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Abstract

Sortition is a political system in which decisions are made by panels of randomly
selected citizens. The process for selecting a sortition panel is traditionally thought
of as uniform sampling without replacement, which has strong fairness properties.
In practice, however, sampling without replacement is not possible since only a
fraction of agents is willing to participate in a panel when invited, and different
demographic groups participate at different rates. In order to still produce panels
whose composition resembles that of the population, we develop a sampling
algorithm that restores close-to-equal representation probabilities for all agents
while satisfying meaningful demographic quotas. As part of its input, our algorithm
requires probabilities indicating how likely each volunteer in the pool was to
participate. Since these participation probabilities are not directly observable, we
show how to learn them, and demonstrate our approach using data on a real sortition
panel combined with information on the general population in the form of publicly
available survey data.

1 Introduction

What if political decisions were made not by elected politicians but by a randomly selected panel
of citizens? This is the core idea behind sortition, a political system originating in the Athenian
democracy of the 5th century BC [24]. A sortition panel is a randomly selected set of individuals
who are appointed to make a decision on behalf of population from which they were drawn. Ideally,
sortition panels are selected via uniform sampling without replacement — that is, if a panel of size k
is selected from a population of size n, then each member of the population has a k/n probability of
being selected. This system offers appealing fairness properties for both individuals and subgroups
of the population: First, each individual knows that she has the same probability of being selected
as anyone else, which assures her an equal say in decision making. The resulting panel is also, in
expectation, proportionally representative to all groups in the population: if a group comprises %
of the population, they will in expectation comprise % of the panel as well. In fact, if k is large
enough, concentration of measure makes it likely that even a group’s ex post share of the panel will
be close to 2%. Both properties stand in contrast to the status quo of electoral democracy, in which
the equal influence of individuals and the fair participation of minority groups are often questioned.

Due to the evident fairness properties of selecting decision makers randomly, sortition has seen a
recent surge in popularity around the world. Over the past year, we have spoken with several nonprofit
organizations whose role it is to sample and facilitate sortition panels [8]. One of these nonprofits, the
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Sortition Foundation, has organized more than 20 panels in about the past year.! Recent high-profile
examples of sortition include the Irish Citizens’ Assembly,” which led to Ireland’s legalization of
abortion in 2018, and the founding of the first permanent sortition chamber of govemment,3 which
occurred in a regional parliament in the German-speaking community of Belgium in 2019.

The fairness properties of sortition are often presented as we have described them — in the setting
where panels are selected from the whole population via uniform sampling without replacement. As
we have learned from practitioners, however, this sampling approach is not applicable in practice due
to limited participation: typically, only between 2 and 5% of citizens are willing to participate in the
panel when contacted. Moreover, those who do participate exhibit self-selection bias, i.e., they are
not representative of the population, but rather skew toward certain groups with certain features.

To address these issues, sortition practitioners introduce additional steps into the sampling process.
Initially, they send a large number of invitation letters to a random subset of the population. If a
recipient is willing to participate in a panel, they can opt into a pool of volunteers. Ultimately, the
panel of size k is sampled from the pool. Naturally, the pool is unlikely to be representative of the
population, which means that uniformly sampling from the pool would yield panels whose demo-
graphic composition is unrepresentative of that of the population. To prevent grossly unrepresentative
panels, many practitioners impose quotas on groups based on orthogonal demographic features such
as gender, age, or residence inside the country. These quotas ensure that the ex-post number of panel
members belonging to such a group lies within a narrow interval around the proportional share. Since
it is hard to construct panels satisfying a set of quotas, practitioners typically sample using greedy
heuristics. One downside of these greedy algorithms is that they may need many attempts to find
a valid panel, and thus might take exponential time to produce a valid panel if one exists. More
importantly, however, even though these heuristics tend to eventually find valid panels, the probability
with which each individual is selected via their selection process is not controlled in a principled way.

By not deliberately controlling individual selection probabilities, existing panel selection procedures
fail to achieve basic fairness guarantees to individuals. Where uniform sampling in the absence of
self-selection bias selects each person with equal probability k/n, currently-used greedy algorithms
do not even guarantee a minimum selection probability for members of the pool, let alone fairly
distributed probabilities over members of the population. The absence of such a theoretical guarantee
has real ramifications in practice: as we show in Section 5, in the real-world instance we study, the
greedy algorithm selects several population members with probability less than half the magnitude of

k/n.

This unfairness to individuals, while problematic in its own right, can also lead to unfairness for
groups. In particular, current algorithms use quotas to enforce representation of a set of pre-chosen
groups delineated by single features, but these quotas do not protect groups defined by intersections
of these features: for example, proportional representation of women and of young people does
not guarantee the proportional representation of young women. By giving some individuals very
low probability of selection on the basis of their combinations of features, existing algorithms
may systematically allocate very low probability to all members of a certain intersectional group,
preventing their perspectives from being fairly represented on the panel.

1.1 Our Techniques and Results

The main contribution of this paper is a more principled sampling algorithm that, even in the presence
of limited participation and self-selection bias, retains the individual fairness properties of uniform
sampling in the absence of these challenges, while also allowing the deterministic satisfaction of
quotas. In particular, our algorithm satisfies the following desiderata:

— End-to-End Fairness: The algorithm selects the panel via a process such that all members
of the population appear on the panel with probability asymptotically close to k/n. This
also implies that all groups in the population, including those defined by intersections of
arbitrarily many features, will be near-proportionally represented in expectation.

— Deterministic Quota Satisfaction: The selected panel satisfies certain upper and lower quotas
enforcing approximate representation for a set of specified features.

'nttps://www.youtube.com/watch?v=hz2d_8eBEKg at 8:53.
*https://2016-2018.citizensassembly.ie/en/
*https://www.politico.eu/article/belgium-democratic-experiment-citizens-assembly/
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— Computational Efficiency: The algorithm returns a valid panel (or fails) in polynomial time.

End-to-end fairness refers to the fact that our algorithm is fair to individuals with respect to their
probabilities of going from population to panel, across the intermediate steps of being invited, opting
into the pool, and being selected for the panel. End-to-end fairness can be seen primarily as a
guarantee of individual fairness, while proportional representation of all groups in expectation, along
with deterministic quota satisfaction, can be seen as two different guarantees of group fairness.

The key challenge in satisfying these desiderata is self-selection bias, which can result in the pool
being totally unrepresentative of the population. In the worst case, the pool can be so skewed that it
contains no representative panel — in fact, the pool might not even contain k£ members. As a result,
no algorithm can produce a valid panel from every possible pool. However, we are able to give an
algorithm that succeeds with high probability, under weak assumptions mainly relating the number of
invitation letters sent out to k and the minimum participation probability over all agents.

Crucially, any sampling algorithm that gives (near-)equal selection probability to all members of the
population must reverse the self-selection bias occurring in the formation of the pool. We formalize
this self-selection bias by assuming that each agent ¢ in the population agrees to join the pool with
some positive participation probability ¢; when invited. If these ¢; values are known for all members
of the pool, our sampling algorithm can use them to neutralize self-selection bias. To do so, our
algorithm selects agent 4 for the panel with a probability (close to) proportional to 1/g;, conditioned
on ¢ being in the pool. This compensates for agents’ differing likelihoods of entering the pool, thereby
giving all agents an equal end-to-end probability. On a given pool, the algorithm assigns marginal
selection probabilities to every agent in the pool. Then, to find a distribution over valid panels that
implements these marginals, the algorithm randomly rounds a linear program using techniques based
on discrepancy theory. Since our approach aims for a fair distribution of valid panels rather than just
a single panel, we can give probabilistic fairness guarantees.

As we mentioned, our theoretical and algorithmic results, presented in Section 3, take the probabilities
q; of all pool members ¢ as given in the input. While these values are not observed in practice, we
show in Section 4 that they can be estimated from available data. We cannot directly train a classifier
predicting participation, however, because practitioners collect data only on those who do join the
pool, yielding only positively labeled data. In place of a negatively labeled control group, we use
publicly available survey data, which is unlabeled (i.e., includes no information on whether its
members would have joined the pool). To learn in this more challenging setting, we use techniques
from contaminated controls, which combine the pool data with the unlabeled sample of the population
to learn a predictive model for agents’ participation probabilities. In Section 5, we use data from
a real-world sortition panel to show that plausible participation probabilities can be learned and
that the algorithm produces panels that are close to proportional across features. For a synthetic
population produced by extrapolating the real data, we show that our algorithm obtains fair end-to-end
probabilities.

1.2 Related Work

Our work is broadly related to existing literature on fairness in the areas of machine learning, statistics,
and social choice. Through the lens of fair machine learning, our quotas can be seen as enforcing
approximate statistical fairness for protected groups, and our near-equal selection probability as a
guarantee on individual fairness. Achieving simultaneous group- and individual-level fairness is a
commonly discussed goal in fair machine learning [5, 12, 15], but one that has proven somewhat
elusive. To satisfy fairness constraints on orthogonal protected groups, we draw upon techniques
from discrepancy theory [2, 3], which we hope to be more widely applicable in this area.

Our paper addresses self-selection bias, which is routinely faced in statistics and usually addressed
by sample reweighting. Indeed, our sampling algorithm can be seen as a way of reweighting the
pool members under the constraint that weights must correspond to the marginal probabilities of a
random distribution. While reweighting is typically done by the simpler methods of post-stratification,
calibration [14], and sometimes regression [20], we use the more powerful tool of learning with
contaminated controls [16, 27] to determine weights on a more fine-grained level.

Our paper can also be seen as a part of a broader movement towards statistical approaches in social
choice [17, 18, 22]. The problem of selecting a representative sortition panel can be seen as a fair
division problem, in which & indivisible copies of a scarce resource must be randomly allocated such



that an approximate version of the proportionality axiom is imposed. Our group fairness guarantees
closely resemble the goal of apportionment, in which seats on a legislature are allocated to districts or
parties such that each district is proportionally represented within upper and lower quotas [1, 6, 13].

So far, only few papers in computer science and statistics directly address sortition [4, 21, 26]. Only
one of them [4] considers, like us, how to sample a representative sortition panel. Unfortunately, their
stratified sampling algorithm assumes that all agents are willing to participate, which, as we address
in this paper, does not hold in practice.

2 Model

Agents. Let N be a set of n agents, constituting the underlying population. Let F' be a set of features,
where feature f € F'is a function f : N — V}, mapping the agents to a set V; of possible values of
feature f. For example, for the feature gender, we could have Vienq.r = {male, female, non-binary}.
Let the feature-value pairs be | J;cp{(f,v) | v € V¢}. In our example, the feature-value pairs

are (gender, male), (gender, female), and (gender, non-binary). Denote the number of agents with a
particular feature-value pair (f, v) by ny,.

Each agent i € N is described by her feature vector F(i) := {(f, f(i)) | f € F}, the set of
all feature-value pairs pertaining to this agent. Building on the example instance, suppose we
add the feature education-level, so F' = {gender,education level}. If education level can take
on the values college and no college, a college-educated woman would have the feature-vector
{(gender, female), (education level, college)}.

Panel Selection Process. Before starting the selection process, organizers of a sortition panel must
commit to the panel’s parameters. First, they must choose the number of recipients r who will be
invited to potentially join the panel, and the required panel size k. Moreover, they must choose a set
of features F' and values {V} e p over which quotas will be imposed. Finally, for all feature-value
pairs (f,v), they must choose a lower quota {; ,, and an upper quota uy ,,, implying that the eventual
panel of k agents must contain at least {¢,, and at most uy ,, agents with value v for feature f. Once
these parameters are fixed, the panel selection process proceeds in three steps:

) STEP 1 . STEP 2 STEP 3
population ————— recipients ————— pool ————— panel

In STEP 1, the organizer of the panel sends out 7 letters, inviting a subset of the population — sampled
with equal probability and without replacement — to volunteer for serving on the panel. We refer to
the random set of agents who receive these letters as Recipients. Only the agents in Recipients will
have the opportunity to advance in the process toward being on the panel.

In STEP 2, each letter recipient may respond affirmatively to the invitation, thereby opting into the
pool of agents from which the panel will be chosen. These agents form the random set Pool, defined
as the set of agents who received a letter and agreed to serve on the panel if ultimately chosen. We
assume that each agent ¢ joins the pool with some participation probability q; > 0. Let ¢* be the
lowest value of ¢; across all agents ¢ € N. A key parameter of an instance is « := ¢* r/k, which
measures how large the number of recipients is relative to the other parameters. Larger values of a
will allow us the flexibility to satisfy stricter quotas.

In STEP 3, the panel organizer runs a sampling algorithm, which selects the panel from the pool.
This panel, denoted as the set Panel, must be of size k£ and satisfy the predetermined quotas for all
feature-value pairs. The sampling algorithm may also fail without producing a panel.

We consider the first two steps of the process to be fully prescribed. The focus of this paper is
to develop a sampling algorithm for the third step that satisfies the three desiderata listed in the
introduction: end-to-end fairness, deterministic quota satisfaction, and computational efficiency.

3 Sampling Algorithm

In this section, we give an algorithm which ensures, under natural assumptions, that every agent ends
up on the panel with probability at least (1 — 0(1)) k/n as n goes to infinity.* Furthermore, the panels

*We allow k > 1 and r > 1 to vary arbitrarily in n and assume that the feature-value pairs are fixed.



produced by this algorithm satisfy non-trivial quotas, which ensure that the ex-post representation of
each feature-value pair cannot be too far from being proportional.

Our algorithm proceeds in two phases: 1. assignment of marginals, during which the algorithm assigns
a marginal selection probability to every agent in the pool, and II. rounding of marginals, in which
the marginals are dependently rounded to 0/1 values, the agents’ indicators of being chosen for the
panel. As we discussed previously, our algorithm succeeds only with high probability, rather than
deterministically; it may fail in phase I if the desired marginals do not satisfy certain conditions. We
refer to pools on which our algorithm succeeds as good pools. A good pool, to be defined precisely
later, is one that is highly representative of the population — that is, its size and the prevalence of
all feature values within it are close to their respective expected values. We leave the behavior of
our algorithm on bad pools unspecified: while the algorithm may try its utmost on these pools, we
give no guarantees in these cases, so the probability of representation guaranteed to each agent must
come only from good pools and valid panels. Fortunately, under reasonable conditions, we show that
the pool will be good with high probability. When the pool is good, our algorithm always succeeds,
meaning that our algorithm is successful overall with high probability.

Our algorithm satisfies the following theorem, guaranteeing close-to-equal end-to-end selection
probabilities for all members of the population as well as the satisfaction of quotas.

Theorem 1. Suppose that o« — oo and ny,, > n/k for all feature-value pairs f,v. Consider a
sampling algorithm that, on a good pool, selects a random panel, Panel, via the randomized version
of Lemma 3, and else does not return a panel. This process satisfies, for all i in the population, that

Pli € Panel] > (1 —o(1)) k/n.

All panels produced by this process satisfy the quotas ls, = (1 — a=*) kns,/n — |F| and
gy = (14 a4 kng,/n+ |F| for all feature-value pairs f,v.

The guarantees of the theorem grow stronger as the parameter o = ¢* r/k tends toward infinity, i.e.,
as the number r of invitations grows. Note that, since r < n, this assumption requires that ¢* > k/n.
We defer all proofs to Appendix B and discuss the preconditions in Appendix B.1.

3.1 Algorithm Part I: Assignment of Marginals

To afford equal probability of panel membership to each agent ¢, we would like to select agent ¢ with
probability inversely proportional to her probability g; of being in the pool. For ease of notation, let
a; = 1/q; for all i. Specifically, for agent i, we want P[¢ € Panel | i € Pool] to be proportional to
a;. Achieving this exactly is tricky, however, because each agent’s selection probability from pool P,
call it m; p, must depend on those of all other agents in the pool, since their marginals must add to
the panel size k. Thus, instead of reasoning about an agent’s probability across all possible pools
at once, we take the simpler route of setting agents’ selection probabilities for each pool separately,
guaranteeing that P[i € Panel | i € P] is proportional to a; across all members i of a good pool P.
For any good pool P, we select each agent + € P for the panel with probability

mip =ka;/ ZjGP aj.
Note that this choice ensures that the marginals always sum up to k.

Definition of Good Pools. For this choice of marginals to be reasonable and useful for giving
end-to-end guarantees, the pool P must satisfy three conditions, whose satisfaction defines a good
pool P. First, the marginals do not make much sense unless all 7; p lie in [0, 1]:

0<mp<1l VieP (D

Second, the marginals summed up over all pool members of a feature-value pair f,v should not
deviate too far from the proportional share of the pair:

(L—a™®)knso/n < Yicpjiy= T < (LHa”P)kng,/n Vf,0. 2

Third, we also require that the term ), a; is not much larger than E[} ., , a;] = r, which
ensures that the m; p do not become to small:

Yiepai S1/(1—a™%). 3)

Under the assumptions of our theorem, pools are good with high probability, even if we condition on
any agent ¢ being in the pool:



Lemma 2. Suppose that & — oo and ny ., > n/k for all f,v. Then, for all agents i € Population,
P[Pool is good | i € Pool] — 1.

Note that only constraint (1) prevents Phase II of the algorithm from running; the other two constraints
just make the resulting distribution less useful for our proofs. In practice, if it is possible to rescale the
m;,p and cap them at 1 such that their sum is £, running phase II on these marginals seems reasonable.

3.2 Algorithm Part II: Rounding of Marginals

The proof of Theorem 1 now hinges on our ability to implement the chosen 7; p for a good pool P as
marginals of a distribution over panels. This phase can be expressed in the language of randomized
dependent rounding: we need to define random variables X; = 1{i € Panel} for each i € Pool
such that E[X;] = m; p. This difficulty of this task stems from the ex-post requirements on the pool,
which require that 3, X; = k and that 3, ;;,_, X is close to k., /n for all feature-value pairs
f,v. While off-the-shelf dependent rounding [10] can guarantee the marginals and the sum-to-k
constraint, it cannot simultaneously ensure small deviations in terms of the representation of all f, v.

Our algorithm uses an iterative rounding procedure based on a celebrated theorem by Beck and
Fiala [3]. We sketch here how to obtain a deterministic rounding satisfying the ex-post constraints; the
argument can be randomized using results by Bansal [2] or via column generation (Appendix B.4.2).
The iterated rounding procedure manages a variable x; € [0, 1] for each i € Pool, which is initialized
as m; p. As the x; are repeatedly updated, more of them are fixed as either O or 1 until the x;
ultimately correspond to indicator variables of a panel. Throughout the rounding procedure, it
is preserved that > . x; = ) . m p = k, and the equalities Zi:f(i):u T, = Zi:f(i):u T, p are
preserved until at most | F'| variables x; in the sum are yet to be fixed. As a result, the final panel
has exactly & members, and the number of members from a feature-value pair f,v is at least
i fiy= TP — [F] = (1= a9 kny,/n — |F| (symmetrically for the upper bound).® As we
show in Appendix B.4,

Lemma 3. There is a polynomial-time sampling algorithm that, given a good pool P, produces a
random panel Panel such that (1) P[i € Panel] = m; p for all i € P, (2) |Panel| = k, and (3)
oiptiy=o Ti,p — [F| < [{i € Panel | f(i) = v} <32, 1=, mip + | F.

Our main theorem follows from a simple argument combining Lemmas 2 and 3 (Appendix B.5).

While the statement of Theorem 1 is asymptotic in the growth of «, the same proof gives bounds
on the end-to-end probabilities for finite values of . If one wants bounds for a specific instance,
however, bounds uniquely in terms of « tend to be loose, and one might want to relax Condition (2)
of a good pool in exchange for more equal end-to-end probabilities. In this case, plugging the specific
values of n, 7, k, ¢*, ny ,, into the proof allows to make better trade-offs and to extract sharper bounds.

4 Learning Participation Probabilities

The algorithm presented in the previous section relies on knowing ¢; for all agents ¢ in the pool.
While these g; are not directly observed, we can estimate them from data available to practitioners.

First, we assume that an agent ¢’s participation probability g; is a function of her feature vector F'(¢).
Furthermore, we assume that ¢+ makes her decision to participate through a specific generative model
known as simple independent action [11, as cited in [28]]. First, she flips a coin with probability 53
of landing on heads. Then, she flips a coin for each feature f € F’, where her coin pertaining to f
lands on heads with probability 3y, r;). She participates in the pool if and only if all coins she flips
land on heads, leading to the following functional dependency:

@i = Bo [1er Br.e)-

Bansal [2] gives a black-box polynomial-time method for randomizing our rounding procedure. We found
column-generation-based algorithms to be faster in practice, with guarantees that are at least as tight.

SObserve that our Beck-Fiala-based rounding procedure only increases the looseness of the quotas by a
constant additive term beyond the losses to concentration. The concentration properties of standard dependent
randomized rounding do not guarantee such a small gap with high probability. Moreover, our bound does not
directly depend on the number of quotas (i.e., twice the number of feature-value pairs) but only depends on the
number of features, which are often much fewer.



We think of 1 — 3, ,, as the probability that a reason specific to the feature-value pair f, v prevents
the agent from participating, and of 1 — 3 as the baseline probability of her not participating for
reasons independent of her features. The simple independent action model assumes that these reasons
occur independently between features, and that the agent participates iff none of the reasons occur.

If we had a representative sample of agents — say, the recipients of the invitation letters — labeled
according to whether they decided participate (“positive”) or not (“negative”), learning the parameters
£ would be straightforward. However, sortition practitioners only have access to the features of those
who enter the pool, and not of those who never respond. Without a control group, it is impossible to
distinguish a feature that is prevalent in the population and associated with low participation rate from
a rare feature associated with a high participation rate. Thankfully, we can use additional information:
in place of a negatively-labeled control group, we use a background sample — a dataset containing
the features for a uniform sample of agents, but without labels indicating whether they would
participate. Since this control group contains both positives and negatives, this setting is known as
contaminated controls. A final piece of information we use for learning is the fraction g := | Pool|/r,
which estimates the mean participation probability across the population. In other applications with
contaminated controls, including g in the estimation increased model identifiability [27].

To learn our model, we apply methods for maximum likelihood estimation (MLE) with contaminated
controls introduced by Lancaster and Imbens [16]. By reformulating the simple independent action
model in terms of the logarithms of the 5 parameters, their estimation (with a fixed value of §) reduces
to maximizing a concave function.

Theorem 4. The log-likelihood function for the simple independent action model under contaminated
controls is concave in the model parameters.

By this theorem, proven in Appendix C, we can directly and efficiently estimate 8. Logistic models,
by contrast, require more involved techniques for efficient estimation [27].

5 Experiments

Data. We validate our ¢; estimation and sampling algorithm on pool data from Climate Assembly
UK, a national-level sortition panel organized by the Sortition Foundation in 2020. The panel
consisted of £ = 110 many UK residents aged 16 and above. The Sortition Foundation invited all
members of 30 000 randomly selected households, which reached an estimated » = 60 000 eligible
participants.® Of these letter recipients, 1715 participated in the pool,” corresponding to a mean
participation probability of § ~ 2.9%. The feature-value pairs used for this panel can be read off
the axis of Fig. 1. We omit an additional feature climate concern level in our main analysis because
only 4 members of the pool have the value not at all concerned, whereas this feature-value pair’s
proportional number of panel seats is 6.5. To allow for proportional representation of groups with
such low participation rates, r should have been chosen to be much larger. We believe that the merits
of our algorithm can be better observed in parameter ranges in which proportionality can be achieved.
For the background sample, we used the 2016 European Social Survey [19], which contains 1915
eligible individuals, all with features and values matching those from the panel. Our implementation
is based on PyTorch and Gurobi, runs on consumer hardware, and its code is available on github.
Appendix D contains details on Climate Assembly UK, data processing, the implementation, and
further experiments (including the climate concern feature).

Estimation of 3 Parameters. We find that the baseline probability of participation is 5y = 8.8%.
Our (3, estimates suggest that (from strongest to weakest effect) highly educated, older, urban, male,
and non-white agents participate at higher rates. These trends reflect these groups’ respective levels
of representation in the pool compared to the underlying population, suggesting that our estimated (3
values fit our data well. Different values of the remaining feature, region of residence, seem to have
heterogeneous effects on participation, where being a resident of the South West gives substantially
increased likelihood of participation compared to other areas. The lowest participation probability
of any agent in the pool, according to these estimates, is ¢* = 0.78%, implying that o =~ 4.25. See
Appendix D.4 for detailed estimation results and validation.

"https://www.climateassembly.uk/

8Note that every person in the population has equal probability (30 000 /#households) of being invited. We
ignore correlations between members of the same household.

“Excluding 12 participants with gender “other” as no equivalent value is present in the background data.
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Figure 1: Expected and realized numbers of panel seats our algorithm gives each feature-value pair in
the Climate Assembly pool.

Running the Sampling Algorithm on the Pool. The estimated ¢; allow us to run our algorithm
on the Climate Assembly pool and thereby study its fairness properties for non-asymptotic input
sizes. We find that the Climate Assembly pool is good relative to our g; estimates, i.e., that it satisfies
Egs. (1) to (3). As displayed in Fig. 1, the marginals produced by Phase I of our algorithm give
each feature-value pair f,v an expected number of seats, 3, p ¢(;)—, TP, Within one seat of its

proportional share of the panel, kn¢,, /n. By Lemma 3, Phase II of our algorithm then may produce
panels from these marginals in which f, v receives up to |F'| = 6 fewer or more seats than its expected
number. However, as the black bars in Fig. 1 show, the actual number of seats received by any f, v
across any panel produced by our algorithm on this input never deviates from its expectation by
more than 4 seats. As a result, while Theorem 1 only implies lower quotas of .51 kny,/n — |F|
and upper quotas of 1.49 kny ,/n + |F'| for this instance, the shares of seats our algorithm produces
lie in the much narrower range kny,/n £ 5 (and even kny,, /n £ 3 for 18 out of 25 feature-value
pairs). This suggests that, while the quotas guaranteed by our theoretical results are looser than the
quotas typically set by practitioners, our algorithm will often produce substantially better ex-post
representation than required by the quotas.

End-to-End Probabilities. In the previous experiments, we were only able to argue about the algo-
rithm’s behavior on a single pool. To validate our guarantees on individual end-to-end probabilities,
we construct a synthetic population of size 60 million by duplicating the ESS participants, assuming
our estimated ¢; as their true participation probabilities. Then, for various values of r, we sample a
large number of pools. By computing 7; p values for all agents 4 in each pool, we can estimate each
agent’s end-to-end probability of ending up on the panel. Crucially, we assume that our algorithm
does not produce any panel for bad pools, analogously to Theorem 1. As shown in the following graph,
for » = 60000 (as was used in Climate Assembly UK), all agents in our synthetic population, across
the full range of ¢;, receive probability within .1 k/n of k/n (averaged over 100 000 random pools):

1.5k/n

end-to-end
probability

k/n A A HE A M +

5k/n

0.00 0.01 0.02 0.03 0.04 qi 0.05 0.06 0.07 0.08

That these end-to-end probabilities are so close to k/n also implies that bad pools are exceedingly
rare for this value of r. As we show in Appendix D.6, we see essentially the same behavior for values
of r down to roughly 15000, when o ~ 1. For even lower r, most pools are bad, so end-to-end
probabilities are close to zero under our premise that no panels are produced from bad pools.

To demonstrate that our algorithm’s theoretical guarantees lead to realized improvements in individual
fairness over the state-of-the-art, we re-run the experiment above, this time using the Sortition
Foundation’s greedy algorithm to select a panel from each generated pool. Since their algorithm
requires explicit quotas as input, we set the lower and upper quotas for each feature-value group to



be the floor and ceiling of that group’s proportional share of seats. This is a popular way of setting
quotas in current practice.
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The results of this experiment show that the individual end-to-end probabilities generated by the
currently-used greedy algorithm range from below 0.5 k/n up to 1.3 k/n. In comparison to the
end-to-end probabilities generated by our algorithm, those generated by the greedy algorithm are
substantially skewed, and tend to disadvantage individuals with either low or high participation
probabilities. One might argue that the comparison between our algorithm and the greedy is not quite
fair, since the greedy algorithm is required to satisfy stronger quotas. However, looser quotas do not
improve the behavior of the greedy algorithm; they simply make it behave more similarly to uniform
sampling from the pool, which further disadvantages agents with low participation probability (for
details, see Appendix D.5).

Taken together, these results illustrate that, although greedy algorithms like the one we examined
achieve proportional representation of a few pre-specified groups via quotas, they do not achieve
fairness to individuals or to groups unprotected by quotas. Compared to the naive solution of
uniform sampling from the pool, greedily striving for quota satisfaction does lead to more equal
end-to-end probabilities, as pool members with underrepresented features are more likely to be
selected for the panel than pool members with overrepresented features. However, this effect does
not neutralize self-selection bias when there are multiple features, even when selection bias acts
through the independent-action model as in our simulated population. Indeed, in this experiment,
the greedy algorithm insufficiently boosts the probabilities of agents in the intersection of multiple
low-participation groups (the agents with lowest g;), while also too heavily dampening the selection
probability of those in the intersection of multiple high-participation groups (with highest ¢;). These
observations illustrate the need for panel selection algorithms that explicitly control individual
probabilities.

6 Discussion

In a model in which agents stochastically decide whether to participate, our algorithm guarantees
similar end-to-end probabilities to all members of the population. Arguably, an agent’s decision to
participate when invited might not be random, but rather deterministically predetermined.

From the point of view of such an agent 4, does our algorithm, based on a model that doesn’t accurately
describe her (and her peers’) behavior, still grant her individual fairness? If ¢ deterministically
participates, the answer is yes (if not, of course she cannot be guaranteed anything). To see why, first
observe that, insofar as it concerns 7’s chance of ending up on the panel, all other agents might as
well participate randomly.'” Indeed, from agent 4’s perspective, the process looks like the stochastic
process where every other agent j participates with probability g;, where 7 herself always participates,
and where the algorithm erroneously assumes that ¢ joins only with some probability ¢;. Therefore,
the pool is still good with high probability conditioned on ¢ being in it, as argued in Lemma 2. Even
if the algorithm knew that ¢; = 1, 7’s end-to-end probability would be at least (1 — 0(1)) k/n, and
the fact that the algorithm underestimates her ¢; only increases her probability of being selected from
the pool. It follows that i’s end-to-end probability in this setting still must be at least around k/n.

Thus, in a deterministic model of participation, our individual guarantees are reminiscent of the
axiom of population monotonicity in fair division: If the whole population always participated when
invited, every agent would reach the panel with probability k/n. The fact that some agents do not
participate cannot (up to lower-order terms) decrease the selection probabilities for those who do.

19Fix a group of agents who, assuming the stochastic model, will participate if invited with probability ¢. Then,
sampling letter recipients from this set of agents in the stochastic model is practically equivalent to sampling
recipients from this group in the deterministic model, if a ¢ fraction of the group deterministically participate.



Broader Impact

As we discussed in the paper, sortition is becoming increasingly widespread as a method for making
collective decisions and gauging public opinion. Based on our experiences, practitioners seem
interested in the possibility of fairer sampling algorithms, so our research in this area has the potential
to influence how sortition panels are sampled in the real world.

From a fairness standpoint, our algorithm represents an improvement over currently-used algo-
rithms on several fronts. We maintain the approximate satisfaction of proportional quotas while
giving provable fairness guarantees to individuals, which in turn safeguard against systematic under-
representation of demographic groups unprotected by quotas. Currently-used greedy algorithms
give no such guarantees, and as we show in a real-world example, these theoretical differences can
translate to substantial practical differences in the equality of individual selection probabilities. Our
model is also robust to bias in the first stage of sampling: if a group is unfairly undersampled in the
invitation stage, an effective machine-learning method will estimate lower g; for this group, and the
algorithm will then correct this bias in the second stage. For these reasons, sortition panels selected
via our algorithm will in general be more representative of the population, hopefully resulting in their
decisions more fairly reflecting the interests and views of the entire population.

Of course, the methods we present do still come with fairness concerns. One main concern would
be that the learned ¢; values could erroneously overestimate the participation probabilities of those
in a certain group, thereby resulting in our sampling algorithm giving members of that group lower
probability they deserve in the second step, and thereby giving them unfairly low end-to-end selection
probability. We identify three main potential sources of inaccuracy in our MLE estimator: unreliable
or unrepresentative background data, small sample sizes from which to learn, and failure of our model
to accurately capture people’s participation decisions. While each of these factors could potentially
introduce inaccuracies in the g; values, it is unclear that any but the first issue is likely to result in
systematic bias against certain groups.

Another important consideration in panel selection is transparency about the selection process to
constituents on whose behalf the panel will make decisions. Increasing the transparency of how
these panels are selected can increase public trust in the fairness of this method of decision-making,
thus expanding sortition’s legitimacy and reach. Toward the goal of transparency, our approach
offers improvements on the state-of-the-art in several ways. First, this work gives formal theoretical
guarantees of multiple types of fairness, where currently-used methods give none. Our algorithm also
follows an explicit and explainable process for setting marginal selection probabilities, rather than
having them accidentally arise from a greedy process.

Despite these improvements, our methods still present transparency challenges. Since an individual’s
probability of selection from the pool depends on their estimated ¢; value, the fairness of the
process hinges on the entire machine-learning pipeline — data used, choice of model, and estimation
methods — multiple elements of which might be opaque to most of the population. Secondly, while
the use of protected attributes to counteract inequality is an accepted practice in the fairness in
classification literature, there may still be public discomfort about this idea. In particular, it may
be a source of discomfort that, in order to equalize end-to-end probabilities, our algorithm must
explicitly decrease the probability of certain people being selected from the pool due to their attributes.
One potentially comforting and easily-understood feature of our algorithm, however, is described
in Section 6: that if someone participates in the pool with probability 1, they are guaranteed an
end-to-end selection probability of at least k/n, regardless of their attributes.
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