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B MCMC Sampling with Wavelet Flow

As discussed in Sec. 2.3, MCMC (i.e., No-U-Turn Sampler (NUTS) algorithm [3, 7]) is used to draw
annealed samples from the annealed Wavelet Flow model. In this section, we describe the annealed
sampling process. First, we describe how MCMC can be used to draw samples from any distribution
constructed as a normalizing flow. Next, we describe how the Wavelet Flow structure in particular
is used to enable faster sampling.

B.1 MCMC on an Annealed Flow

The target distribution for MCMC is the annealed normalizing flow and can be written as:

πX(x) ∝ pX(x)γ (1)
= pZ(f(x))

γ |detJ(x)|γ , (2)

where γ = 1/T 2 is the annealing parameter, f is the normalizing flow transformation, J is the
Jacobian of f , and the degree of annealing is specified as a temperature with T = 1/

√
γ, following

the convention of [6].

The No-U-Turn Sampler (NUTS) [3] requires only that the unnormalized probability density and its
gradients can be evaluated and can be applied directly to πX(x); however, the complex dependencies
that exist between dimensions of x can produce a challenging geometry of the probability density
which can be difficult for MCMC algorithms to sample from efficiently. Since we know the form of
the density is closely related to a known normalizing flow, we can use the inverse of this flow, g, to
reparameterize the density such that it becomes exactly Gaussian (and hence easier to sample) when
γ = 1. For γ 6= 1 the geometry should still be close to Gaussian and hence easier to sample from,
particularly with values of γ close to 1. Reparameterizing the annealed distribution in terms of z
gives:

πZ(z) ∝ πX(g(z))|detH(z)| (3)
= pZ(f(g(z)))

γ |detJ(g(z))|γ |detH(z)| (4)

= pZ(z)
γ |detH(z)|1−γ , (5)

where H = ∂g
∂z is the Jacobian of g, and the last line follows because g is the inverse of the flow

transformation f , i.e., g = f−1, and hence their Jacobians (and their determinants) are also inverses
of each other. NUTS is then used to perform MCMC on πZ(z). Samples from this Markov chain
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can then be transformed into samples from πX(x) by computing g(z) like in a normalizing flow. In
practice, we found that sampling in terms of z using the NUTS algorithm [3] is more efficient and
can be done with a larger step size and fewer divergences, compared to sampling in terms of x. We
use the implementation of NUTS provided in [7].

B.2 Multi-scale MCMC with Wavelet Flow

The above procedure can be inefficient if applied to the entire distribution of wavelet coefficients
due to the high dimensionality and complexity of the distributions. Instead, it is applied levelwise.
In particular, first samples are drawn using MCMC as described above from p(I0)

γ , then using the
last sample from that chain we sample from p(D0|I0)γ , construct I1 = h−1(I0,D0) and continue
this procedure for D1, D2 and so on until all detail coefficients have been generated and a sample
of I is drawn from the annealed distribution. This algorithm is shown in Algorithm S1.

Algorithm S1: Annealed sampling from Wavelet Flow using NUTS. γ is the annealing param-
eter, N is the number of levels in the Wavelet Flow, and m is the minimum number of NUTS
steps. In our experiments, m is set to 30. zi is the base value of the flow gi used to produce Di.
Subscript b indicates components for the initial base image.
Given γ,N,m:
Sample ẑb ∼ pγZb

(zb)

Sample zb ∼ πZn
(zb) using NUTS, initialized with ẑb, and m steps

Set I0 ← gb(zb)
for i← 0 to N − 1 do

Sample ẑi ∼ pγZi
(zi)

Sample zi ∼ πZi
(zi|Ii) using NUTS, initialized with ẑi, and m steps

Set Di ← gi(zi|Ii)
Set Ii+1 ← h−1(Ii,Di)

end

In our experiments, the Markov chains are initialized with a sample from pZ(f(g(z)))
γ , which is

straightforward since it is an annealed Gaussian and annealing simply scales the standard deviation.
This provides a reasonable initialization which is exact in the case where the flow has a constant
volume correction term or γ = 1. Samples from this initialization are not proper samples from the
annealed distribution but can still look reasonable, further suggesting that it is a good initialization.
Dual averaging adaptation is used to adjust the step size for the first 10 steps of NUTS [3]. A
minimum of 30 steps are taken before the next accepted proposal is taken as the sample. These
hyper-parameters were chosen since they gave good qualitative performance without using too much
compute. In our experiments, we observed that it takes roughly 30 minutes to sample an annealed
image at 256×256 using T = 0.97 on CelebA-HQ. It roughly takes an additional 50 minutes and 35
hours to further reach resolutions of 512× 512 and 1024× 1024, respectively. Levelwise sampling
can exploit parallelism at coarser scales but GPU memory limits when sampling details at higher
resolutions. The time it takes to draw samples using NUTS also is dependent on T with values of
T further from 1 generally taking longer. This is as expected as the target posterior for MCMC is
exactly an isotropic Gaussian for T = 1 and becomes less Gaussian-like as T varies from 1.

C Datasets and experimental setup

The details about the datasets used are outlined below.

ImageNet [9] Two downsampled versions at resolutions of 32 × 32 and 64 × 64 are used. The
training set consists of 1.28 million images, and the validation set contains 50 000 images. The
validation set is used as the test set, which is also done in [1, 6].

LSUN [11] This dataset contains multiple categories, but experiments are only performed on bed-
room, tower, and church which are most commonly used in generative modelling papers. The train-
ing sets of bedroom, tower, and church, contain three million, 700 000, and 126 000 images, re-
spectively. The validation sets of all three categories contain 300 images each. Image dimensions
in LSUN are not constant, pre-processing steps from [1] are performed to downsample the smallest
side to 96 pixels before taking 64× 64 random crops. The validation set is used as the test set.
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Figure S1: Coupling network architecture.
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Model/
Hyper-params.

Resolution

1 2 4 8 16 32 64 128 256 512 1024

ImageNet [9] 32
# Flow steps 8 8 16 16 16 16 - - - - -

Conv. channels 128 128 128 128 128 256 - - - - -
Patch size 1 2 4 8 16 16 - - - - -
Batch size 64 64 64 64 64 64 - - - - -

Parameter count 4m 4m 8m 8m 8m 32m - - - - -
ImageNet [9] 64

# Flow steps 8 8 16 16 16 16 16 - - - -
Conv. channels 128 128 128 128 128 256 256 - - - -

Patch size 1 2 4 8 16 16 32 - - - -
Batch size 64 64 64 64 64 64 48 - - - -

Parameter count 4m 4m 8m 8m 8m 32m 32m - - - -
LSUN [11]

(bedroom/tower
/church) 64
# Flow steps 8 8 16 16 16 16 30 - - - -

Conv. channels 16 64 64 64 64 128 320 - - - -
Patch size 1 2 4 8 16 32 64 - - - -
Batch size 64 64 64 64 64 64 64 - - - -

Parameter count 68k 1m 2m 2m 2m 8m 93m - - - -
CelebA-HQ [4]/

FFHQ [5]
1024

# Flow steps 8 8 16 16 16 16 16 16 16 16 16
Conv. channels 64 64 64 128 128 128 128 128 128 128 128

Patch size 1 2 4 8 16 32 32 64 64 64 64
Batch size 64 64 64 64 64 64 64 64 64 64 64

Parameter count 1m 1m 2m 8m 8m 8m 8m 8m 8m 8m 8m
Table S1: Hyper-parameters used with Wavelet Flow per level, and across the evaluation datasets.

CelebA-HQ [4] This dataset is an extension of the original CelebFaces Attributes dataset [8] which
contains 1024 × 1024 images produced by applying inpainting and super resolution to aligned and
cropped images. The 30 000 images in the dataset are separated into a training and test set using the
same split as in [6]. The lower levels of the Wavelet Flow experienced overfitting, so a validation
set is used to perform early stopping. The train, validation, and test sets contain 26 000, 1 000, and
3 000 images, respectively.

FFHQ [5] contains 70 000 high quality 1024×1024 aligned and cropped face images retrieved from
Flickr. A training, validation, and test split were generated with 59 000, 4 000, and 7 000 images,
respectively. As with CelebA-HQ lower levels of Wavelet Flow experienced overfitting and early
stopping is used.

As stated in Sec. 3 of the manuscript, hyper-parameters are set differently for each dataset to keep
the number of parameters below but within the range of compared methods. These hyper-parameters
are shown in Table S1. The number of parameters for each variant is show in Table S2.

Model ImageNet [9] LSUN [11] CelebA-HQ [4] & FFHQ [5]
32× 32 64× 64 64× 64 1024× 1024

RealNVP [1] 46m 96m 96m -
Glow [6] 66m 111m 111m -

Wavelet Flow 64m 96m 108m 70m
Table S2: Comparison of the total number of parameters used in Wavelet Flow, Glow, and RealNVP.
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Figure S2: A Haar transformation on a single channel image. In practice, the Haar transformation is
applied channel-wise. This transformation produces a low-pass and detail component denoted as hl
and hd, respectively. hd is comprised of the coefficients generated by the last three Haar filters that
resemble vertical, horizontal, and diagonal derivative filters.

Coupling networks use a residual architecture [2], shown in Fig. S1. Inputs used to condition a
coupling layer are concatenated to the input of its coupling network. As in [1], a hyperbolic tangent
is applied to the scale component of the affine transform. The number of output channels in the
convolutional layers is the same across the entire level of a Wavelet Flow.

Coupling layers are arranged into steps. Following Glow [6], the forward pass of a step is composed
of an activation normalization (actnorm), invertible 1× 1, and a coupling layer.

The Haar transformation used is shown in Fig. S2. The values of the low-pass component is effec-
tively two times the box-downsampled image. In practice, it may be convenient to scale the low-pass
component by 1

2 to eliminate any inconvenient scaling factors.

D Additional results

Table S3 provides wall-clock times for training Wavelet Flow on each dataset, and at each level.
Times also consider early stopping, where applicable.

Timing measured in seconds-per-image is provided in Table S4. Results are averaged over 100
iterations.

Additional quantitative results in bits-per-dimension for 5-bit CelebA-HQ at 256× 256 is shown in
Table S5.

Frechet Inception Distance [10] scores for Glow and Wavelet flow on LSUN 64 × 64 are shown in
Table S6.

E Additional samples

Additional samples without annealing are shown in Figs. S3, S4, S5, S6, S7, S8, S9. Additional
samples with annealing using the previously described MCMC method with T = 0.97, are shown
in Figs. S10, S11, S12, S13, S14, S15, S16. Additional high resolution samples from CelebA-HQ,
and FFHQ, are shown in Figs. S17, S18. Additional 8× super resolution samples from CelebA-HQ,
and FFHQ, are shown in Figs. S19, S20.
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Level Resolution FFHQ [5] CelebA-HQ [4] ImageNet [9] LSUN [11]
0 1× 1 6 6 6 6
1 2× 2 6 6 96 12
2 4× 4 6 6 48 14
3 8× 8 6 6 168 36
4 16× 16 18 12 168 48
5 32× 32 120 36 168 120
6 64× 64 120 120 168 336
7 128× 128 120 120 - -
8 256× 256 120 120 - -
9 512× 512 156 120 - -

10 1024× 1024 168 120 - -
Total 846 672 822 572

Table S3: Wavelet Flow training times in GPU hours on the evaluation datasets.

Method CelebA-HQ [4] 256× 256 ImageNet [9] 64× 64 LSUN [11] 64× 64
Glow [6] 1.79 0.956 0.954

Ours 0.0147 0.0144 0.0293
Table S4: Training speed measured using seconds-per-image averaged over 100 iterations. Values
for Glow were obtained by running their provided code on our hardware, a single NVIDIA TITAN
X (Pascal) GPU, and without using any distributed computation frameworks. Note that the Wavelet
Flow model for CelebA-HQ 256×256 is contained within the larger model for 1024×1024 images.

Method Celeba-HQ [4] 256× 256 5-bit
Glow [6] (Additive) 1.03

Ours (Additive) 1.12
Ours (Affine) 0.94

Table S5: Quantitative results in bits-per-dimension on 5-bit CelebA-HQ 256× 256.

Method LSUN [11] 64× 64
Bedrooms Tower Church

Glow [6] (affine) 60.03 54.17 59.35
Ours 121.20 87.20 93.08

Table S6: Frechet Inception Distance [10] scores on LSUN 64 × 64 between Glow (affine) and
Wavelet Flow, both without annealing.
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Figure S3: Samples from ImageNet (32× 32) without annealing.
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Figure S4: Samples from ImageNet (64× 64) without annealing.
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Figure S5: Samples from LSUN bedroom (64× 64) without annealing.
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Figure S6: Samples from LSUN tower (64× 64) without annealing.
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Figure S7: Samples from LSUN church (64× 64) without annealing.
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Figure S8: Samples from CelebA-HQ (256× 256) without annealing.
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Figure S9: Samples from FFHQ (256× 256) without annealing.
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Figure S10: Annealed samples from ImageNet (32× 32), with T = 0.97.
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Figure S11: Annealed samples from ImageNet (64× 64), with T = 0.97.
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Figure S12: Annealed samples from LSUN bedroom (64× 64), with T = 0.97.
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Figure S13: Annealed samples from LSUN tower (64× 64), with T = 0.97.
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Figure S14: Annealed samples from LSUN church (64× 64), with T = 0.97.
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Figure S15: Annealed samples from CelebA-HQ (256× 256), with T = 0.97.
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Figure S16: Annealed samples from FFHQ (256× 256), with T = 0.97.

20



Figure S17: Annealed high resolution (1024× 1024) samples from CelebA-HQ, with T = 0.97.
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Figure S18: Annealed high resolution (1024× 1024) samples from FFHQ, with T = 0.97.
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Figure S19: 8× super resolution on CelebA-HQ. The smaller images (top) are the original images at
(128×128), while the larger images (bottom) are the annealed super resolution results (1024×1024),
with T = 0.97.
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Figure S20: 8× super resolution on FFHQ. The smaller images (top) are the original images at
(128×128), while the larger images (bottom) are the annealed super resolution results (1024×1024),
with T = 0.97.
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