
Appendix
A Robustness Justification

We explain the robustness interpretation of the dual regularization as the perturbation of Bellman
differences. In this section, we elaborate the robustness interpretation of the primal regularization.
For simplicity, we also consider f1 (·) = (·)2. Therefore, we have αQ · E(s,a)∼dD [f1(Q(s, a))] =

αQ ·
{

maxδ(s,a) 〈Q, δ〉 − E(s,a)∼dD
[
δ2 (s, a)

]}
. Plug the dual form into (9) and with strong duality,

we have
max
ζ≥0,δ

min
Q,λ

LD(ζ,Q, λ, δ) :=(1− γ) · Ea0∼π(s0)
s0∼µ0

[Q(s0, a0)] + αQE(s,a)∼dD [δ (s, a) ·Q (s, a)] + λ

+ E(s,a,r,s′)∼dD
a′∼π(s′)

[ζ(s, a) · (αR ·R(s, a) + γQ(s′, a′)−Q(s, a)− λ)]

− αQ · E(s,a)∼dD [δ2(s, a)]− αζ · E(s,a)∼dD [f2(ζ(s, a))], (11)
which can be understood as the Lagrangian of
max
ζ≥0,δ

αRE(s,a)∼dD [ζ (s, a) ·R (s, a)]− αQ · E(s,a)∼dD [δ2(s, a)]− αζ · E(s,a)∼dD [f2(ζ(s, a))]

s.t. (1− γ)µ0π + αQd
D · δ + γ · Pπ∗ ·

(
dD · ζ

)
=
(
dD · ζ

)
(12)

E(s,a)∼dD [ζ] = 1.

As we can see, the primal regularization actually introduces L2-ball perturbations to the stationary
state-action distribution condition (12). For different regularization, the perturbations will be in
different dual spaces. For examples, with entropy-regularization, the perturbation lies in the simplex.
The corresponding optimization of (10) is

min
Q

(1− γ)Eµ0π [Q (s, a)] + αQ · E(s,a)∼dD [f1 (Q)] + αζ · E(s,a)∼dD
[
δ2 (s, a)

]
(13)

s.t. Q (s, a) ≥ R (s, a) + γ · PπQ (s, a)− αζδ (s, a) . (14)
In both (13) and (12), the relaxation of dual ζ in (12) does not affect the optimality of dual solution:
the stationary state-action distribution is still the only solution to (12); while in (13), the relaxation
of primal Q will lead to different optimal primal solution. From this view, one can also justify the
advantages of the dual OPE estimation.

B Proof for Theorem 2

The full enumeration of αQ, αζ , αR, λ, and ζ≥ 0 results in 25 = 32 configurations. We note that it is
enough to characterize the solutions Q∗, ζ∗ under these different configurations. Clearly, the primal
estimator ρ̂Q is unbiased when Q∗ = Qπ, and the dual estimator ρ̂ζ is unbiased when ζ∗ = dπ/dD.
For the Lagrangian estimator ρ̂Q,ζ , we may write it in two ways:

ρ̂Q,ζ(π) = ρ̂Q(π) +
∑
s,a

dD(s, a)ζ(s, a)(R(s, a) + γPπQ(s, a)−Q(s, a)) (15)

= ρ̂ζ(π) +
∑
s,a

Q(s, a)((1− γ)µ0(s)π(a|s) + γPπ∗ dD × ζ(s, a)− dD × ζ(s, a)). (16)

It is clear that when Q∗ = Qπ , the second term of (15) is 0 and ρ̂Q,ζ(π) = ρ(π). When ζ∗ = dπ/dD,
the second term of (16) is 0 and ρ̂Q,ζ(π) = ρ(π). Therefore, the Lagrangian estimator is unbiased
when either Q∗ = Qπ or ζ∗ = dπ/dD.

Now we continue to characterizing Q∗, ζ∗ under different configurations. First, when αQ = 0, αζ =
0, it is clear that the solutions are always unbiased by virtue of Theorem 1 (see also [22]). When
αQ > 0, αζ > 0, the solutions are in general biased. We summarize the remaining configurations (in
the discounted case) of αQ > 0, αζ = 0 and αQ = 0, αζ > 0 in the table below. We provide proofs
for the configurations of the shaded cells. Proofs for the rest configurations can be found in [21, 22].

Proof. Under our Assumptions 1 and 2, the strong duality holds for (9). We provide the proofs by
checking the configurations case-by-case.
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Table 1: Optimal solutions for all configurations. Configurations with new proofs are shaded in gray.
Regularizer (w./w.o. λ) Case Q∗(s, a) ζ∗(s, a) L(Q∗, ζ∗)

αR = 1
ζ free i Qπ dπ

dD
+ αQ

(I−γPπ∗ )
−1

(
dD·f′1(Q

π)
)

dD

αR(1− γ) · Eµ0 [Qπ ]

+αQE
(s,a)∼dD [f1 (Qπ)]

αζ = 0 ζ≥ 0 ii

f∗′1

(
1
αQ

((
αQf

′
1 (Qπ) +

(1−γ)µ0π
dD

)
+
− (1−γ)µ0π

dD

)) 1
dD

(I − γ · Pπ)−1 ·

dD
(
αQf

′
1 (Qπ) +

(1−γ)µ0π
dD

)
+

(1− γ) · Eµ0 [Q∗]

+E
dD [ζ∗(s, a) · (αR · r

+γQ∗(s′, a′)−Q∗(s, a))]
+αQ · EdD [f1(Q

∗(s, a))]

αQ > 0 ζ free iii

dπ

dD
[21, 22]

αR = 0
ζ≥ 0 iv

f∗′1 (0) −αQf∗1 (0)

αR = 1
ζ free v

αζ > 0 ζ≥ 0 vi −αζ (I − Pπ)−1 f ′2(
dπ

dD
) αR · E(s,a,r,s′)∼dD [r]

αQ = 0
αR = 0

ζ free vii +αRQ
π [21, 22] −αζ ·Df (dπ‖dD) [21, 22]

ζ≥ 0 viii

• iii)-iv) In this configuration, the regularized Lagrangian (9) becomes
max
ζ≥0

min
Q,λ

LD(ζ,Q, λ) := (1− γ) · Ea0∼π(s0)
s0∼µ0

[Q(s0, a0)] + αQ · E(s,a)∼dD [f1(Q(s, a))] + λ

+E(s,a,r,s′)∼dD
a′∼π(s′)

[ζ(s, a) · (γQ(s′, a′)−Q(s, a)− λ)],

which is equivalent to
max
ζ≥0

min
Q

LD(ζ,Q) =
〈
(1− γ)µ0π + γ · Pπ∗ ·

(
dD · ζ

)
− dD · ζ,Q

〉
+ αQEdD [f1 (Q)]

s.t. EdD [ζ] = 1. (17)

Apply the Fenchel duality w.r.t. Q, we have

max
ζ

LD (ζ,Q∗) = −αQEdD
[
f∗1

(
(1−γ)µ0π+γ·Pπ∗ ·(d

D·ζ)−dD·ζ
αQdD

)]
(18)

s.t. EdD [ζ] = 1. (19)
If f∗1 (·) achieves the minimum at zero, it is obvious that

dD · ζ∗ = (1− γ)µ0π + γ · Pπ∗ ·
(
dD · ζ∗

)
⇒ dD · ζ∗ = dπ.

Therefore, we have
L (ζ∗, Q∗) = −αQf∗1 (0) ,

and
Q∗ = argmax

Q

〈
(1− γ)µ0π + γ · Pπ∗ ·

(
dD · ζ∗

)
− dD · ζ∗, Q

〉
+ αQEdD [f1 (Q)]

= f∗′1 (0)

• i)-ii) Following the derivation in case iii)-iv), we have the regularized Lagrangian as almost the
same as (17) but has an extra term αREdD [ζ ·R], i.e.

max
ζ

min
Q

LD(ζ,Q) := (1− γ) · Ea0∼π(s0)
s0∼µ0

[Q(s0, a0)] + αQ · E(s,a)∼dD [f1(Q(s, a))]

+E(s,a,r,s′)∼dD
a′∼π(s′)

[ζ(s, a) · (αR ·R (s, a) + γQ(s′, a′)−Q(s, a))].

We first consider the case where the ζ is free and the normalization constraint is not enforced.

After applying the Fenchel duality w.r.t. Q, we have

max
ζ

LD (ζ,Q∗) = αR
〈
dD · ζ,R

〉
− αQEdD

[
f∗1

(
dD·ζ−(1−γ)µ0π−γ·Pπ∗ ·(d

D·ζ)
αQdD

)]
. (20)

We denote

ν =
dD · ζ − (1− γ)µ0π − γ · Pπ∗ ·

(
dD · ζ

)
dD

⇒ dD · ζ = (I − γ · Pπ∗ )
−1 (

(1− γ)µ0π + dD · ν
)
,
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and thus,

LD (ζ∗, Q∗) = max
ν

〈
(I − γ · Pπ∗ )

−1 (
(1− γ)µ0π + dD · ν

)
, αRR

〉
− αQEdD

[
f∗1

(
ν

αQ

)]
= αR (1− γ)Ea0∼π(s0)

s0∼µ0

[Qπ (s0, a0)] + max
ν

EdD [ν · (Qπ)]− αQEdD
[
f∗1

(
ν

αQ

)]
,

= αR (1− γ)Ea0∼π(s0)
s0∼µ0

[Qπ (s0, a0)] + αQEdD [f1 (Qπ)]

where the second equation comes from the fact Qπ = (I − γ · Pπ)
−1
R and last equation comes

from Fenchel duality with ν∗ = αQf
′
1 (Qπ).

Then, we can characterize

ζ∗ =
(I − γ · Pπ∗ )

−1
((1− γ)µ0π)

dD
+ αQ

(I − γ · Pπ∗ )
−1 (

dD · f ′1 (Qπ)
)

dD

=
dπ

dD
+ αQ

(I − γ · Pπ∗ )
−1 (

dD · f ′1 (Qπ)
)

dD
,

and

Q∗ = (f ′1)
−1

(
dD · ζ∗ − (1− γ)µ0π − γ · Pπ∗ ·

(
dD · ζ∗

)
αQdD

)
= Qπ.

If we have the positive constraint, i.e., ζ ≥ 0, we denote

exp (ν) =
(I − γ · Pπ∗ )

(
dD · ζ

)
dD

⇒ dD · ζ = (I − γ · Pπ∗ )
−1
dD · exp (ν) ,

then,

LD (ζ∗, Q∗) = max
ν

EdD [exp (ν) ·Qπ]− αQEdD
[
f∗1

(
1

αQ

(
exp (ν)− (1− γ)µ0π

dD

))]
.

By first-order optimality condition, we have

exp (ν∗)

(
Qπ − f∗′1

(
1

αQ

(
exp (ν)− (1− γ)µ0π

dD

)))
= 0

= exp (ν∗) =

(
αQf

′
1 (Qπ) +

(1− γ)µ0π

dD

)
+

⇒ dD · ζ∗ = (I − γ · Pπ)
−1 · dD

(
αQf

′
1 (Qπ) +

(1− γ)µ0π

dD

)
+

⇒ ζ∗ =
1

dD
(I − γ · Pπ)

−1 · dD
(
αQf

′
1 (Qπ) +

(1− γ)µ0π

dD

)
+

. (21)

For Q∗, we obtain from the Fenchel duality relationship,

Q∗ = f∗′1

(
1

αQ

(
exp (ν∗)− (1− γ)µ0π

dD

))
= f∗′1

(
1

αQ

((
αQf

′
1 (Qπ) +

(1− γ)µ0π

dD

)
+

− (1− γ)µ0π

dD

))
. (22)

Then, the LD (ζ∗, Q∗) can be obtained by plugging (ζ∗, Q∗) in (21) and (22). Obviously, in this
case, the estimators are all biased.

As we can see, in both i) and ii), none of the optimal dual solution ζ∗ satisfies the normalization
condition. Therefore, with the extra normalization constraint, the optimization will be obviously
biased.

• v)-viii) These cases are also proved in [22] and we provide a more succinct proof here. In these
configurations, whether αR is involved or not does not affect the proof. We will keep this component
for generality. We ignore the ζ≥ 0 and λ for simplicity, the conclusion does not affected, since the
optimal solution ζ∗ automatically satisfies these constraints.
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Consider the regularized Lagrangian (9) with such configuration, we have
min
Q

max
ζ

LD(ζ,Q) := (1− γ) · Ea0∼π(s0)
s0∼µ0

[Q(s0, a0)]− αζ · E(s,a)∼dD [f2(ζ(s, a))]

+E(s,a,r,s′)∼dD
a′∼π(s′)

[ζ(s, a) · (αR ·R(s, a) + γQ(s′, a′)−Q(s, a))].(23)

Apply the Fenchal duality to ζ, we obtain

min
Q

LD (ζ∗, Q) := (1−γ)·Ea0∼π(s0)
s0∼µ0

[Q(s0, a0)]+αζEdD
[
f∗2

(
1

αζ
(Bπ ·Q (s, a)−Q (s, a))

)]
,

(24)
with Bπ ·Q (s, a) := αR ·R (s, a) + γPπQ (s, a). We denote ν (s, a) = B ·Q (s, a)−Q (s, a),
then, we have

Q (s, a) = (I − γ · Pπ)
−1

(αR ·R− ν) .

Plug this into (24), we have

LD (ζ∗, Q∗) = min
ν

(1− γ) · Ea0∼π(s0)
s0∼µ0

[(
(I − γ · Pπ)

−1
(αR ·R− ν)

)
(s0, a0)

]
+αζEdD

[
f∗2

(
1

αζ
ν (s, a)

)]
,

= αREdπ [R (s, a)]− αζ max
ν

(
Edπ

[
ν(s0, a0)

αζ

]
+ EdD

[
f∗2

(
1

αζ
ν (s, a)

)])
,

= αREdπ [R (s, a)]− αζDf

(
dπ||dD

)
(25)

The second equation comes from the fact dπ = (I − γ · Pπ∗ )
−1

(µ0π). The last equation is by the
definition of the Fenchel duality of f -divergence. Meanwhile, the optimal 1

αζ
ν∗ = f ′2

(
dπ

dD

)
. Then,

we have
Q∗ = − (I − γ · Pπ)

−1
ν∗ + (I − γ · Pπ)

−1
(αR ·R)

= −αζ (I − γ · Pπ)
−1
f ′2

(
dπ

dD

)
+ αRQ

π,

and
ζ∗(s, a) = argmax

ζ
ζ · ν∗(s, a)− αζf2 (ζ (s, a))

= f∗′2

(
1

αζ
ν∗ (s, a)

)
=
dπ (s, a)

dD (s, a)
.

C Recovering Existing OPE estimators

We verify the LSTDQ as a special case of the unified framework if the primal and dual are linearly
parametrized, i.e., Q (s, a) = w>φ (s, a) and ζ (s, a) = v>φ (s, a), from any unbiased estimator
without ζ≥ 0 and λ. For simplicity, we assume the solution exists.

• When (αQ = 1, αζ = 0, αR = 1), we have the estimator as
max
v

min
w
LD(v, w) :=(1− γ) · w>Ea0∼π(s0)

s0∼µ0

[φ(s0, a0)] + αQ · E(s,a)∼dD [f1(w>φ(s, a))]

+ v>E(s,a,r,s′)∼dD
a′∼π(s′)

[φ(s, a) · (αR ·R(s, a) + γw>φ(s′, a′)− w>φ(s, a))].

Then, we have the first-order optimality condition for v as
E(s,a,r,s′)∼dD

a′∼π(s′)

[φ(s, a) · (αR ·R(s, a) + γw>φ(s′, a′)− w>φ(s, a))] = 0,

⇒ w = E(s,a,r,s′)∼dD
a′∼π(s′)

[φ(s, a) · (φ(s, a)− γφ(s′, a′))]︸ ︷︷ ︸
Ξ

−1E(s,a)∼dD [αR ·R (s, a)φ (s, a)] ,

⇒ Q∗ (s, a) = w>φ (s, a) ,
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which leads to
ρ̂Q(π) = (1− γ) · Ea0∼π(s0)

s0∼µ0

[Q̂(s0, a0)]

= (1− γ)Ea0∼π(s0)
s0∼µ0

[φ (s, a)]>Ξ−1E(s,a)∼dD [R (s, a)φ (s, a)] .

• When (αQ = 0, αζ = 1, αR = {0/1}), we have the estimator as
max
v

min
w
LD(v, w) :=(1− γ) · w>Ea0∼π(s0)

s0∼µ0

[φ(s0, a0)]− αζ · E(s,a)∼dD [f2(v>φ(s, a))]

+ v>E(s,a,r,s′)∼dD
a′∼π(s′)

[φ(s, a) · (αR ·R(s, a) + γw>φ(s′, a′)− w>φ(s, a))].

Then, we have the first-order optimality condition as
v>E(s,a,r,s′)∼dD

a′∼π(s′)

[φ(s, a) · (γφ(s′, a′)− φ(s, a))] + (1− γ) · Ea0∼π(s0)
s0∼µ0

[φ(s0, a0)] = 0,

which leads to
v = (1− γ) · Ξ−1Ea0∼π(s0)

s0∼µ0

[φ(s0, a0)].

Therefore, the dual estimator is
ρ̂ζ (π) = E(s,a,r)∼dD [R · φ (s, a)]

>
v

= (1− γ)Ea0∼π(s0)
s0∼µ0

[φ (s, a)]>Ξ−1E(s,a)∼dD [R (s, a)φ (s, a)] .

• When (αQ = 1, αζ = 0, αR = 0), by the conclusion for (17), we have
v>E(s,a,r,s′)∼dD

a′∼π(s′)

[φ(s, a) · (γφ(s′, a′)− φ(s, a))] + (1− γ) · Ea0∼π(s0)
s0∼µ0

[φ(s0, a0)] = 0,

which leads to similar result as above case.

D Alternative Biased Form

Unconstrained Primal Forms When αζ > 0 and αQ = 0, the form of the Lagranian can be
simplified to yield an optimization over only Q. Then, we may simplify,

max
ζ(s,a)

ζ(s, a) · (αR ·R(s, a) + γPπQ(s, a)−Q(s, a))− αζ · f2(ζ(s, a))

= αζ · f∗2
(

1

αζ
(αR ·R(s, a) + γPπQ(s, a)−Q(s, a))

)
. (26)

So, the Lagrangian may be equivalently expressed as an optimization over only Q:
min
Q

(1− γ) · Ea0∼π(s0)
s0∼µ0

[Q(s0, a0)] + αQ · E(s,a)∼dD [f1(Q(s, a))]

+ αζ · E(s,a)∼dD

[
f∗2

(
1

αζ
(αR ·R(s, a) + γPπQ(s, a)−Q(s, a))

)]
. (27)

We call this the unconstrained primal form, since optimization is now exclusively over primal
variables. Still, given a solution Q∗, the optimal ζ∗ to the original Lagrangian may be derived as,

ζ∗(s, a) = f∗′2 ((αR ·R(s, a) + γPπQ∗(s, a)−Q∗(s, a))/αζ). (28)
Although the unconstrained primal form is simpler, in practice it presents a disadvantage, due to
inaccessibility of the transition operator Pπ. That is, in practice, one must resort to optimizing the
primal form as

min
Q

(1− γ) · Ea0∼π(s0)
s0∼µ0

[Q(s0, a0)] + αQ · E(s,a)∼dD [f1(Q(s, a))]

+ αζ · E(s,a,r,s′)∼dD
a′∼π(s′)

[
f∗2

(
1

αζ
(αR ·R(s, a) + γQ(s′, a′)−Q(s, a))

)]
. (29)

This is in general a biased estimate of the true objective and thus leads to biased solutions, as the
expectation over the next step samples are taken inside a square function (we choose f2 to be the
square function). Still, in some cases (e.g., in simple and discrete environments), the bias may be
desirable as a trade-off in return for a simpler optimization.
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Unconstrained Dual Form We have presented an unconstrained primal form. Similarly, we
can derive the unconstrianed dual form by removing the primal variable with a particular primal
regularization αQEdD [f1 (Q)]. Then, we can simplify

min
Q(s′,a′)

1

dD (s′, a′)
(1− γ)µ0(s′)π (a′|s′) ·Q (s′, a′) + αQf1 (Q)

+
1

dD (s′, a′)

(
γ

∫
Pπ (s′, a′|s, a) dD · ζ (s, a) dsda− dD (s′, a′) ζ (s′, a′)

)
·Q (s′, a′)

= −αQ · f∗1

(
dD · ζ − (1− γ)µ0π − γ

(
Pπ∗ · dD

)
ζ

αQdD

)
, (30)

with Q∗ = f∗′1

(
dD·ζ−(1−γ)µ0π−γ(Pπ∗ ·d

D)ζ
αQdD

)
.

So, the regularized Lagrangian can be represented as
max
d

αREdD [ζ ·R]

− αQEdD
[
f∗1

(
dD · ζ − (1− γ)µ0π − γ

(
Pπ∗ · dD

)
ζ

αQdD

)]
− αζEdD [f2 (ζ)] . (31)

Similarly, to approximate the intractable second term, we must use
max
d

αREdD [ζ ·R]

− αQE(s,a,r,s′)∼dD
a′∼π(s′)

[
f∗1

(
ζ (s′, a′)− (1− γ)µ0(s′)π(a′|s′)− γζ (s, a)

αQdD

)]
− αζEdD [f2 (ζ)] ,

which will introduce bias.

E Undiscounted MDP

When γ = 1, the value of a policy is defined as the average per-step reward:

ρ(π) := lim
tstop→∞

E

[
1

tstop

tstop∑
t=0

R(st, at)

∣∣∣∣∣ s0 ∼ µ0,∀t, at ∼ π(st), st+1 ∼ T (st, at)

]
. (32)

The following theorem presents a formulation of ρ(π) in the undiscounted case:

Theorem 3. Given a policy π and a discounting factor γ = 1, the value ρ (π) defined in (32) can be
expressed by the following d-LP:

maxd:S×A→R Ed [R (s, a)] , s.t., d(s, a) = Pπ∗ d(s, a) and
∑
s,a d(s, a) = 1. (33)

The corresponding primal LP under the undiscounted case is
minQ:S×A→R λ, s.t., Q(s, a) = R(s, a) + PπQ(s, a)− λ. (34)

Proof. With the additional constraint
∑
s,a d(s, a) = 1 in (33), the Markov chain induced by π is

ergodic with a unique stationary distribution d∗ = dπ , so the dual objective is still ρ (π) by definition.
Unlike in the discounted case, any optimalQ∗ with a constant offset would satisfy (34), so the optimal
solution to (34) is independent of Q.

F Experiment Details

F.1 OPE tasks

For all tasks, We use γ = 0.99 in all experiments except for the ablation study of normalization
constraint where γ = 0.995 and γ = 1 are also evaluated. We collect 400 trajectories for each of the
tasks, and the trajectory length for Grid, Reacher, and Cartpole are 100, 200, and 250 respectively
for γ < 1, or 1000 for γ = 1. We run each experiment on 10 seeds and plot the mean and standard
deviation of the results.
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Grid. We use a 10 × 10 grid environment where an agent can move left/right/up/down. The
observations are the x, y coordinates of this agent’s location. The reward of each step is defined
as exp(−0.2|x − 9| − 0.2|y − 9|). The target policy is taken to be the optimal policy for this task
(i.e., moving all the way right then all the way down) plus 0.1 weight on uniform exploration. The
behavior policies π1 and π2 are taken to be the optimal policy plus 0.7 and 0.3 weights on uniform
exploration respectively.

Reacher. We train a deterministic policy on the Reacher task from OpenAI Gym [3] until conver-
gence, and define the target policy to be a Gaussian with the pre-trained policy as the mean and 0.1
as the standard deviation. The behavior policies π1 and π2 have the same mean as the target policy
but with 0.4 and 0.2 standard deviation respectively.

Cartpole. We modify the Cartpole task from OpenAI Gym [3] to infinite horizon by changing the
reward to −1 if the original task returns termination and 1 otherwise. We train a deterministic policy
on this task until convergence, and define the target policy to be the pre-trained policy (weight 0.7)
plus uniform random exploration (weight 0.3). The behavior policies π1 and π2 are taken to be the
pre-trained policy (weight 0.55 and 0.65) plus uniform random exploration (weight 0.45 and 0.35)
respectively.

F.2 Linear Parametrization Details

To test estimation robustness to scaling and shifting of MDP rewards under linear parametrization, we
first determine the estimation upper bound by parametrizing the primal variable as a linear function
of the one-hot encoding of the state-action input. Similarly, to determine the lower bound, we
parametrize the dual variable as a linear function of the input. These linear parametrizations are
implemented using feed-forward networks with two hidden-layers of 64 neurons each and without
non-linear activations. Only the output layer is trained using gradient descent; the rest layers are
randomly initialized and fixed. The true estimates where both primal and dual variables are linear
functions are verified to be between the lower and upper bounds.

F.3 Neural Network Details

For the neural network parametrization, we use feed-forward networks with two hidden-layers of 64
neurons each and ReLU as the activation function. The networks are trained using the Adam optimizer
(β1 = 0.99, β2 = 0.999) with batch size 2048. The learning rate of each task and configuration is
found via hyperparameter search, and is determined to be 0.00003 for all configurations on Grid,
0.0001 for all configurations on Reacher, and 0.0001 and 0.00003 for dual and primal regularization
on Cartpole respectively.

G Additional Results

G.1 Comparison to unregularized Lagrangian

We compare the best performing DICE estimator discovered in our unified framework to directly
solving the Lagrangian without any regularization or redundant constraints, i.e., DR-MWQL as
primal, MWL as dual, and their combination [28]. Results are shown in Figure 5. We see that the
BestDICE estimator outperforms the original primal, dual and Lagrangian both in terms of training
stability and final estimation. This demonstrates that regularization and redundant constraints are
crucial for optimization, justifying our motivation.

G.2 Primal Estimates with Target Networks

We use target networks with double Q-learning [11] to improve the training stability of primal
variables, and notice performance improvements in primal estimates on the Reacher task in particular.
However, the primal estimates are still sensitive to scaling and shifting of MDP rewards, as shown
in Figure 6.
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Figure 5: Primal (orange), dual (green), and Lagrangian (gray) estimates by solving the original
Lagrangian without any regularization or redundant constraints, in comparison with the best DICE
estimates (blue).
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Figure 6: Primal (red) and Lagrangian (orange) estimates under the neural network parametrization
with target networks to stabilize training when rewards are transformed during training. Estimations
are transformed back and plotted on the original scale. Despite the performance improvements on
Reacher compared to Figure 2, the primal and Lagrangian estimates are still sensitive to the reward
values.

G.3 Additional Regularization Comparison

In addition to the two behavior policies in the main text (i.e., π1 and π2), we show the effect of
regularization using data collected from a third behavior policy (π3). Similar conclusions from the
main text still hold (i.e., dual regularizer is generally better; primal regularizer with reward results in
biased estimates) as shown in Figure 7.
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Figure 7: Dual estimates when αR = 0 (dotted line) and αR = 1 (solid line) on data collected
from a third behavior policy (π3). Regularizing the dual variable (blue) is better than or similar to
regularizing the primal variable (orange).

G.4 Additional Ablation Study

We also conduct additional ablation study on data collected from a third behavior policy (π3). Results
are shown in Figure 8. Again we see that the positivity constraint improves training stability as well
as final estimates, and unconstrained primal form is more stable but can lead to biased estimates.
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Figure 8: Apply positive constraint and unconstrained primal form on data collected from a third
behavior policy (π3). Positivity constraint (row 1) improves training stability. The unconstrained
primal problem (row 2) is more stable but leads to biased estimates.
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