).

Then by uniqueness of solution, zXt = yX
∗

t for t ∈ [τ, T], and so in particular SigN (X∗) = yX
∗

T =
zXT .

Finally it remains to note that ` ∈ JN,u = Lκ(N,v),u.

So let δ be defined by δ : X̂ 7→ `(zXT). Then δ is in the set which we were aiming to show density
of (with w = κ(N, v), f ∈ Fw, ` ∈ Lw,u and ζ ∈ ξ as chosen above), whilst for all X̂ ∈ K,

δ(X̂) = `(zXT) = `(SigN (X∗)) = γ(X̂∗)

is ε-close to β(X̂∗) = α(X̂). Thus density has been established.

Lemma B.8. Let K ⊆ C2([τ, T],Rv) be uniformly bounded with uniformly bounded first and

second derivatives. That is, there exists someC > 0 such that
∥∥∥X̂∥∥∥

∞
+
∥∥dX̂/dt

∥∥
∞+
∥∥d2X̂/dt2

∥∥
∞ < C

for all X̂ ∈ K. Then K ⊆ V1([τ, T];Rv) and is relatively compact (that is, its closure is compact)
with respect to ‖ · ‖V .

16

Proof. K is bounded in C2([τ, T],Rv) so it is relatively compact in C1([τ, T],Rv).

Furthermore for any X̂ ∈ K, ∥∥∥X̂∥∥∥
V

=
∥∥∥X̂∥∥∥

∞
+
∣∣∣X̂∣∣∣

BV

=
∥∥∥X̂∥∥∥

∞
+

∥∥∥∥∥dX̂

dt

∥∥∥∥∥
1

≤
∥∥∥X̂∥∥∥

∞
+

∥∥∥∥∥dX̂

dt

∥∥∥∥∥
∞

,

and so the embeddingC1([τ, T],Rv)→ V1([τ, T];Rv) is continuous. ThereforeK is also relatively
compact in V1([τ, T];Rv).

Next we need to understand how a natural cubic spline is controlled by the size of its data. We
establish the following crude bounds.

Lemma B.9. Let v ∈ N. Let x0, . . . , xn ∈ Rv . Let t0, . . . , tn ∈ R be such that t0 < t1 < · · · < tn.
Let X̂ : [t0, tn]→ Rv be the natural cubic spline such that X̂(ti) = xi. Let τi = ti+1 − ti for all i.
Then there exists an absolute constant C > 0 such that∥∥∥X̂∥∥∥

∞
+
∥∥dX̂/dt

∥∥
∞+

∥∥d2X̂/dt2
∥∥
∞ < C ‖τ‖∞ ‖x‖∞ (min

i
τi)
−2(‖τ‖∞ + (min

i
τi)
−1).

Proof. Surprisingly, we could not find a reference for a fact of this type, but it follows essentially
straightforwardly from the derivation of natural cubic splines.

Without loss of generality assume v = 1, as we are using the infinity norm over the dimensions v,
and each cubic interpolation is performed separately for each dimension.

Let the i-th piece of X̂ , which is a cubic on the interval [ti, ti+1], be denoted Yi. Without loss of
generality, translate each Yi to the origin so as to simplify the algebra, so that Yi : [0, τi] → R. Let
Yi(t) = ai + bit+ cit

2 + dit
3 for some coefficients ai, bi, ci, di and i ∈ {0, . . . , n− 1}.

Letting Di = Y ′i (0) for i ∈ {0, . . . , n− 1} and Dn = Yn−1(τn−1), the displacement and derivative
conditions imposed at each knot are Yi(0) = xi, Yi(τi) = xi+1, Y ′i (0) = Di and Y ′i (τi) = Di+1.
This then implies that ai = xi, bi = Di,

ci = 3τ−2
i (xi+1 − xi)− τ−1

i (Di+1 + 2Di), (7)

di = 2τ−3
i (xi − xi+ 1) + τ−2

i (Di+1 +Di). (8)

Letting . denote ‘less than or equal up to some absolute constant’, then these equations imply that∥∥∥X̂∥∥∥
∞

= max
i
‖Yi‖∞ . max

i
(|xi|+ τi |Di|) ≤ ‖x‖∞ + ‖τ‖∞ ‖D‖∞ , (9)∥∥∥∥∥dX̂

dt

∥∥∥∥∥
∞

= max
i
‖Yi‖∞ . max

i
(τ−1
i |xi|+ |Di|) ≤ ‖x‖∞ (min

i
τi)
−1 + ‖D‖∞ , (10)∥∥∥∥∥d2X̂

dt2

∥∥∥∥∥
∞

= max
i
‖Yi‖∞ . max

i
(τ−2
i |xi|+ τ−1

i |Di|) ≤ ‖x‖∞ (min
i
τi)
−2 + ‖D‖∞ (min

i
τi)
−1.

(11)

Next, the second derivative condition at each knot is Y ′′i−1(τi−1) = Y ′′i (0) for i ∈ {1, . . . , n − 1},
and the natural condition is Y ′′0 (0) = 0 and Y ′′n−1(τn−1) = 0. With equations (7), (8) this gives

T D = k,

17

where

T =

2τ−1
0 τ−1

0

τ−1
0 2(τ−1

0 + τ−1
1) τ−1

1

τ−1
1 2(τ−1

1 + τ−1
2) τ−1

2
.

τ−1
n−2 2(τ−1

n−2 + τ−1
n−1) τ−1

n−1

τ−1
n−1 2τ−1

n−1

,

D =

D0

...
Dn

 ,

k =

3τ−2

0 (x1 − x0)
3τ−2

1 (x2 − x1) + 3τ−2
0 (x1 − x0)

...
3τ−2
n−1(xn − xn−1) + 3τ−2

n−2(xn−1 − xn−2)
3τ−2
n−1(xn − xn−1).

Let

∥∥T −1
∥∥
∞ denote the operator norm and ‖D‖∞, ‖k‖∞ denote the elementwise norm. Now T is

diagonally dominant, so the Varah bound [70] and HM-AM inequality gives∥∥T −1
∥∥
∞ ≤ (min

i
(τ−1
i + τ−1

i+1))−1 . ‖τ‖∞ .

Thus
‖D‖∞ . ‖τ‖∞ ‖k‖∞ . ‖τ‖∞ ‖x‖∞ (min

i
τi)
−2.

Together with equations (9)–(11) this gives the result.

Definition B.10 (Space of time series). Let v ∈ N. and τ, T ∈ R such that τ < T . We define the
space of time series in [τ, T] over Rv as

TS [τ,T] (Rv) = {((t0, x0), . . . , (tn, xn)) |n ∈ N, ti ∈ [τ, T], xn ∈ Rv, t0 = τ, tn = T, n ≥ 2} .

To our knowledge, there is no standard topology on time series. One option is to treat them
as sequences, however it is not clear how best to treat sequences of different lengths, or how
to incorporate timestamp information. Given that a time series is typically some collection of
observations from some underlying process, we believe the natural approach is to treat them as
subspaces of functions.

Definition B.11 (General topologies on time series). Let v ∈ N. and τ, T ∈ R such that τ < T . Let
F denote some topological space of functions. Let ι : TS [τ,T] (Rv) → F be some map. Then we
may define a topology on TS [τ,T] (Rv) as the weakest topology with respect to which ι is continuous.

Recall that we use subscripts to denote function evaulation.

Definition B.12 (Natural cubic spline topology). Let v ∈ N. and τ, T ∈ R such that τ < T .
Let F = C([τ, T];Rv) equipped with the uniform norm. For all x = ((t0, x0), . . . , (tn, xn)) ∈
TS [τ,T] (Rv), let ι̂ : TS [τ,T] (Rv) → F produce the natural cubic spline such that ι̂(x)ti = xi with
knots at t0, . . . , tn. Then this defines a topology on TS [τ,T] (Rv) as in the previous definition.

Remark B.13. In fact this defines a seminorm on TS [τ,T] (Rv), by ‖x‖ = ‖ι̂(x)‖∞. This is only a
seminorm as for example ((0, 0), (2, 2)) and ((0, 0), (1, 1), (2, 2)) have the same natural cubic spline
interpolation. This can be worked around so as to instead produce a full norm, but it is a deliberate
choice not to: we would often prefer that these time series be thought of as equal. (And if it they are
not equal, then first augmenting with observational intensity as in the main paper should distinguish
them.)

18

Theorem B.14 (Universal approximation with Neural CDEs via natural cubic splines). Let τ, T ∈ R
with τ < T and let v, u ∈ N. For any w ∈ N let

FwNN =
{
f : Rw → Rw×(v+1)

∣∣∣ f is a feedforward neural network
}
,

Lw,u = {` : Rw → Ru | ` is linear} ,
ξwNN =

{
ζ : Rv+1 → Rw

∣∣ ζ is a feedforward neural network
}
.

Let ι̂ denote the natural cubic spline interpolation as in the previous definition, and recall that
‘removing the hat’ is our notation for augmenting with time. For any w ∈ N, any f ∈ Fw and any
ζ ∈ ξwNN and any x ∈ TS [τ,T] (Rv), let zf,ζ,x : [τ, T]→ Rw be the unique solution to the CDE

zf,ζ,xt = zf,ζ,xτ +

∫ t

τ

f(zf,ζ,xs)dι(x)s for t ∈ (τ, T],

with zf,ζ,xτ = ζ(ι(x)τ).

Let K ⊆ TS [τ,T] (Rv) be such that there exists C > 0 such that

‖x‖∞ (min
i

(ti+1 − ti))−3 < C (12)

for every x = ((t0, x0), . . . , (tn, xn)) ∈ K. (With C independent of x.)

Then ⋃
w∈N

{
x 7→ `(zf,ζ,xT)

∣∣∣ f ∈ FwNN , ` ∈ Lw,u, ζ ∈ ξwNN}
is dense in C(K;Ru) with respect to the natural cubic spline topology on TS [τ,T] (Rv).

Proof. Fix x = ((t0, x0), . . . , (tn, xn)) ∈ K. Let X̂ = ι̂(x). Now ‖τ‖∞ ≤ T − τ is bounded so
by Lemma B.9 and the assumption of equation (12), there exists a constant C1 > 0 independent of
x such that ∥∥∥X̂∥∥∥

∞
+

∥∥∥∥∥dX̂

dt

∥∥∥∥∥
∞

+

∥∥∥∥∥d2X̂

dt2

∥∥∥∥∥
∞

< C1.

Thus by Lemma B.8, ι̂(K) is relatively compact in V1([τ, T];Rv).

Let K1 = ι̂(K), where the overline denotes a closure. Now by Theorem B.7, and defining Fw and
ξw as in the statement of that theorem,⋃

w∈N

{
ι̂(x) 7→ `(zf,ζ,xT)

∣∣∣ f ∈ Fw, ` ∈ Lw,u, ζ ∈ ξw}
is dense in C(K1,Ru).

For any f ∈ Fw, any ζ ∈ ξw, any fNN ∈ FwNN and any ζNN ∈ ξwNN , the terminal values zf,ζ,xT and
zfNN ,ζNN ,xT may be compared by standard estimates, for example as commonly used in the proof of
Picard’s theorem. Classical universal approximation results for neural networks [71, 72] then yield
that ⋃

w∈N

{
ι̂(x) 7→ `(zf,ζ,xT)

∣∣∣ f ∈ FwNN , ` ∈ Lw,u, ζ ∈ ξwNN}
is dense in C(K1,Ru).

By the definition of the natural cubic spline topology on TS [τ,T] (Rv), then⋃
w∈N

{
x 7→ `(zf,ζ,xT)

∣∣∣ f ∈ FwNN , ` ∈ Lw,u, ζ ∈ ξwNN}
is dense in C(K,Ru).

19

C Comparison to alternative ODE models

Suppose if instead of equation (4), we replace gθ,X(z, s) by hθ(z,Xs) for some other vector field
hθ. This might seem more natural. Instead of having gθ,X be linear in dX/ds, we take a hθ that is
potentially nonlinear in the control Xs.

Have we gained anything by doing so? It turns out no, and in fact we have lost something. The
Neural CDE setup directly subsumes anything depending directly on X .

Theorem C.1. Let τ, T ∈ R with τ < T , let v, w ∈ N with v + 1 < w. Let

F =
{
f : Rw → Rw×(v+1)

∣∣∣ f is continuous
}
,

H =
{
h : Rw−v−1 × Rv+1 → Rw−v−1

∣∣h is continuous
}
,

ξ =
{
ζ : Rv+1 → Rw

∣∣ ζ is continuous
}
,

X =
{
X̂ : [τ, T]→ Rv

∣∣∣ X̂ continuous and of bounded variation
}
.

For any X̂ ∈ X, let Xt = (X̂t, t). Let π : Rw → Rw−v−1 be the orthogonal projection onto the first
w − v − 1 coordinates.

For any f ∈ F , any ζ ∈ ξ, and any X̂ ∈ X, let zf,ζ,X : [τ, T]→ Rw be the unique solution to

zf,ζ,Xt = zf,ζ,Xτ +

∫ t

τ

f(zf,ζ,Xs)dXs for t ∈ (τ, T],

with zf,ζ,Xτ = ζ(Xτ).

Similarly for any h ∈ H , any ζ ∈ ξ, and any X̂ ∈ X, let yf,X : [τ, T] → Rw−v−1 be the unique
solution to

yh,ζ,Xt = yh,ζ,Xτ +

∫ t

τ

h(yh,ζ,Xs , Xs)ds for t ∈ (τ, T],

with yh,ζ,Xτ = π(ζ(Xτ)).

Let Y =
{
X̂ 7→ yh,ζ,X

∣∣∣h ∈ H, ζ ∈ ξ} and Z =
{
X̂ 7→ π ◦ zf,ζ,X

∣∣∣ f ∈ F, ζ ∈ ξ} .

Then Y (Z .

In the above statement, then a practical choice of f ∈ F or h ∈ H will typically correspond to some
trained neural network.

Note the inclusion of time via the augmentation X̂ 7→ X . Without it, then the reparameterisation
invariance property of CDEs [18], [23, Proposition A.7] will restrict the possible functions that
CDEs can represent. This hypothesis is not necessary for the Y 6= Z part of the conclusion.

Note also how the CDE uses a larger state space ofw, compared tow−v−1 for the alternative ODE.
The reason for this is that whilst f has no explicit nonlinear dependence onX , we may construct it to
have such a dependence implicitly, by recordingX into v+1 of itsw hidden channels, whereuponX
is hidden state and may be treated nonlinearly. This hypothesis is also not necessary to demonstrate
the Y 6= Z part of the conclusion.

This theorem is essentially an algebraic statement, and is thus not making any analytic claims, for
example on universal approximation.

Proof.

That Y 6= Z: Let zf,ζ,· ∈ Z for ζ ∈ ξ arbitrary and f ∈ F constant and such that

20

1 0 0 · · · 0

0 0 0 · · · 0

...
...

...
...

0 0 0 · · · 0

 wf(z) =

v + 1

Then for any X̂ ∈ X, the corresponding CDE solution in Z is

zf,ζ,Xt = zf,ζ,Xτ +

∫ t

τ

f(zf,ζ,Xs)dXs,

and so the first component of its solution is

zf,ζ,X,1t = X1
t −X1

τ + ζ1(Xτ),

whilst the other components are constant

zf,ζ,X,it = ζi(Xτ)

for i ∈ {2, . . . , w}, where superscripts refer to components throughout.

Now suppose for contradiction that there exists yh,ζ,· ∈ Y for some Ξ ∈ ξ and h ∈ H such that
yh,Ξ,X = π ◦ zf,ζ,X for all X̂ ∈ X. Now yh,Ξ,X must satisfy

yh,Ξ,Xt = yh,Ξ,Xτ +

∫ t

τ

h(yh,Ξ,Xs , Xs)ds,

and so

(X1
t−X1

τ+ζ1(Xτ), 0, . . . , 0) = π(Ξ(Xτ))+

∫ t

τ

h((X1
s−X1

τ+ζ1(Xτ), ζ2(Xτ), . . . , ζw(Xτ)), Xs)ds.

Consider those X which are differentiable. Differentiating with respect to t now gives

dX1

dt
(t) = h1((X1

s −X1
τ + ζ1(Xτ), ζ2(Xτ), . . . , ζw(Xτ)), Xt). (13)

That is, h1 satisfies equation (13) for all differentiable X . This is clearly impossible: the right hand
side is a function of t, Xt and Xτ only, which is insufficient to determine dX1

/dt(t).

That Y ⊆ Z: Let yh,Ξ,X ∈ Y for some Ξ ∈ ξ and h ∈ H . Let σ : Rw → Rv+1 be the orthogonal
projection onto the last v+1 coordinates. Let ζ ∈ ξ be such that π ◦ζ = π ◦Ξ and σ(ζ(Xτ)) = Xτ .
Then let f ∈ F be defined by

0 0 · · · 0 h1(π(z), σ(z))

...
...

...
...

0 0 · · · 0 hw−v−1(π(z), σ(z))

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...
0 0 · · · 1 0

0 0 · · · 0 1

w − v − 1

v + 1

f(z) =

v 1

21

Then for t ∈ (τ, T],

zf,ζ,Xt = ζ(Xτ) +

∫ t

τ

f(zf,ζ,Xs)dXs

= ζ(Xτ) +

∫ t

τ

0 0 · · · 0 h1(π(zf,ζ,Xs), σ(zf,ζ,Xs))
...

...
...

...
0 0 · · · 0 hw−v−1(π(zf,ζ,Xs), σ(zf,ζ,Xs))
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

dX̂1

s
...

dX̂v
s

ds

= ζ(Xτ) +

∫ t

τ

h1(π(zf,ζ,Xs), σ(zf,ζ,Xs))ds
...

hw−v−1(π(zf,ζ,Xs), σ(zf,ζ,Xs))ds

dX̂1
s

...
dX̂v

s
ds

= ζ(Xτ) +

∫ t

τ

[
h(π(zf,ζ,Xs), σ(zf,ζ,Xs))ds

dXs

]
.

Thus in particular

σ(zf,ζ,Xt) = σ(ζ(Xτ)) +

∫ t

τ

dXs = σ(ζ(Xτ))−Xτ +Xt = Xt.

Thus

π(zf,ζ,Xt) = π(ζ(Xτ)) +

∫ t

τ

h(π(zf,ζ,Xs), σ(zf,ζ,Xs))ds = π(Ξ(Xτ)) +

∫ t

τ

h(π(zf,ζ,Xs), Xs)ds.

Thus we see that π(zf,ζ,X) satisfies the same differential equation as yh,Ξ,X . So by uniqueness of
solution [20, Theorem 1.3], yh,Ξ,X = π(zf,ζ,X) ∈ Z .

D Experimental details

D.1 General notes

Code Code to reproduce every experiment can be found at https://github.com/
patrick-kidger/NeuralCDE.

Normalisation Every dataset was normalised so that each channel has mean zero and variance
one.

Loss Every binary classification problem used binary cross-entropy loss applied to the sigmoid of
the output of the model. Every multiclass classification problem used cross-entropy loss applied to
the softmax of the output of the model.

Architectures For both the Neural CDE and ODE-RNN, the integrand fθ was taken to be a
feedforward neural network. A final linear layer was always used to map from the terminal hidden
state to the output.

Activation functions For the Neural CDE model we used ReLU activation functions. Following
the recommendations of [13], we used tanh activation functions for the ODE-RNN model, who
remark that for the ODE-RNN model, tanh activations seem to make the model easier for the ODE

22

https://github.com/patrick-kidger/NeuralCDE
https://github.com/patrick-kidger/NeuralCDE

solver to resolve. Interestingly we did not observe this behaviour when trying tanh activations and
method=‘dopri5’ with the Neural CDE model, hence our choice of ReLU.

Optimiser Every problem used the Adam [73] optimiser as implemented by PyTorch 1.3.1 [74].
Learning rate and batch size varied between experiments, see below. The learning rate was reduced
if metrics failed to improve for a certain number of epochs, and training was terminated if metrics
failed to improve for a certain (larger) number of epochs. The details of this varied by experiment,
see the individual sections. Once training was finished, then the parameters were rolled back to the
parameters which produced the best validation accuracy throughout the whole training procedure.
The learning rate for the final linear layer (mapping from the hidden state of a model to the output)
was typically taken to be much larger than the learning rate used elsewhere in the model; this is a
standard trick that we found improved performance for all models.

Hyperparameter selection In brief, hyperparameters were selected to optimise the ODE-RNN
baseline, and equivalent hyperparameters used for the other models.

In more detail:

We began by selecting the learning rate. This was selected by starting at 0.001 and reducing it until
good performance was achieved for a small ODE-RNN model with batch size 32.

After this, we increased the batch size until the selected model trained at what was in our judgement
a reasonable speed. As is standard practice, we increased the learning rate proportionate to the
increase in batch size.

Subsequently we selected model hyperparameters (number of hidden channels, width and depth of
the vector field network) via a grid search to optimise the ODE-RNN baseline. A single run of
each hyperparameter choice was performed. The equivalent hyperparameters were then used on the
GRU-∆t, GRU-D, GRU-ODE baselines, and also our Neural CDE models, after being adjusted to
produce roughly the same number of parameters for each model.

The grids searched over and the resulting hyperparameters are stated in the individual sections below.

Weight regularisation L2 weight regularisation was applied to every parameter of the ODE-
RNN, GRU-∆t and GRU-D models, and to every parameter of the vector fields for the Neural CDE
and GRU-ODE models.

ODE Solvers The ODE components of the ODE-RNN, GRU-ODE, and Neural CDE models were
all computed using the fourth-order Runge-Kutta with 3/8 rule solver, as implemented by passing
method=‘rk4’ to the odeint adjoint function of the torchdiffeq [24] package. The step size
was taken to equal the minimum time difference between any two adjacent observations.

Adjoint backpropagation The GRU-ODE, Neural CDE and the ODE component of the
ODE-RNN are all trained via the adjoint backpropagation method [15], as implemented by
odeint adjoint function of the torchdiffeq package.

Computing infrastructure All experiments were run on one of two computers; both used Ubuntu
18.04.4 LTS, were running PyTorch 1.3.1, and used version 0.0.1 of the torchdiffeq [24] package.
One computer was equipped with a Xeon E5-2960 v4, two GeForce RTX 2080 Ti, and two Quadro
GP100, whilst the other was equipped with a Xeon Silver 4104 and three GeForce RTX 2080 Ti.

D.2 CharacterTrajectories

The learning rate used was 0.001 and the batch size used was 32. If the validation loss stagnated
for 10 epochs then the learning rate was divided by 10 and training resumed. If the training loss or
training accuracy stagnated for 50 epochs then training was terminated. The maximum number of
epochs allowed was 1000.

We combined the train/test split of the original dataset (which are of unusual proportion, being
50%/50%), and then took a 70%/15%/15% train/validation/test split.

The initial condition ζθ of the Neural CDE model was taken to be a learnt linear map from the
first observation to the hidden state vector. (Recall that is an important part of the model, to avoid
translation invariance.)

23

The hyperparameters were optimised (for just the ODE-RNN baseline as previously described) by
performing most of a grid search over 16 or 32 hidden channels, 32, 48, 64, 128 hidden layer size,
and 1, 2, 3 hidden layers. (The latter two hyperparameters corresponding to the vector fields of the
ODE-RNN and Neural CDE models.) A few option combinations were not tested due to the poor
performance of similar combinations. (For example every combination with hidden layer size of
128 demonstrated relatively poor performance.) The search was done on just the 30% missing data
case, and the same hyperparameters were used for the 50% and 70% missing data cases.

The hyperparameters selected were 32 hidden channels for the Neural CDE and ODE-RNN models,
and 47 hidden channels for the GRU-∆t, GRU-D and GRU-ODE models. The Neural CDE and
ODE-RNN models both used a feedforward network for their vector fields, with 3 hidden layers
each of width 32. The resulting parameter counts for each model were 8212 for the Neural CDE,
8436 for the ODE-RNN, 8386 for the GRU-D, 8292 for the GRU-∆t, and 8372 for the GRU-ODE.

D.3 PhysioNet sepsis prediction

The batch size used was 1024 and learning rate used was 0.0032, arrived at as previously described.
If the training loss stagnated for 10 epochs then the learning rate was divided by 10 and training
resumed. If the training loss or validation accuracy stagnated for 100 epochs then training was
terminated. The maximum number of epochs allowed was 200. The learning rate for the final
linear layer (a component of every model, mapping from the final hidden state to the output) used a
learning rate that 100 times larger, so 0.32.

The original dataset does not come with an existing split, so we took our own 70%/15%/15%
train/validation/test split.

As this problem featured static (not time-varying) features, we incorporated this information by
allowing the initial condition of every model to depend on these. This was taken to be a single
hidden layer feedforward network with ReLU activation functions and of width 256, which we did
not attempt a hyperparameter search over.

As this dataset is partially observed, then for the ODE-RNN, GRU-∆t, GRU-D models, which
require something to be passed at each time step, even if a value is missing, then we fill in
missing values with natural cubic splines, for ease of comparison with the Neural CDE and ODE-
RNN models. (We do not describe this as imputation as for the observational intensity case the
observational mask is additionally passed to these models.) In particular this differs slightly from
the usual implementation of GRU-D, which usually use a weighted average of the last observation
and the mean. Splines accomplishes much the same thing, and help keep things consistent between
the various models.

The hyperparameters were optimised (for just the ODE-RNN baseline as previously described) by
performing most of a grid search over 64, 128, 256 hidden channels, 64, 128, 256 hidden layer size,
and 1, 2, 3, 4 hidden layers. (The latter two hyperparameters corresponding to the vector fields of
the ODE-RNN and Neural CDE models.)

The hyperparameters selected for the ODE-RNN model were 128 hidden channels, and a vector
field given by a feedforward neural network with hidden layer size 128 and 4 hidden layers. In order
to keep the number of parameters the same between each model, this was reduced to 49 hidden
channels and hidden layer size 49 for the Neural CDE model, and increased to 187 hidden channels
for the GRU-∆t, GRU-D and GRU-ODE models. When using observational intensity, the resulting
parameter counts were 193541 for the Neural CDE, 194049 for the ODE-RNN, 195407 for the GRU-
D, 195033 for the GRU-∆t, and 194541 for the GRU-ODE. When not using observational intensity,
the resulting parameter counts were 109729 for the Neural CDE, 180097 for the ODE-RNN, 175260
for the GRU-D, 174886 for the GRU-∆t, and 174921 for the GRU-ODE. Note the dramatically
reduced parameter count for the Neural CDE; this is because removing observational intensity
reduces the number of channels, which affects the parameter count dramatically as discussed in
Section 6.3.

D.4 Speech Commands

The batch size used was 1024 and the learning rate used was 0.0016, arrived at as previously
described. If the training loss stagnated for 10 epochs then the learning rate was divided by 10 and

24

training resumed. If the training loss or validation accuracy stagnated for 100 epochs then training
was terminated. The maximum number of epochs allowed was 200. The learning rate for the final
linear layer (a component of every model, mapping from the final hidden state to the output) used a
learning rate that 100 times larger, so 0.16.

Each time series from the dataset is univariate and of length 16000. We computed 20 Mel-
frequency cepstral coefficients of the input as implemented by torchaudio.transforms.MFCC,
with logarithmic scaling applied to the coefficients. The window for the short-time Fourier transform
component was a Hann window of length 200, with hop length of 100, with 200 frequency bins.
This was passed through 128 mel filterbanks and 20 mel coefficients extracted. This produced a
time series of length 161 with 20 channels. We took a 70%/15%/15% train/validation/test split.

The hyperparameters were optimised (for just the ODE-RNN baseline as previously described) by
performing most of a grid search over 32, 64, 128 hidden channels, 32, 64, 128 hidden layer size,
and 1, 2, 3, 4 hidden layers. (The latter two hyperparameters corresponding to the vector fields of
the ODE-RNN and Neural CDE models.)

The hyperparameters selected for the ODE-RNN model were 128 hidden channels, and a vector
field given by a feedforward neural network with hidden layer size 64 and 4 hidden layers. In order
to keep the number of parameters the same between each model, this was reduced to 90 hidden
channels and hidden layer size 40 for the Neural CDE model, and increased to 160 hidden channels
for the GRU-∆t, GRU-D and GRU-ODE models. The resulting parameter counts were 88940 for
the Neural CDE model, 87946 for the ODE-RNN model, 89290 for the GRU-D model, 88970 for
the GRU-dt model, and 89180 for the GRU-ODE model.

25

