
A Extended Method Details

In this section, we present some additional details used in our method. We introduce Training Signal
Annealing in Appendix A.1 and details for augmentation strategies in Appendix A.2.

A.1 Training Signal Annealing for Low-data Regime

In semi-supervised learning, we often encounter a situation where there is a huge gap between the
amount of unlabeled data and that of labeled data. Hence, the model often quickly overfits the
limited amount of labeled data while still underfitting the unlabeled data. To tackle this difficulty, we
introduce a new training technique, called Training Signal Annealing (TSA), which gradually releases
the “training signals” of the labeled examples as training progresses. Intuitively, we only utilize a
labeled example if the model’s confidence on that example is lower than a predefined threshold which
increases according to a schedule. Specifically, at training step t, if the model’s predicted probability
for the correct category p✓(y⇤ | x) is higher than a threshold ⌘t, we remove that example from the
loss function. Suppose K is the number of categories, by gradually increasing ⌘t from 1

K to 1, the
threshold ⌘t serves as a ceiling to prevent over-training on easy labeled examples.

We consider three increasing schedules of ⌘t with different application scenarios. Let T be the total
number of training steps, the three schedules are shown in Figure 5. Intuitively, when the model is
prone to overfit, e.g., when the problem is relatively easy or the number of labeled examples is very
limited, the exp-schedule is most suitable as the supervised signal is mostly released at the end of
training. In contrast, when the model is less likely to overfit (e.g., when we have abundant labeled
examples or when the model employs effective regularization), the log-schedule can serve well.

Figure 5: Three schedules of TSA. We set ⌘t = ↵t ⇤ (1� 1
K) + 1

K . ↵t is set to 1� exp(� t
T ⇤ 5), t

T
and exp((t

T � 1) ⇤ 5) for the log, linear and exp schedules.

A.2 Extended Augmentation Strategies for Different Tasks

Discussion on Trade-off Between Diversity and Validity for Data Augmentation. Despite that
state-of-the-art data augmentation methods can generate diverse and valid augmented examples as
discussed in section 2.2, there is a trade-off between diversity and validity since diversity is achieved
by changing a part of the original example, naturally leading to the risk of altering the ground-truth
label. We find it beneficial to tune the trade-off between diversity and validity for data augmentation
methods. For text classification, we tune the temperature of random sampling. On the one hand,
when we use a temperature of 0, decoding by random sampling degenerates into greedy decoding and
generates perfectly valid but identical paraphrases. On the other hand, when we use a temperature of
1, random sampling generates very diverse but barely readable paraphrases. We find that setting the
Softmax temperature to 0.7, 0.8 or 0.9 leads to the best performances.

RandAugment Details. In our implementation of RandAugment, each sub-policy is composed of
two operations, where each operation is represented by the transformation name, probability, and
magnitude that is specific to that operation. For example, a sub-policy can be [(Sharpness, 0.6, 2),
(Posterize, 0.3, 9)].

For each operation, we randomly sample a transformation from 15 possible transformations, a
magnitude in [1, 10) and fix the probability to 0.5. Specifically, we sample from the following 15
transformations: Invert, Cutout, Sharpness, AutoContrast, Posterize, ShearX, TranslateX, TranslateY,
ShearY, Rotate, Equalize, Contrast, Color, Solarize, Brightness. We find this setting to work well in

15

our first try and did not tune the magnitude range and the probability. Tuning these hyperparameters
might result in further gains in accuracy.

TF-IDF based word replacing Details. Ideally, we would like the augmentation method to generate
both diverse and valid examples. Hence, the augmentation is designed to retain keywords and replace
uninformative words with other uninformative words. We use BERT’s word tokenizer since BERT
first tokenizes sentences into a sequence of words and then tokenize words into subwords although
the model uses subwords as input.

Specifically, Suppose IDF(w) is the IDF score for word w computed on the whole corpus, and
TF(w) is the TF score for word w in a sentence. We compute the TF-IDF score as TFIDF(w) =
TF(w)IDF(w). Suppose the maximum TF-IDF score in a sentence x is C = maxi TFIDF(xi). To
make the probability of having a word replaced to negatively correlate with its TF-IDF score, we
set the probability to min(p(C � TFIDF(xi))/Z, 1), where p is a hyperparameter that controls the
magnitude of the augmentation and Z =

P
i(C � TFIDF(xi))/|x| is the average score. p is set to

0.7 for experiments on DBPedia.

When a word is replaced, we sample another word from the whole vocabulary for the replacement.
Intuitively, the sampled words should not be keywords to prevent changing the ground-truth labels of
the sentence. To measure if a word is keyword, we compute a score of each word on the whole corpus.
Specifically, we compute the score as S(w) = freq(w)IDF(w) where freq(w) is the frequency of
word w on the whole corpus. We set the probability of sampling word w as (maxw0 S(w0)�S(w))/Z 0

where Z
0 =

P
w maxw0 S(w0)� S(w) is a normalization term.

B Extended Experiments

B.1 Ablation Studies

Ablation Studies for Unlabeled Data Size Here we present an ablation study for unlabeled data
sizes. As shown in Table 6 and Table 7, given the same number of labeled examples, reducing the
number of unsupervised examples clearly leads to worse performance. In fact, having abundant
unsupervised examples is more important than having more labeled examples since reducing the
unlabeled data amount leads to worse performance than reducing the labeled data by the same ratio.

Unsup / # Sup 250 500 1,000 2,000 4,000

50,000 5.43 ± 0.96 4.80 ± 0.09 4.75 ± 0.10 4.73 ± 0.14 4.32 ± 0.08
20,000 11.01 ± 1.01 9.46 ± 0.14 8.57 ± 0.14 7.65 ± 0.17 7.31 ± 0.24
10,000 23.17 ± 0.71 18.43 ± 0.43 15.46 ± 0.58 12.52 ± 0.13 10.32 ± 0.20
5,000 35.41 ± 0.75 28.35 ± 0.60 22.06 ± 0.71 17.36 ± 0.15 13.19 ± 0.12

Table 6: Error rate (%) for CIFAR-10 with different amounts of labeled data and unlabeled data.

Unsup / # Sup 250 500 1,000 2,000 4,000

73,257 2.72 ± 0.40 2.27 ± 0.09 2.23 ± 0.07 2.20 ± 0.06 2.28 ± 0.10
20,000 5.59 ± 0.74 4.43 ± 0.15 3.81 ± 0.11 3.86 ± 0.14 3.64 ± 0.20
10,000 17.13 ± 12.85 7.59 ± 1.01 5.76 ± 0.29 5.17 ± 0.12 5.40 ± 0.12
5,000 31.58 ± 7.39 12.66 ± 0.81 6.28 ± 0.25 8.35 ± 0.36 7.76 ± 0.28

Table 7: Error rate (%) for SVHN with different amounts of labeled data and unlabeled data.

Ablations Studies on RandAugment We hypothesize that the success of RandAugment should
be credited to the diversity of the augmentation transformations, since RandAugment works very
well for multiple different datasets while it does not require a search algorithm to find out the most
effective policies. To verify this hypothesis, we test UDA’s performance when we restrict the number
of possible transformations used in RandAugment. As shown in Figure 6, the performance gradually
improves as we use more augmentation transformations.

16

Figure 6: Error rate of UDA on CIFAR-10 with different numbers of possible transformations in Ran-
dAugment. UDA achieves lower error rate when we increase the number of possible transformations,
which demonstrates the importance of a rich set of augmentation transformations.

Ablation Studies for TSA We study the effect of TSA on Yelp-5 where we have 2.5k labeled
examples and 6m unlabeled examples. We use a randomly initialized transformer in this study to rule
out factors of having a pre-trained representation.

As shown in Table 8, on Yelp-5, where there is a lot more unlabeled data than labeled data, TSA
reduces the error rate from 50.81 to 41.35 when compared to the baseline without TSA. More
specifically, the best performance is achieved when we choose to postpone releasing the supervised
training signal to the end of the training, i.e, exp-schedule leads to the best performance.

TSA schedule Yelp-5

7 50.81
log-schedule 49.06
linear-schedule 45.41
exp-schedule 41.35

Table 8: Ablation study for Training Signal Annealing (TSA) on Yelp-5 and CIFAR-10. The shown
numbers are error rates.

B.2 More Results on CIFAR-10, SVHN and Text Classification Datasets

Results with varied label set sizes on CIFAR-10 In Table 9, we show results for compared
methods of Figure 4a and results of Pseudo-Label [33], ⇧-Model [32], Mean Teacher [58]. Fully
supervised learning using 50,000 examples achieves an error rate of 4.23 and 5.36 with or without
RandAugment. The performance of the baseline models are reported by MixMatch [3].

To make sure that the performance reported by MixMatch and our results are comparable, we
reimplement MixMatch in our codebase and find that the results in the original paper is comparable
but slightly better than our reimplementation, which results in a more competitive comparison for
UDA. For example, our reimplementation of MixMatch achieves an error rate of 7.00 ± 0.59 and
7.39 ± 0.11 with 4,000 and 2,000 examples.

Methods / # Sup 250 500 1,000 2,000 4,000

Pseudo-Label 49.98 ± 1.17 40.55 ± 1.70 30.91 ± 1.73 21.96 ± 0.42 16.21 ± 0.11
⇧-Model 53.02 ± 2.05 41.82 ± 1.52 31.53 ± 0.98 23.07 ± 0.66 17.41 ± 0.37
Mean Teacher 47.32 ± 4.71 42.01 ± 5.86 17.32 ± 4.00 12.17 ± 0.22 10.36 ± 0.25
VAT 36.03 ± 2.82 26.11 ± 1.52 18.68 ± 0.40 14.40 ± 0.15 11.05 ± 0.31
MixMatch 11.08 ± 0.87 9.65 ± 0.94 7.75 ± 0.32 7.03 ± 0.15 6.24 ± 0.06
UDA (RandAugment) 5.43 ± 0.96 4.80 ± 0.09 4.75 ± 0.10 4.73 ± 0.14 4.32 ± 0.08

Table 9: Error rate (%) for CIFAR-10.

17

Results with varied label set sizes on SVHN In Table 10, we similarly show results for compared
methods of Figure 4b and results of methods mentioned above. Fully supervised learning using 73,257
examples achieves an error rate of 2.28 and 2.84 with or without RandAugment. The performance of
the baseline models are reported by MixMatch [3]. Our reimplementation of MixMatch also resulted
in comparable but higher error rates than the reported ones.

Methods / # Sup 250 500 1,000 2,000 4,000

Pseudo-Label 21.16 ± 0.88 14.35 ± 0.37 10.19 ± 0.41 7.54 ± 0.27 5.71 ± 0.07
⇧-Model 17.65 ± 0.27 11.44 ± 0.39 8.60 ± 0.18 6.94 ± 0.27 5.57 ± 0.14
Mean Teacher 6.45 ± 2.43 3.82 ± 0.17 3.75 ± 0.10 3.51 ± 0.09 3.39 ± 0.11
VAT 8.41 ± 1.01 7.44 ± 0.79 5.98 ± 0.21 4.85 ± 0.23 4.20 ± 0.15
MixMatch 3.78 ± 0.26 3.64 ± 0.46 3.27 ± 0.31 3.04 ± 0.13 2.89 ± 0.06
UDA (RandAugment) 2.72 ± 0.40 2.27 ± 0.09 2.23 ± 0.07 2.20 ± 0.06 2.28 ± 0.10

Table 10: Error rate (%) for SVHN.

(a) IMDb (b) Yelp-2

Figure 7: Accuracy on IMDb and Yelp-2 with different number of labeled examples. In the large-data
regime, with the full training set of IMDb, UDA also provides robust gains.

Experiments on Text Classification with Varied Label Set Sizes We also try different data sizes
on text classification tasks . As show in Figure 7, UDA leads to consistent improvements across all
labeled data sizes on IMDb and Yelp-2.

C Proof for Theoretical Analysis

Here, we provide a full proof for Theorem 1.

Theorem 1. Under UDA, let Pr(A) denote the probability that the algorithm cannot infer the label

of a new test example given m labeled examples from PL. Pr(A) is given by

Pr(A) =
X

i

Pi(1� Pi)
m
.

In addition, O(k/✏) labeled examples can guarantee an error rate of O(✏), i.e.,

m = O(k/✏) =) Pr(A) = O(✏).

Proof. Let x0 be the sampled test example. Then the probability of event A is

Pr(A) =
X

i

Pr(A and x
0 2 Ci) =

X

i

Pi(1� Pi)
m

18

To bound the probability, we would like to find the maximum value of
P

i Pi(1 � Pi)m. We can
define the following optimization function:

min
P

�
X

ci

Pi(1� Pi)
m

s.t.
X

ci

Pi = 1

The problem is a convex optimization problem and we can construct its the Lagrangian dual function:

L =
X

i

Pi(1� Pi)
m � �(

X

i

Pi � 1)

Using the KKT condition, we can take derivatives to Pi and set it to zero. Then we have

� = (1�mPi)(1� Pi)
m�1

Hence Pi = Pj for any i 6= j. Using the fact that
P

i Pi = 1, we have

Pi =
1

k

Plugging the result back into Pr(A) =
P

i Pi(1� Pi)m, we have

Pr(A) (1� 1

k
)m = exp(m log(1� 1

k
)) exp(�m

k
)

Hence when m = O(k✏), we have
Pr(A) = O(✏)

D Extended Related Work

Semi-supervised Learning. Due to the long history of semi-supervised learning (SSL), we refer read-
ers to [5] for a general review. More recently, many efforts have been made to renovate classic ideas
into deep neural instantiations. For example, graph-based label propagation [72] has been extended to
neural methods via graph embeddings [62, 63] and later graph convolutions [28]. Similarly, with the
variational auto-encoding framework and reinforce algorithm, classic graphical models based SSL
methods with target variable being latent can also take advantage of deep architectures [27, 36, 64].
Besides the direct extensions, it was found that training neural classifiers to classify out-of-domain
examples into an additional class [53] works very well in practice. Later, Dai et al. [12] shows that
this can be seen as an instantiation of low-density separation.

Apart from enforcing consistency on the noised input examples and the hidden representations, another
line of research enforces consistency under different model parameters, which is complementary
to our method. For example, Mean Teacher [58] maintains a teacher model with parameters being
the ensemble of a student model’s parameters and enforces the consistency between the predictions
of the two models. Recently, fast-SWA [1] improves Mean Teacher by encouraging the model to
explore a diverse set of plausible parameters. In addition to parameter-level consistency, SNTG [35]
also enforces input-level consistency by constructing a similarity graph between unlabeled examples.

Data Augmentation. Also related to our work is the field of data augmentation research. Besides
the conventional approaches and two data augmentation methods mentioned in Section 2.1, a recent
approach MixUp [70] goes beyond data augmentation from a single data point and performs interpo-
lation of data pairs to achieve augmentation. Recently, it has been shown that data augmentation can
be regarded as a kind of explicit regularization methods similar to Dropout [21].

Diverse Back Translation. Diverse paraphrases generated by back-translation has been a key
component in the significant performance improvements in our text classification experiments. We
use random sampling instead of beam search for decoding similar to [15]. There are also recent

19

works on generating diverse translations [19, 55, 29] that might lead to further improvements when
used as data augmentations.

Unsupervised Representation Learning. Apart from semi-supervised learning, unsupervised rep-
resentation learning offers another way to utilize unsupervised data. Collobert and Weston [8]
demonstrated that word embeddings learned by language modeling can improve the performance
significantly on semantic role labeling. Later, the pre-training of word embeddings was simplified and
substantially scaled in Word2Vec [39] and Glove [46]. More recently, pre-training using language
modeling and denoising auto-encoding has been shown to lead to significant improvements on many
tasks in the language domain [11, 47, 48, 23, 14]. There is also a growing interest in self-supervised
learning for vision [69, 20, 59].

Consistency Training in Other Domains. Similar ideas of consistency training has also been
applied in other domains. For example, recently, enforcing adversarial consistency on unsupervised
data has also been shown to be helpful in adversarial robustness [57, 68, 42, 4]. Enforcing consistency
w.r.t data augmentation has also been shown to work well for representation learning [24, 65].
Invariant representation learning [34, 52] applies the consistency loss not only to the predicted
distributions but also to representations and has been shown significant improvements on speech
recognition.

E Experiment Details

E.1 Text Classifications

Datasets. In our semi-supervised setting, we randomly sampled labeled examples from the full
supervised set4 and use the same number of examples for each category. For unlabeled data, we
use the whole training set for DBPedia, the concatenation of the training set and the unlabeled set
for IMDb and external data for Yelp-2, Yelp-5, Amazon-2 and Amazon-5 [38]5. Note that for Yelp
and Amazon based datasets, the label distribution of the unlabeled set might not match with that of
labeled datasets since there are different number of examples in different categories. Nevertheless,
we find it works well to use all the unlabeled data.

Preprocessing. We find the sequence length to be an important factor in achieving good performance.
For all text classification datasets, we truncate the input to 512 subwords since BERT is pretrained
with a maximum sequence length of 512. Further, when the length of an example is greater than
512, we keep the last 512 subwords instead of the first 512 subwords as keeping the latter part of the
sentence lead to better performances on IMDb.

Fine-tuning BERT on in-domain unsupervised data. We fine-tune the BERT model on in-domain
unsupervised data using the code released by BERT. We try learning rate of 2e-5, 5e-5 and 1e-4, batch
size of 32, 64 and 128 and number of training steps of 30k, 100k and 300k. We pick the fine-tuned
models by the BERT loss on a held-out set instead of the performance on a downstream task.

Random initialized Transformer. For the experiments with randomly initialized Transformer, we
adopt hyperparameters for BERT base except that we only use 6 hidden layers and 8 attention heads.
We also increase the dropout rate on the attention and the hidden states to 0.2, When we train UDA
with randomly initialized architectures, we train UDA for 500k or 1M steps on Amazon-5 and Yelp-5
where we have abundant unlabeled data.

BERT hyperparameters. Following the common BERT fine-tuning procedure, we keep a dropout
rate of 0.1, and try learning rate of 1e-5, 2e-5 and 5e-5 and batch size of 32 and 128. We also tune the
number of steps ranging from 30 to 100k for various data sizes.

UDA hyperparameters. We set the weight on the unsupervised objective � to 1 in all of our
experiments. We use a batch size of 32 for the supervised objective since 32 is the smallest batch
size on v3-32 Cloud TPU Pod. We use a batch size of 224 for the unsupervised objective when the
Transformer is initialized with BERT so that the model can be trained on more unlabeled data. We find
that generating one augmented example for each unlabeled example is enough for BERTFINETUNE.

4http://bit.ly/2kRWoof, https://ai.stanford.edu/~amaas/data/sentiment/
5https://www.kaggle.com/yelp-dataset/yelp-dataset, http://jmcauley.ucsd.edu/data/

amazon/

20

http://bit.ly/2kRWoof
https://ai.stanford.edu/~amaas/data/sentiment/
https://www.kaggle.com/yelp-dataset/yelp-dataset
http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/

All experiments in this part are performed on a v3-32 Cloud TPU Pod.

E.2 Semi-supervised learning benchmarks CIFAR-10 and SVHN

Hyperparameters for Wide-ResNet-28-2. We train our model for 500K steps. We apply Exponen-
tial Moving Average to the parameters with a decay rate of 0.9999. We use a batch size of 64 for
labeled data and a batch size of 448 for unlabeled data. The softmax temperature ⌧ is set to 0.4.
The confidence threshold � is set to 0.8. We use a cosine learning rate decay schedule: cos(7t

8T ⇤ ⇡
2)

where t is the current step and T is the total number of steps. We use a SGD optimizer with nesterov
momentum with the momentum hyperparameter set to 0.9. In order to reduce training time, we
generate augmented examples before training and dump them to disk. For CIFAR-10, we generate
100 augmented examples for each unlabeled example. Note that generating augmented examples
in an online fashion is always better or as good as using dumped augmented examples since the
model can see different augmented examples in different epochs, leading to more diverse samples.
We report the average performance and the standard deviation for 10 runs. Experiments in this part
are performed on a Tesla V100 GPU.

Hyperparameters for Shake-Shake and PyramidNet. For the experiments with Shake-Shake, we
train UDA for 300k steps and use a batch size of 128 for the supervised objective and use a batch size
of 512 for the unsuperivsed objective. For the experiments with PyramidNet+ShakeDrop, we train
UDA for 700k steps and use a batch size of 64 for the supervised objective and a batch size of 128 for
the unsupervised objective. For both models, we use a learning rate of 0.03 and use a cosine learning
decay with one annealing cycle following AutoAugment. Experiments in this part are performed on a
v3-32 Cloud TPU v3 Pod.

E.3 ImageNet

10% Labeled Set Setting. Unless otherwise stated, we follow the standard hyperparameters used in
an open-source implementation of ResNet.6 For the 10% labeled set setting, we use a batch size of
512 for the supervised objective and a batch size of 15,360 for the unsupervised objective. We use a
base learning rate of 0.3 that is decayed by 10 for four times and set the weight on the unsupervised
objective � to 20. We mask out unlabeled examples whose highest probabilities across categories are
less than 0.5 and set the Softmax temperature to 0.4. The model is trained for 40k steps. Experiments
in this part are performed on a v3-64 Cloud TPU v3 Pod.

Full Labeled Set Setting. For experiments on the full ImageNet, we use a batch size of 8,192 for
the supervised objective and a batch size of 16,384 for the unsupervised objective. The weight on the
unsupervised objective � is set to 1. We use entropy minimization to sharpen the prediction. We use
a base learning rate of 1.6 and decay it by 10 for four times. Experiments in this part are performed
on a v3-128 Cloud TPU v3 Pod.

6https://github.com/tensorflow/tpu/tree/master/models/official/resnet

21

	Introduction
	Unsupervised Data Augmentation (UDA)
	Background: Supervised Data Augmentation
	Unsupervised Data Augmentation
	Augmentation Strategies for Different Tasks
	Additional Training Techniques

	Theoretical Analysis
	Experiments
	Correlation between Supervised and Semi-supervised Performances
	Algorithm Comparison on Vision Semi-supervised Learning Benchmarks
	Evaluation on Text Classification Datasets
	Scalability Test on the ImageNet Dataset

	Related Work
	Conclusion
	Extended Method Details
	Training Signal Annealing for Low-data Regime
	Extended Augmentation Strategies for Different Tasks

	Extended Experiments
	Ablation Studies
	More Results on CIFAR-10, SVHN and Text Classification Datasets

	Proof for Theoretical Analysis
	Extended Related Work
	Experiment Details
	Text Classifications
	Semi-supervised learning benchmarks CIFAR-10 and SVHN
	ImageNet

