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Abstract

Combinatorial optimization (CO) problems are notoriously challenging for neural
networks, especially in the absence of labeled instances. This work proposes an
unsupervised learning framework for CO problems on graphs that can provide
integral solutions of certified quality. Inspired by Erdős’ probabilistic method, we
use a neural network to parametrize a probability distribution over sets. Crucially,
we show that when the network is optimized w.r.t. a suitably chosen loss, the learned
distribution contains, with controlled probability, a low-cost integral solution that
obeys the constraints of the combinatorial problem. The probabilistic proof of
existence is then derandomized to decode the desired solutions. We demonstrate the
efficacy of this approach to obtain valid solutions to the maximum clique problem
and to perform local graph clustering. Our method achieves competitive results on
both real datasets and synthetic hard instances.

1 Introduction

Combinatorial optimization (CO) includes a wide range of computationally hard problems that are
omnipresent in scientific and engineering fields. Among the viable strategies to solve such problems
are neural networks, which were proposed as a potential solution by Hopfield and Tank [30]. Neural
approaches aspire to circumvent the worst-case complexity of NP-hard problems by only focusing on
instances that appear in the data distribution.

Since Hopfield and Tank, the advent of deep learning has brought new powerful learning models,
reviving interest in neural approaches for combinatorial optimization. A prominent example is that of
graph neural networks (GNNs) [28, 60], whose success has motivated researchers to work on CO
problems that involve graphs [35, 87, 39, 27, 43, 53, 7, 56] or that can otherwise benefit from utilizing
a graph structure in the problem formulation [69] or the solution strategy [27]. The expressive
power of graph neural networks has been the subject of extensive research [82, 47, 17, 59, 58, 8, 26].
Encouragingly, GNNs can be Turing universal in the limit [46], which motivates their use as general-
purpose solvers.

Yet, despite recent progress, CO problems still pose a significant challenge to neural networks.
Successful models often rely on supervision, either in the form of labeled instances [45, 62, 35]
or of expert demonstrations [27]. This success comes with drawbacks: obtaining labels for hard
problem instances can be computationally infeasible [86], and direct supervision can lead to poor
generalization [36]. Reinforcement learning (RL) approaches have also been used for both classical
CO problems [16, 87, 85, 41, 20, 38, 7] as well as for games with large discrete action spaces, like
Starcraft [75] and Go [64]. However, not being fully-differentiable, they tend to be harder and more
time consuming to train.
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Figure 1: Illustration of the “Erdős goes neural” pipeline. First, a differentiable loss is derived for
a given problem using the probabilistic method. Next, a GNN is trained in an unsupervised way
using the derived loss to output a probability distribution over the nodes, essentially providing a
probabilistic certificate for the existence of a low cost feasible solution. At inference time, a discrete
solution satisfying the certificate is obtained in a sequential and deterministic manner by the method
of conditional expectation.

An alternative to these strategies is unsupervised learning, where the goal is to model the problem
with a differentiable loss function whose minima represent the discrete solution to the combinatorial
problem [65, 10, 2, 3, 69, 85]. Unsupervised learning is expected to aid in generalization, as it
allows the use of large unlabeled datasets, and it is often envisioned to be the long term goal of
artificial intelligence. However, in the absence of labels, deep learning faces practical and conceptual
obstacles. Continuous relaxations of objective functions from discrete problems are often faced
with degenerate solutions or may simply be harder to optimize. Thus, successful training hinges on
empirically-identified correction terms and auxiliary losses [10, 3, 71]. Furthermore, it is especially
challenging to decode valid (with respect to constraints) discrete solutions from the soft assignments
of a neural network [45, 69], especially in the absence of complete labeled solutions [62].

Our framework aims to overcome some of the aforementioned obstacles of unsupervised learning: it
provides a principled way to construct a differentiable loss function whose minima are guaranteed to
be low-cost valid solutions of the problem. Our approach is inspired by Erdős’ probabilistic method
and entails two steps: First, we train a GNN to produce a distribution over subsets of nodes of an
input graph by minimizing a probabilistic penalty loss function. Successfully optimizing our loss is
guaranteed to yield good integral solutions that obey the problem constraints. After the network has
been trained, we employ a well-known technique from randomized algorithms to sequentially and
deterministically decode a valid solution from the learned distribution. The procedure is schematically
illustrated in Figure 1.

We demonstrate the utility of our method in two NP-hard graph-theoretic problems: the maximum
clique problem [12] and a constrained min-cut problem [15, 66] that can perform local graph
clustering [4, 77]. In both cases, our method achieves competitive results against neural baselines,
discrete algorithms, and mathematical programming solvers. Our method outperforms the CBC solver
(provided with Google’s OR-Tools), while also remaining competitive with the SotA commercial
solver Gurobi 9.0 [29] on larger instances. Finally, our method outperforms both neural baselines and
well-known local graph clustering algorithms in its ability to find sets of good conductance, while
maintaining computational efficiency. 1

2 Related work and background

2.1 Neural networks for combinatorial optimization

Most neural approaches to CO are supervised. One of the first modern neural networks were the
Pointer Networks [74], which utilized a sequence-to-sequence model for the travelling salesman
problem (TSP). Since then, numerous works have combined GNNs with various heuristics and search
procedures to solve classical CO problems, such as quadratic assignment [53], graph matching [6],
graph coloring [43], TSP [45, 35], and even sudoku puzzles [54]. Another fruitful direction has been
the fusion with solvers. For example, Neurocore [61] incorporates an MLP to a SAT solver to enhance
variable branching decisions, whereas Gasse et al. [27] learn branching approximations by a GNN

1Code available at: https://github.com/Stalence/erdos_neu
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and imitation learning. Further, Wang et al. [78] include an approximate SDP satisfiability solver
as a neural network layer and Vlastelica et al. [76] incorporate exact solvers within a differentiable
architecture by smoothly interpolating the solver’s piece-wise constant output. Unfortunately, the
success of supervised approaches hinges on building large training sets with already solved hard
instances, resulting in a chicken and egg situation. Moreover, since it is hard to efficiently sample
unbiased and representative labeled instances of an NP-hard problem [86], labeled instance generation
is likely not a viable long-term strategy either.

Training neural networks without labels is generally considered to be more challenging. One possibil-
ity is to use RL: Khalil et al. [38] combine Q-Learning with a greedy algorithm and structure2vec
embeddings to solve max-cut, minimum vertex cover, and TSP. Q-Learning is also used in [7] for
the maximum common subgraph problem. On the subject of TSP, the problem was also solved with
policy gradient learning combined with attention [41, 20, 9]. Attention is ubiquitous in problems
that deal with sequential data, which is why it has been widely used with RL for the problem of
vehicle routing [25, 51, 55, 33]. Another interesting application of RL is the work of Yolcu and
Poczos [87], where the REINFORCE algorithm is employed in order to learn local search heuristics
for the SAT problem. This is combined with curriculum learning to improve stability during training.
Finally, Chen and Tian [16] use actor-critic learning to iteratively improve complete solutions to
combinatorial problems. Though a promising research direction, deep RL methods are far from ideal,
as they can be sample inefficient and notoriously unstable to train—possibly due to poor gradient
estimates, dependence on initial conditions, correlations present in the sequence of observations, bad
rewards, sub-optimal hyperparameters, or poor exploration [68, 52, 31, 48].

The works that are more similar to ours are those that aim to train neural networks in a differentiable
and end-to-end manner: Toenshoff et al. [69] model CO problems in terms of a constraint language
and utilize a recurrent GNN, where all variables that coexist in a constraint can exchange messages.
Their model is completely unsupervised and is suitable for problems that can be modeled as maximum
constraint satisfaction problems. For other types of problems, like independent set, the model relies
on empirically selected loss functions to solve the task. Amizadeh et al. [2, 3] train a GNN in an
unsupervised manner to solve the circuit-SAT and SAT problems by minimizing an appropriate
energy function. Finally, Yao et al. [85] train a GNN for the max-cut problem on regular graphs
without supervision by optimizing a smooth relaxation of the cut objective and policy gradient.

Our approach innovates from previous works in the following ways: it enables training a neural
network in an unsupervised, differentiable, and end-to-end manner, while also ensuring that identified
solutions will be integral and will satisfy problem constraints. Crucially, this is achieved in a simple
and mathematically-principled way, without resorting to continuous relaxations, regularization, or
heuristic corrections of improper solutions. In addition, our approach does not necessitate polynomial-
time reductions, but solves each problem directly.

2.2 Background: the probabilistic method

The probabilistic method is a nonconstructive proof method pioneered by Paul Erdős. It is used to
demonstrate the existence of objects with desired combinatorial properties [1], [22], [67] but has also
served as the foundation for important algorithms in the fields of computer science and combinatorial
optimization [49] [57].

Let us consider the common didactic example of the maximum cut problem on a simple undirected
graph. The goal is to bipartition the nodes of the graph in such a way that the number of edges with
endpoints in both partitions (i.e., the cardinality of the cut-set) is maximized. For simplicity we will
refer to the cardinality of the cut-set as the cut. Suppose we decide the bipartition based on a fair
coin flip, i.e., we split the nodes of the graph by assigning them to a heads or a tails set. An edge
belongs to the cut-set when its endpoints belong to different sets. This happens with probability
1/2, which implies that the expected cut will be equal to half of the edges of the graph. Thus, by
Markov’s inequality and given that the cut is non-negative, it follows that there exists a bipartitioning
that contains at least half of the edges of the graph.

To obtain such a solution deterministically, we will utilize the method of conditional expectation [57]:
we sequentially visit every node vi in the graph and we compute the expected cut conditioned on
vi belonging to the heads or tails set (together with all the decisions made until the i-th step) and
add vi to the set (heads or tails) that yields smaller conditional expected cut. Since the (conditional)
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expectation can only improve at every step, the sets recovered are guaranteed to cut at least half the
edges of the graph, as proved earlier.

Our goal is to re-purpose this classic approach to tackle combinatorial optimization problems with
deep learning. In this work, instead of using a naive probability assignment like in the maxcut
example, the probability distribution is learned by a GNN which allows us to obtain higher quality
solutions. Additionally, we show how this argument may be extended to incorporate constraints
within the learning paradigm.

3 The Erdős probabilistic method for deep learning

We focus on combinatorial problems on weighted graphs G = (V,E,w) that are modelled as
constrained optimization problems admitting solutions that are node sets:

min
S⊆V

f(S;G) subject to S ∈ Ω. (1)

Above, Ω is a family of sets having a desired property, such as forming a clique or covering all
nodes. This yields a quite general formulation that can encompass numerous classical graph-theoretic
problems, such as the maximum clique and minimum vertex cover problems.

3.1 The “Erdős Goes Neural” pipeline

Rather than attempting to optimize the non-differentiable problem (1) directly, we propose to train a
GNN to identify distributions of solutions with provably advantageous properties. Our approach is
inspired by Erdős’ probabilistic method, a well known technique in the field of combinatorics that is
used to prove the existence of an object with a desired combinatorial property.

As visualized in Figure 1, our method consists of three steps:
1. Construct a GNN gθ that outputs a distribution D = gθ(G) over sets.
2. Train gθ to optimize the probability that there exists a valid S∗ ∼ D of small cost f(S∗;G).
3. Deterministically recover S∗ from D by the method of conditional expectation.

There are several possibilities in instantiatingD. We opt for the simplest and suppose that the decision
of whether vi ∈ S is determined by a Bernoulli random variable xi of probability pi. The network
can trivially parametrize D by computing pi for every node vi. Keeping the distribution simple will
aid us later on to tractably control relevant probability estimates.

Next, we discuss how gθ can be trained (Section 3.2) and how to recover S∗ from D (Section 3.3).

3.2 Deriving a probabilistic loss function

The main challenge of our method lies in determining how to tractably and differentiably train gθ.
Recall that our goal is to identify a distribution that contains low-cost and valid solutions.

3.2.1 The probabilistic loss

Aiming to build intuition, let us first consider the unconstrained case. To train the network, we
construct a loss function `(D;G) that abides to the following property:

P (f(S;G) < `(D;G)) > t with D = gθ(G). (2)
Any number of tail inequalities can be used to instantiate such a loss, depending on the structure of f .
If we only assume that f is non-negative, Markov’s inequality yields

`(D;G) ,
E [f(S;G)]

1− t
for any t ∈ [0, 1).

If the expectation cannot be computed in closed-form, then any upper bound also suffices.

The main benefit of approaching the problem in this manner is that the surrogate (and possibly
differentiable) loss function `(D;G) can act as a certificate for the existence of a good set in the
support of D. To illustrate this, suppose that one has trained gθ until the loss is sufficiently small, say
`(D;G) = ε. Then, by the probabilistic method, there exists with strictly positive probability a set
S∗ in the support of D whose cost f(S∗;G) is at most ε.
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3.2.2 The probabilistic penalty loss

To incorporate constraints, we take inspiration from penalty methods in constrained optimization and
add a term to the loss function that penalizes deviations from the constraint.

Specifically, we define the probabilistic penalty function fp(S;G) , f(S;G) + 1S/∈Ω β, where β is
a scalar. The expectation of fp yields the probabilistic penalty loss:

`(D, G) , E [f(S;G)] + P (S /∈ Ω)β. (3)

We prove the following:

Theorem 1. Fix any β > maxS f(S;G) and let `(D, G) = ε < β. With probability at least t, set
S∗ ∼ D satisfies

f(S∗;G) < `(D;G)/(1− t) and S∗ ∈ Ω,

under the condition that f is non-negative.

Hence, similar to the unconstrained case, the penalized loss acts as a certificate for the existence of a
low-cost set, but now the set is also guaranteed to abide to the constrains Ω. The main requirement for
incorporating constraints is to be able to differentiably compute an upper estimate of the probability
P (S /∈ Ω). A worked out example of how P (S /∈ Ω) can be controlled is provided in Section 4.1.

3.2.3 The special case of linear box constraints

An alternative construction can be utilized when problem (1) takes the following form:

min
S⊆V

f(S;G) subject to
∑
vi∈S

ai ∈ [bl, bh], (4)

with ai, bl, and bh being non-negative scalars.

We tackle such instances with a two-step approach. Denote by D0 the distribution of sets predicted
by the neural network and let p0

1, . . . , p
0
n be the probabilities that parametrize it. We rescale these

probabilities such that the constraint is satisfied in expectation:∑
vi∈V

aipi =
bl + bh

2
, where pi = clamp

(
c p0

i , 0, 1
)

and c ∈ R.

Though non-linear, the aforementioned feasible re-scaling can be carried out by a simple iterative
scheme (detailed in Section D.2). If we then proceed as in Section 3.2.1 by utilizing a probabilistic
loss function that guarantees the existence of a good unconstrained solution, we have:

Theorem 2. Let D be the distribution obtained after successful re-scaling of the probabilities.
For any (unconstrained) probabilistic loss function that abides to P (f(S;G) < `(D;G)) > t,
set S∗ ∼ D satisfies f(S∗;G) < `(D;G) and

∑
vi∈S∗ ai ∈ [bl, bh], with probability at least

t− 2 exp
(
−(bh − bl)2/

∑
i 2a2

i

)
.

Section 4.2 presents a worked-out example of how Theorem 2 can be applied.

3.3 Retrieving integral solutions

A simple way to retrieve a low cost integral solution S∗ from the learned distribution D is by monte-
carlo sampling. Then, if S∗ ∼ D with probability t, the set can be found within the first k samples
with probability at least 1− (1− t)k. However, our goal is to deterministically obtain S∗ so we will
utilize the method of conditional expectation that was introduced in Section 2.2.

Let us first consider the unconstrained case. Given D, the goal is to identify a set S∗ that
satisfies f(S∗;G) ≤ E [f(S;G)]. To achieve this, one starts by sorting v1, . . . , vn in or-
der of decreasing probabilities pi. Let Sreject = ∅ be the set of nodes not accepted in
the solution. Set S∗ = ∅ is then iteratively updated one node at a time, with vi be-
ing included to S∗ in the i-th step if E [f(S;G) | S∗ ⊂ S, S ∩ Sreject = ∅, and vi ∈ S] <
E [f(S;G) | S∗ ⊂ S, S ∩ Sreject = ∅, and vi /∈ S]. This sequential decoding works because the
conditional expectation never increases.
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In the case of the probabilistic penalty loss, the same procedure is applied w.r.t. the expectation of
fp(S;G). The latter ensures that the decoded set will match the claims of Theorem 1. For the method
of Section 3.2.3, a sequential decoding can guarantee either that the cost of f(S∗;G) is small or that
the constraint is satisfied.

4 Case studies

This section demonstrates how our method can be applied to two well known NP-hard problems: the
maximum clique [12] and the constrained minimum cut [15] problems.

4.1 The maximum clique problem

A clique is a set of nodes such that every two distinct nodes are adjacent. The maximum clique
problem entails identifying the clique of a given graph with the largest possible number of nodes:

min
S⊆V
−w(S) subject to S ∈ Ωclique, (5)

with Ωclique being the family of cliques of graph G and w(S) =
∑
vi,vj∈S wij being the weight of S.

Optimizing w(S) is a generalization of the standard cardinality formulation to weighted graphs. For
simple graphs, both weight and cardinality formulations yield the same minimum.

We can directly apply the ideas of Section 3.2.2 to derive a probabilistic penalty loss:

Corollary 1. Fix positive constants γ and β satisfying maxS w(S) ≤ γ ≤ β and let wij ≤ 1. If

`clique(D, G) , γ − (β + 1)
∑

(vi,vj)∈E

wijpipj +
β

2

∑
vi 6=vj

pipj ≤ ε

then, with probability at least t, set S∗ ∼ D is a clique of weight w(S∗) > γ − ε/(1− t).

The loss function `clique can be evaluated in linear time w.r.t. the number of edges of G by rewriting
the rightmost term as

∑
vi 6=vj pipj = (

∑
vi∈V pi)

2 −
∑

(vi,vj)∈E 2pipj .

A remark. One may be tempted to fix β → ∞, such that the loss does not feature any hyper-
parameters. However, with mini-batch gradient descent it can be beneficial to tune the contribution of
the two terms in the loss to improve the optimization. This was also confirmed in our experiments,
where we selected the relative weighting according to a validation set.

Decoding cliques. After the network is trained, valid solutions can be decoded sequentially based
on the procedure of Section 3.3. The computation can also be sped up by replacing conditional
expectation evaluations (one for each node) by a suitable upper bound. Since the clique property is
maintained at every point, we can also efficiently decode cliques by sweeping nodes (in the order of
larger to smaller probability) and only adding them to the set when the clique constraint is satisfied.

4.2 Graph partitioning

The simplest partitioning problem is the minimum cut: find set S ⊂ V such that cut(S) =∑
vi∈S, vj /∈S wij is minimized. Harder variants of partitioning aim to provide control on partition

balance, as well as cut weight. We consider the following constrained min-cut problem:

min
S

cut(S) subject to vol(S) ∈ [vl, vh],

where the volume vol(S) =
∑
vi∈S di of a set is the sum of the degrees of its nodes.

The above can be shown to be NP-hard [32] and exhibits strong connections with other classical
formulations: it is a volume-balanced graph partitioning problem [5] and can be used to minimize
graph conductance [18] by scanning through solutions in different volume intervals and selecting the
one whose cut-over-volume ratio is the smallest (this is how we test it in Section 5).

We employ the method described in Section 3.2.3 to derive a probabilistic loss function:
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Corollary 2. Let the probabilities p1, . . . , pn giving rise to D be re-scaled such that
∑
vi∈V dipi =

vl+vh
2 and, further, fix `cut(D;G) ,

∑
vi∈V dipi − 2

∑
(vi,vj)∈E pipjwij . Set S∗ ∼ D satisfies

cut(S∗) < `cut(D;G)/(1− t) and vol(S∗) ∈ [vl, vh],

with probability at least t− 2 exp
(
−(vh − vl)2/

∑
i 2d2

i

)
.

The derived loss function `cut can be computed efficiently on a sparse graph, as its computational
complexity is linear on the number of edges.

Decoding clusters. Retrieving a set that respects Corollary 2 can be done by sampling. Alterna-
tively, the method described in Section 3.3 can guarantee that the identified cut is at most as small as
the one certified by the probabilistic loss. In the latter case, the linear box constraint can be practically
enforced by terminating before the volume constraint gets violated.

5 Empirical evaluation

We evaluate our approach in its ability to find large cliques and partitions of good conductance.

5.1 Methods

We refer to our network as Erdős’ GNN, paying tribute to the pioneer of the probabilistic method
that it is inspired from. Its architecture comprises of multiple layers of the Graph Isomorphism
Network (GIN) [81] and a Graph Attention (GAT) [73] layer. Furthermore, each convolution layer
was equipped with skip connections, batch normalization and graph size normalization [21]. In
addition to a graph, we gave our network access to a one-hot encoding of a randomly selected node,
which encourages locality of solutions, allows for a trade-off between performance and efficiency
(by rerunning the network with different samples), and helps the network break symmetries [63].
Our network was trained with mini-batch gradient descent, using the Adam optimizer [40] and was
implemented on top of the pytorch geometric API [23].

Maximum clique. We compared against three neural networks, three discrete algorithms, and two
integer-programming solvers: The neural approaches comprised of RUN-CSP, Bomze GNN, and MS
GNN. The former is a SotA unsupervised network incorporating a reduction to independent set and
a post-processing of invalid solutions with a greedy heuristic. The latter two, though identical in
construction to Erdős’ GNN, were trained based on standard smooth relaxations of the maximum
clique problem with a flat 0.5-threshold discretization [50, 11]. Since all these methods can produce
multiple outputs for the same graph (by rerunning them with different random node attributes), we fix
two time budgets for RUN-CSP and Erdős’ GNN, that we refer to as “fast" and “accurate" and rerun
them until the budget is met (excluding reduction costs). On the other hand, the Bomze and MS GNNs
are rerun 25 times, since further repetitions did not yield relevant improvements. We considered
the following algorithms: the standard Greedy MIS Heur. which greedily constructs a maximal
independent set on the complement graph, NX MIS approx. [13], and Toenshoff-Greedy [69]. Finally,
we formulated the maximum clique in integer form [12] and solved it with CBC [34] and Gurobi
9.0 [29], an open-source solver provided with Google’s OR-Tools package and a SotA commercial
solver. We should stress that our evaluation does not intend to establish SotA results (which would
require a more exhaustive comparison), but aims to comparatively study the weaknesses and strengths
of key unsupervised approaches.

Local partitioning. We compared against two neural networks and four discrete algorithms. To the
extent of our knowledge, no neural approach for constrained partitioning exists in the literature. Akin
to maximum clique, we built the L1 GNN and L2 GNN to be identical to Erdős’ GNN and trained
them based on standard smooth `1 and `2 relaxations of the cut combined with a volume penalty. On
the other hand, a number of algorithms are known for finding small-volume sets of good conductance.
We compare to well-known and advanced algorithms [24]: Pagerank-Nibble [4], Capacity Releasing
Diffusion (CRD) [77], Max-flow Quotient-cut Improvement (MQI) [42] and Simple-Local [72].

5.2 Data

Experiments for the maximum clique were conducted in the IMDB, COLLAB [37, 84] and TWITTER
[44] datasets, listed in terms of increasing graph size. Further experiments were done on graphs
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IMDB COLLAB TWITTER

Erdős’ GNN (fast) 1.000 (0.08 s/g) 0.982 ± 0.063 (0.10 s/g) 0.924 ± 0.133 (0.17 s/g)
Erdős’ GNN (accurate) 1.000 (0.10 s/g) 0.990 ± 0.042 (0.15 s/g) 0.942 ± 0.111 (0.42 s/g)
RUN-CSP (fast) 0.823 ± 0.191 (0.11 s/g) 0.912 ± 0.188 (0.14 s/g) 0.909 ± 0.145 (0.21 s/g)
RUN-CSP (accurate) 0.957 ± 0.089 (0.12 s/g) 0.987 ± 0.074 (0.19 s/g) 0.987 ± 0.063 (0.39 s/g)
Bomze GNN 0.996 ± 0.016 (0.02 s/g) 0.984 ± 0.053 (0.03 s/g) 0.785 ± 0.163 (0.07 s/g)
MS GNN 0.995 ± 0.068 (0.03 s/g) 0.938 ± 0.171 (0.03 s/g) 0.805 ± 0.108 (0.07 s/g)

NX MIS approx. 0.950 ± 0.071 (0.01 s/g) 0.946 ± 0.078 (1.22 s/g) 0.849 ± 0.097 (0.44 s/g)
Greedy MIS Heur. 0.878 ± 0.174 (1e-3 s/g) 0.771 ± 0.291 (0.04 s/g) 0.500 ± 0.258 (0.05 s/g)
Toenshoff-Greedy 0.987 ± 0.050 (1e-3 s/g) 0.969 ± 0.087 (0.06 s/g) 0.917 ± 0.126 (0.08 s/g)
CBC (1s) 0.985 ± 0.121 (0.03 s/g) 0.658 ± 0.474 (0.49 s/g) 0.107 ± 0.309 (1.48 s/g)
CBC (5s) 1.000 (0.03 s/g) 0.841 ± 0.365 (1.11 s/g) 0.198 ± 0.399 (4.77 s/g)
Gurobi 9.0 (0.1s) 1.000 (1e-3 s/g) 0.982 ± 0.101 (0.05 s/g) 0.803 ± 0.258 (0.21 s/g)
Gurobi 9.0 (0.5s) 1.000 (1e-3 s/g) 0.997 ± 0.035 (0.06 s/g) 0.996 ± 0.019 (0.34 s/g)
Gurobi 9.0 (1s) 1.000 (1e-3 s/g) 0.999 ± 0.015 (0.06 s/g) 1.000 (0.34 s/g)
Gurobi 9.0 (5s) 1.000 (1e-3 s/g) 1.000 (0.06 s/g) 1.000 (0.35 s/g)

Table 1: Test set approximation ratios for all methods on real-world datasets. For solvers, time
budgets are listed next to the name. Pareto-optimal solutions are indicated in bold, whereas italics
indicate constraint violation (we report the results only for correctly solved instances).

generated from the RB model [80], that has been specifically designed to generate challenging
problem instances. We worked with three RB datasets: a training set containing graphs of up to
500 nodes [69], a newly generated test set containing graphs of similar size, and a set of instances
that are up to 3 times larger [79, 45, 69]. On the other hand, to evaluate partitioning, we focused on
the FACEBOOK [70], TWITTER, and SF-295 [83] datasets, with the first being a known difficult
benchmark. More details can be found in the Appendix.

Evaluation. We used a 60-20-20 split between training, validation, and test for all datasets, except
for the RB model data (details in paragraph above). Our baselines often require the reduction of
maximum clique to independent set, which we have done when necessary. The reported time costs
factor in the cost of reduction. During evaluation, for each graph, we sampled multiple inputs,
obtained their solutions, and kept the best one. This was repeated for all neural approaches and local
graph clustering algorithms. Solvers were run with multiple time budgets.

5.3 Results: maximum clique

Table 1 reports the test set approximation ratio, i.e., the ratio of each solution’s cost over the optimal
cost. For simple datasets, such as IMDB, most neural networks achieve similar performance and
do not violate the problem constraints. On the other hand, the benefit of the probabilistic penalty
method becomes clear on the more-challenging Twitter dataset, where training with smooth relaxation
losses yields significantly worse results and constraint violation in at least 78% of the instances
(see Appendix). Erdős’ GNN always respected constraints. Our method was also competitive w.r.t.
network RUN-CSP and the best solver, consistently giving better results when optimizing for speed
(“fast"). The most accurate method overall was Gurobi, which impressively solved all instances
perfectly given sufficient time. As observed, Gurobi has been heavily engineered to provide significant
speed up w.r.t. CBC. Nevertheless, we should stress that both solvers scale poorly with the number of
nodes and are not viable candidates for graphs with more than a few thousand nodes.

Table 2 tests the best methods on hard instances. We only provide the results for Toenshoff-Greedy,
RUN-CSP, and Gurobi, as the other baselines did not yield meaningful results. Erdős’ GNN can be
seen to be better than RUN-CSP in the training and test set and worse for larger, out of distribution,
instances. However, both neural approaches fall behind the greedy algorithm and Gurobi, especially
when optimizing for quality. The performance gap is pronounced for small instances but drops
significantly for larger graphs, due to Gurobi’s high computational complexity. It is also interesting to
observe that the neural approaches do better on the training set than on the test set. Since both neural
methods are completely unsupervised, the training set performance can be taken at face value (the
methods never saw any labels). Nevertheless, the results also show that both methods partially overfit
the training distribution. The main weakness of Erdős’ GNN is that its performance degrades when
testing it in larger problem instances. Nevertheless, it is encouraging to observe that even on graphs
of at most 1500 nodes, both our “fast” method and RUN-CSP surpass Gurobi when given the same
time-budget. We hypothesize that this phenomenon will be more pronounced with larger graphs.
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Training set Test set Large Instances

Erdős’ GNN (fast) 0.899 ± 0.064 (0.27 s/g) 0.788 ± 0.065 (0.23 s/g) 0.708 ± 0.027 (1.58 s/g)
Erdős’ GNN (accurate) 0.915 ± 0.060 (0.53 s/g) 0.799 ± 0.067 (0.46 s/g) 0.735 ± 0.021 (6.68 s/g)
RUN-CSP (fast) 0.833 ± 0.079 (0.27 s/g) 0.738 ± 0.067 (0.23 s/g) 0.771 ± 0.032 (1.84 s/g)
RUN-CSP (accurate) 0.892 ± 0.064 (0.51 s/g) 0.789 ± 0.053 (0.47 s/g) 0.804 ± 0.024 (5.46 s/g)

Toenshoff-Greedy 0.924 ± 0.060 (0.02 s/g) 0.816 ± 0.064 (0.02 s/g) 0.829 ± 0.027 (0.35 s/g)
Gurobi 9.0 (0.1s) 0.889 ± 0.121 (0.18 s/g) 0.795 ± 0.118 (0.16 s/g) 0.697 ± 0.033 (1.17 s/g)
Gurobi 9.0 (0.5s) 0.962 ± 0.076 (0.34 s/g) 0.855 ± 0.083 (0.31 s/g) 0.697 ± 0.033 (1.54 s/g)
Gurobi 9.0 (1.0s) 0.980 ± 0.054 (0.45 s/g) 0.872 ± 0.070 (0.40 s/g) 0.705 ± 0.039 (2.05 s/g)
Gurobi 9.0 (5.0s) 0.998 ± 0.010 (0.76 s/g) 0.884 ± 0.062 (0.68 s/g) 0.790 ± 0.285 (6.01 s/g)
Gurobi 9.0 (20.0s) 0.999 ± 0.003 (1.04 s/g) 0.885 ± 0.063 (0.96 s/g) 0.807 ± 0.134 (21.24 s/g)

Table 2: Hard maximum clique instances (RB). We report the approximation ratio (bigger is better) in
the training and test set, whereas the rightmost column focuses on a different distribution consisting
of graphs of different sizes. Execution time is measured in sec. per graph (s/g). Pareto-optimal
solutions are in bold.

SF-295 FACEBOOK TWITTER

Erdős’ GNN 0.124 ± 0.001 (0.22 s/g) 0.156 ± 0.026 (289.28 s/g) 0.292 ± 0.009 (6.17 s/g)
L1 GNN 0.188 ± 0.045 (0.02 s/g) 0.571 ± 0.191 (13.83 s/g) 0.318 ± 0.077 (0.53 s/g)
L2 GNN 0.149 ± 0.038 (0.02 s/g) 0.305 ± 0.082 (13.83 s/g) 0.388 ± 0.074 (0.53 s/g)

Pagerank-Nibble 0.375 ± 0.001 (1.48 s/g) N/A 0.603 ± 0.005 (20.62 s/g)
CRD 0.364 ± 0.001 (0.03 s/g) 0.301 ± 0.097 (596.46 s/g) 0.502 ± 0.020 (20.35 s/g)
MQI 0.659 ± 0.000 (0.03 s/g) 0.935 ± 0.024 (408.52 s/g) 0.887 ± 0.007 (0.71 s/g)
Simple-Local 0.650 ± 0.024 (0.05 s/g) 0.955 ± 0.019 (404.67 s/g) 0.895 ± 0.008 (0.84 s/g)

Gurobi (10s) 0.105 ± 0.000 (0.16 s/g) 0.961 ± 0.010 (1787.79 s/g) 0.535 ± 0.006 (52.98 s/g)

Table 3: Cluster conductance on the test set (smaller is better) and execution time measured in sec.
per graph. Pareto-optimal solutions are in bold.

5.4 Results: local graph partitioning

The results of all methods and datasets are presented in Table 3. To compare fairly with previous works,
we evaluate partitioning quality based on the measure of local conductance, φ(S) = cut(S) /vol(S),
even though our method only indirectly optimizes conductance. Nevertheless, Erdős’ GNN outper-
forms all previous algorithms by a considerable margin. We would like to stress that this result is not
due to poor usage of previous methods: we rely on a well-known implementation [24] and select the
parameters of all non-neural baselines by grid-search on a held-out validation set. We also do not
report performance when a method (Pagerank-Nibble) returns the full graph as a solution [77].

It is also interesting to observe that, whereas all neural approaches perform well, GNN trained with a
probabilistic loss attains better conductance across all datasets. We remind the reader that all three
GNNs feature identical architectures and that the L1 and L2 loss functions are smooth relaxations
that are heavily utilized in partitioning problems [14]. Furthermore, due to its high computational
complexity and the extra overhead that is incurred when constructing the problem instances for large
graphs, Gurobi performed poorly in all but the smallest graphs.We argue that the superior solution
quality of Erdős’ GNN serves as evidence for the benefit of our unsupervised framework.

6 Conclusion

We have presented a mathematically principled framework for solving constrained combinatorial
problems on graphs that utilizes a probabilistic argument to guarantee the quality of its solutions.
As future work, we would like to explore different avenues in which the sequential decoding could
be accelerated. We aim to expand the ability of our framework to incorporate different types
of constraints. Though we can currently support constraints where node order is not necessarily
important (e.g., clique, cover, independent set), we would like to determine whether it is possible to
handle more complex constraints, e.g., relating to trees or paths [19]. Overall, we believe that this
work presents an important step towards solving CO problems in an unsupervised way and opens up
the possibility of further utilizing techniques from combinatorics and the theory of algorithms in the
field of deep learning.
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7 Broader impact

This subfield of deep learning that our work belongs to is still in its nascent stages, compared to
others like computer vision or translation. Therefore, we believe that it poses no immediate ethical or
societal challenges. However, advances in combinatorial optimization through deep learning can have
significant long term consequences. Combinatorial optimization tasks are important in manufacturing
and transportation. The ability to automate these tasks will likely lead to significant improvements in
productivity and efficiency in those sectors which will affect many aspects of everyday life. On the
other hand, these tasks would be otherwise performed by humans which means that such progress
may eventually lead to worker displacement in several industries. Combinatorial optimization may
also lead to innovations in medicine and chemistry, which will be beneficial to society in most cases.

Our work follows the paradigm of unsupervised learning which means that it enjoys some advantages
over its supervised counterparts. The lack of labeled instances implies a lack of label bias. Conse-
quently, we believe that unsupervised learning has the potential to avoid many of the issues (fairness,
neutrality) that one is faced with when dealing with labeled datasets. That does not eliminate all
sources of bias in the learning pipeline, but it is nonetheless a step towards the right direction.

Finally, we acknowledge that combinatorial optimization has also been widely applied in military
operations. However, even though this is not the intention of many researchers, we believe that it is
just a natural consequence of the generality and universality of the problems in this field. Therefore,
as with many technological innovations, we expect that the positives will outweigh the negatives as
long as the research community maintains a critical outlook on the subject. Currently, the state of the
field does not warrant any serious concerns and thus we remain cautiously optimistic about its impact
in the world.
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