
Reinforcement Learning with General Value Function
Approximation: Provably Efficient Approach via

Bounded Eluder Dimension

Ruosong Wang
Carnegie Mellon University
ruosongw@andrew.cmu.edu

Ruslan Salakhutdinov
Carnegie Mellon University
rsalakhu@cs.cmu.edu

Lin F. Yang
University of California, Los Angeles

linyang@ee.ucla.edu

Abstract

Value function approximation has demonstrated phenomenal empirical success in
reinforcement learning (RL). Nevertheless, despite a handful of recent progress on
developing theory for RL with linear function approximation, the understanding of
general function approximation schemes largely remains missing. In this paper,
we establish the first provably efficient RL algorithm with general value function
approximation. We show that if the value functions admit an approximation with
a function class F , our algorithm achieves a regret bound of Õ(poly(dH)

√
T)

where d is a complexity measure of F that depends on the eluder dimension [Russo
and Van Roy, 2013] and log-covering numbers, H is the planning horizon, and
T is the number interactions with the environment. Our theory generalizes the
linear MDP assumption to general function classes. Moreover, our algorithm is
model-free and provides a framework to justify the effectiveness of algorithms
used in practice.

1 Introduction

In reinforcement learning (RL), we study how an agent maximizes the cumulative reward by interact-
ing with an unknown environment. RL finds enormous applications in a wide variety of domains,
e.g., robotics [32], education [33], gaming-AI [50], etc. The unknown environment in RL is often
modeled as a Markov decision process (MDP), in which there is a set of states S that describes all
possible status of the environment. At a state s ∈ S, an agent interacts with the environment by
taking an action a from an action space A. The environment then transits to another state s′ ∈ S
which is drawn from some unknown transition distribution, and the agent also receives an immediate
reward. The agent interacts with the environment episodically, where each episode consists of H
steps. The goal of the agent is to interact with the environment strategically such that after a certain
number of interactions, sufficient information is collected so that the agent can act nearly optimally
afterward. The performance of an agent is measured by the regret, which is defined as the difference
between the total rewards collected by the agent and those a best possible agent would collect.

Without additional assumptions on the structure of the MDP, the best possible algorithm achieves a
regret bound of Θ̃(

√
H|S||A|T)1 [7], where T is the total number of steps the agent interacts with

the environment. In other words, the algorithm learns to interact with the environment nearly as well

1Throughout the paper, we use Õ(·) to suppress logarithmic factors.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

as an optimal agent after roughly H|S||A| steps. This regret bound, however, can be unacceptably
large in practice. E.g., the game of Go has a state space with size 3361, and the state space of certain
robotics applications can even be continuous. Practitioners apply function approximation schemes to
tackle this issue, i.e., the value of a state-action pair is approximated by a function which is able to
predict the value of unseen state-action pairs given a few training samples. The most commonly used
function approximators are deep neural networks (DNN) which have achieved remarkable success in
playing video games [40], the game of Go [52], and controlling robots [3]. Nevertheless, despite the
outstanding achievements in solving real-world problems, no convincing theoretical guarantees were
known about RL with general value function approximators like DNNs.

Recently, there is a line of research trying to understand RL with simple function approximators, e.g.
linear functions. For instance, given a feature extractor which maps state-action pairs to d-dimensional
feature vectors, [63, 64, 29, 9, 41, 26, 67, 20, 61, 66, 19] developed algorithms with regret bound
proportional to poly(dH)

√
T which is independent of the size of S × A. Although being much

more efficient than algorithms for the tabular setting, these algorithms require a well-designed feature
extractor and also make restricted assumptions on the transition model. This severely limits the scope
that these approaches can be applied to, since obtaining a good feature extractor is by no means easy
and successful algorithms used in practice usually specify a function class (e.g. DNNs with a specific
architecture) rather than a feature extractor. To our knowledge, the following fundamental question
about RL with general function approximation remains unanswered at large:

Does RL with general function approximation learn to interact with an unknown environment
provably efficiently?

In this paper, we address the above question by developing a provably efficient (both computationally
and statistically) Q-learning algorithm that works with general value function approximators. To run
the algorithm, we are only required to specify a value function class, without the need for feature
extractors. Since this is the same requirement as algorithms used in practice like deepQ-learning [40],
our theoretical guarantees on the algorithm provide a justification of why practical algorithms work
so well. Furthermore, we show that our algorithm enjoys a regret bound of Õ(poly(dH)

√
T) where

d is a complexity measure of the function class that depends on the eluder dimension [48] and
log-covering numbers. Our theory generalizes the linear MDP assumption in [63, 29] to general
function classes, and our algorithm provides comparable regret bounds when applied to the linear
case.

1.1 Related Work

Tabular RL. There is a long line of research on the sample complexity and regret bound for RL
in the tabular setting. See, e.g., [31, 30, 55, 54, 25, 58, 6, 36, 14, 46, 47, 2, 7, 51, 15, 28, 65, 68, 60]
and references therein. In particular, [25] proved a tight regret lower bound Ω(

√
H|S||A|T) and

[7] showed the first asymptotically tight regret upper bound Õ(
√
H|S||A|T). Although these

algorithms achieve asymptotically tight regret bounds, they can not be applied in problems with huge
state space due to the linear dependency on

√
|S| in the regret bound. Moreover, the regret lower

bound Ω(
√
H|S||A|T) demonstrates that without further assumptions, RL with huge state space is

information-theoretically hard to solve. In this paper, we exploit the structure that the value functions
lie in a function class with bounded complexity and devise an algorithm whose regret bound scales
polynomially in the complexity of the function class instead of the number of states.

Bandits. Another line of research studies bandits problems with linear function approximation [13,
1, 38]. These algorithms are later generalized to the generalized linear model [23, 37]. A novel
work [48] studies bandits problems with general function approximation and proves that UCB-type
algorithms and Thompson sampling achieve a regret bound of Õ(

√
dimE · log(N)T) where dimE

is the eluder dimension of the function class and N is the covering number of the function class. In
this paper we study the RL setting with general value function approximation, and the regret bound
of our algorithm also depends on the eluder dimension and the log-covering number of the function
class. However, we would like to stress that the RL setting is much more complicated than the bandits
setting, since the bandits setting is a special case of the RL setting with planning horizon H = 1 and
thus there is no state transition in the bandits setting.

2

RL with Linear Function Approximation. Recently there has been great interest in designing
and analyzing algorithms for RL with linear function approximation. See, e.g., [63, 64, 29, 9, 41,
26, 67, 20, 61, 18, 66, 19]. These papers design provably efficient algorithms under the assumption
that there is a well-designed feature extractor available to the agent and the value function or the
model can be approximated by a linear function or a generalized linear function of the feature vectors.
Moreover, the algorithm in [66] requires solving the Planning Optimization Program which could
be computationally intractable. In this paper, we study RL with general function approximation in
which case a feature extractor may not even be available, and our goal is to develop an efficient (both
computationally and statistically) algorithm with provable regret bounds without making explicit
assumptions on the model.

RL with General Function Approximation. It has been shown empirically that combining RL
algorithms with neural network function approximators could lead to superior performance on various
tasks [39, 49, 62, 59, 52, 3]. Theoretically, [45] analyzed the regret bound of Thompson sampling
when applied to RL with general function approximation. Compared to our result, [45] makes explicit
model-based assumptions (the transition operator and the reward function lie in a function class)
and their regret bound depends on the global Lipschitz constant. In contrast, in this paper we focus
on UCB-type algorithms with value-based assumptions, and our regret bound does not depend on
the global Lipschitz constant. Recently, Ayoub et al. [5] proposed an algorithm for model-based
RL with general function approximation based on value-targeted regression, and the regret bound
of their algorithm also depends on the eluder dimension. On the contrary, in this paper we focus on
value-based RL algorithms. In particular, for the case of linear functions, our assumption is equivalent
to the linear MDP assumption in [63, 29], while the assumption in [5] is equivalent to the assumption
that the true model is a linear combination of some known models [42, 69].

Recent theoretical progress has produced provably sample efficient algorithms for RL with general
function approximation, but many of these algorithms are relatively impractical. In particular,
[27, 56, 16] devised algorithms whose sample complexity or regret bound can be upper bounded in
terms of the Bellman rank or the witness rank. However, these algorithms are not computationally
efficient. The algorithm in [19] can also be applied in RL with general function approximation.
However, their algorithms require the transition of the MDP to be deterministic. There is also a
line of research analyzing Approximate Dynamic Programming (ADP) in RL with general function
approximation [8, 43, 57, 4, 44, 10]. These papers focus on the batch RL setting, and there is
no exploration components in the algorithms. The sample complexity of these algorithms usually
depends on the concentrability coefficient and is thus incomparable to our results.

2 Preliminaries

Throughout the paper, for a positive integer N , we use [N] to denote the set {1, 2, . . . , N}.

Episodic Markov Decision Process. Let M = (S,A, P, r,H, µ) be a Markov decision process
(MDP) where S is the state space, A is the action space with bounded size, P : S × A → ∆ (S)
is the transition operator which takes a state-action pair and returns a distribution over states, r :
S × A → [0, 1] is the deterministic reward function2, H ∈ Z+ is the planning horizon (episode
length), and µ ∈ ∆ (S) is the initial state distribution.

A policy π chooses an action a ∈ A based on the current state s ∈ S and the time step h ∈ [H].
Formally, π = {πh}Hh=1 where for each h ∈ [H], πh : S → A maps a given state to an action.
The policy π induces a trajectory s1, a1, r1, s2, a2, r2, . . . , sH , aH , rH , where s1 ∼ µ, a1 = π1(s1),
r1 = r(s1, a1), s2 ∼ P (s1, a1), a2 = π2(s2), etc.

An important concept in RL is the Q-function. Given a policy π, a level h ∈ [H] and a state-action
pair (s, a) ∈ S × A, the Q-function is defined as Qπh(s, a) = E

[∑H
h′=h rh′ | sh = s, ah = a, π

]
.

Similarly, the value function of a given state s ∈ S is defined as V πh (s) = E
[∑H

h′=h rh′ | sh = s, π
]
.

2We assume the reward function is deterministic only for notational convience. Our results can be readily
generalized to the case that rewards are stochastic.

3

We use π∗ to denote an optimal policy, i.e., π∗ is a policy that maximizes E
[∑H

h=1 rh | π
]
. We also

denote Q∗h(s, a) = Qπ
∗

h (s, a) and V ∗h (s) = V π
∗

h (s).

In the episodic MDP setting, the agent aims to learn the optimal policy by interacting with the
environment during a number of episodes. For each k ∈ [K], at the beginning of the k-th episode, the
agent chooses a policy πk which induces a trajectory, based on which the agent chooses policies for
later episodes. We assume K is fixed and known to the agent, though our algorithm and analysis can
be readily generalized to the case that K is unknown in advance. Throughout the paper, we define
T := KH to be the total number of steps that the agent interacts with the environment.

We adopt the following regret definition in this paper.
Definition 1. The regret of an algorithm A after K episodes is defined as Reg(K) =∑K
k=1 V

∗
1

(
sk1
)
− V πk1

(
sk1
)

where πk is the policy played by algorithm A at the k-th episode.

Additional Notations. For a function f : S × A → R, define ‖f‖∞ = max(s,a)∈S×A |f(s, a)|.
Similarly, for a function v : S → R, define ‖v‖∞ = maxs∈S |v(s)|. Given a dataset
D = {(si, ai, qi)}|D|i=1 ⊆ S × A × R, for a function f : S × A → R, define ‖f‖D =(∑|D|

t=1 (f(st, at)− qt)2
)1/2

. For a set of state-action pairs Z ⊆ S×A, for a function f : S ×A →

R, define ‖f‖Z =
(∑

(s,a)∈Z (f(s, a))
2
)1/2

. For a set of functions F ⊆ {f : S × A → R}, we
define the width function of a state-action pair (s, a) as w(F , s, a) = maxf,f ′∈F ′ f(s, a)− f ′(s, a).

Our Assumptions. We make the following assumption on the Q-function throughout the paper.
Assumption 1. There exists a set of functions F ⊆ {f : S × A → [0, H + 1]}, such that for any
V : S → [0, H], there exists fV ∈ F which satisfies

fV (s, a) = r(s, a) +
∑
s′∈S

P (s′ | s, a)V (s′) ∀(s, a) ∈ S ×A. (1)

Intuitively, Assumption 1 requires that for any V : S → [0, H], after applying the Bellman backup
operator, the resulting function lies in the function class F . We note that Assumption 1 is very general
and includes many previous assumptions as special cases. For instance, for the tabular RL setting, F
can be the entire function space of S × A → [0, H + 1]. For linear MDPs [63, 64, 29, 61] where
both the reward function r : S × A → [0, 1] and the transition operator P : S × A → ∆ (S) are
linear functions of a given feature extractor φ : S ×A → Rd, F can be defined as the class of linear
functions with respect to φ. In practice, when F is a function class with sufficient expressive power
(e.g. deep neural networks), Assumption 1 (approximately) holds. In the supplementary material, we
consider a misspecified setting where (1) only holds approximately, and we show that our algorithm
still achieves provable regret bounds in the misspecified setting.

The complexity of F determines the learning complexity of the RL problem under consideration. To
characterize the complexity of F , we use the following definition of eluder dimension which was first
introduced in [48] to characterize the complexity of different function classes in bandits problems.
Definition 2 (Eluder dimension). Let ε ≥ 0 and Z = {(si, ai)}ni=1 ⊆ S × A be a sequence of
state-action pairs.

• A state-action pair (s, a) ∈ S ×A is ε-dependent on Z with respect to F if any f, f ′ ∈ F
satisfying ‖f − f ′‖Z ≤ ε also satisfies |f(s, a)− f ′(s, a)| ≤ ε.

• An (s, a) is ε-independent of Z with respect to F if (s, a) is not ε-dependent on Z .

• The ε-eluder dimension dimE(F , ε) of a function class F is the length of the longest
sequence of elements in S ×A such that, for some ε′ ≥ ε, every element is ε′-independent
of its predecessors.

It has been shown in [48] that dimE(F , ε) ≤ |S||A| when S and A are finite. When F is the class
of linear functions, i.e., fθ(s, a) = θ>φ(s, a) for a given feature extractor φ : S × A → Rd,
dimE(F , ε) = O(d log(1/ε)). When F is the class generalized linear functions of the form

4

fθ(s, a) = g(θ>φ(s, a)) where g is an increasing continuously differentiable function, dimE(F , ε) =

O(dr2 log(h/ε)) where r =
supθ,(s,a)∈S×A g

′(θ>φ(s,a))

infθ,(s,a)∈S×A g′(θ>φ(s,a))
and h = supθ,(s,a)∈S×A g

′(θ>φ(s, a)).

In [45], it has been shown that when F is the class of quadratic functions, i.e., fΛ(s, a) =
φ(s, a)>Λφ(s, a) where Λ ∈ Rd×d, dimE(F , ε) = O(d2 log(1/ε)).

We further assume the function class F and the state-action pairs S ×A have bounded complexity in
the following sense.

Assumption 2. For any ε > 0, the following holds:

1. there exists an ε-cover C(F , ε) ⊆ F with size |C(F , ε)| ≤ N (F , ε), such that for any
f ∈ F , there exists f ′ ∈ C(F , ε) with ‖f − f ′‖∞ ≤ ε;

2. there exists an ε-cover C(S×A, ε) with size |C(S×A, ε)| ≤ N (S×A, ε), such that for any
(s, a) ∈ S ×A, there exists (s′, a′) ∈ C(S ×A, ε) with maxf∈F |f(s, a)− f(s′, a′)| ≤ ε.

Assumption 2 requires both the function class F and the state-action pairs S × A have bounded
covering numbers. Since our regret bound depends logarithmically on N (F , ·) and N (S ×A, ·), it
is acceptable for the covers to have exponential size. In particular, when S and A are finite, it is clear
that logN (F , ε) = Õ(|S||A|) and logN (S × A, ε) = log(|S||A|). For the case of d-dimensional
linear functions and generalized linear functions, logN (F , ε) = Õ(d) and logN (S ×A, ε) = Õ(d).
For quadratic functions, logN (F , ε) = Õ(d2) and logN (S ×A, ε) = Õ(d).

3 Algorithm

Overview. The full algorithm is formally presented in Algorithm 1. From a high-level point of
view, our algorithm resembles least-square value iteration (LSVI) and falls in a similar framework
as the algorithm in [29, 61]. At the beginning of each episode k ∈ [K], we maintain a replay buffer
{(sτh, aτh, rτh)}(h,τ)∈[H]×[k−1] which contains all existing samples. We set QkH+1 = 0, and calculate
QkH , Q

k
H−1, . . . , Q

k
1 iteratively as follows. For each h = H,H − 1, . . . , 1,

fkh (·, ·)← arg min
f∈F

k−1∑
τ=1

H∑
h′=1

(
f(sτh′ , a

τ
h′)−

(
rτh′ + max

a∈A
Qkh+1(sτh′+1, a)

))2

(2)

and define Qkh(·, ·) = min
{
fkh (·, ·) + bkh(·, ·), H

}
. Here, bkh(·, ·) is a bonus function to be defined

shortly. The above equation optimizes a least squares objective to estimate the next step value.
We then play the greedy policy with respect to Qkh to collect data for the k-th episode. The above
procedure is repeated until all the K episodes are completed.

Stable Upper-Confidence Bonus Function. With more collected data, the least squares predictor
is expected to return a better approximate the true Q-function. To encourage exploration, we
carefully design a bonus function bkh(·, ·) which guarantees that, with high probability, Qkh+1(s, a)

is an overestimate of the one-step backup. The bonus function bkh(·, ·) is guaranteed to tightly
characterize the estimation error of the one-step backup r(·, ·) +

∑
s′∈S P (s′ | ·, ·)V kh+1(s′), where

V kh+1(·) = maxa∈AQ
k
h+1(·, a) is the value function of the next step. The bonus function bkh(·, ·) is

designed by carefully prioritizing important data and hence is stable even when the replay buffer has
large cardinality. A detailed explanation and implementation of bkh(·, ·) is provided in Section 3.1.

3.1 Stable UCB via Importance Sampling

In this section, we formally define the bonus function bkh(·, ·) used in Algorithm 1. The bonus function
is designed to estimate the confidence interval of our estimate of the Q-function. In our algorithm, we
define the bonus function to be the width function bkh(·, ·) = w(Fkh , ·, ·) where the confidence region
Fkh is defined so that r(·, ·) +

∑
s′∈S P (s′ | ·, ·)V kh+1(s′) ∈ Fkh with high probability. By definition

of the width function, bkh(·, ·) gives an upper bound on the confidence interval of the estimate of the
Q-function, since the width function maximizes the difference between all pairs of Q-functions that
lie in the confidence region. We note that similar ideas have been applied in the bandit literature [48],

5

Algorithm 1 F-LSVI(δ)

1: Input: failure probability δ ∈ (0, 1) and number of episodes K
2: for episode k = 1, 2, . . . ,K do
3: Receive initial state sk1 ∼ µ
4: QkH+1(·, ·)← 0 and V kH+1(·)← 0

5: Zk ← {(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H]

6: for h = H, . . . , 1 do
7: Dkh ←

{(
sτh′ , a

τ
h′ , r

τ
h′ + V kh+1(sτh′+1, a)

)}
(τ,h′)∈[k−1]×[H]

8: fkh ← arg minf∈F ‖f‖2Dkh
9: bkh(·, ·)← Bonus(F , fkh , Zk, δ) (Algorithm 3)

10: Qkh(·, ·)← min{fkh (·, ·) + bkh(·, ·), H} and V kh (·) = maxa∈AQ
k
h(·, a)

11: πkh(·)← arg maxa∈AQ
k
h(·, a)

12: for h = 1, 2, . . . ,H do
13: Take action akh ← πkh(skh) and observe skh+1 ∼ P (· | skh, akh) and rkh = r(skh, a

k
h)

in reinforcement learning with linear function approximation [20] and in reinforcement learning with
general function apprximation in deterministic systems [19].

To define the confidence regionFkh , a natural definition would beFkh =
{
f ∈ F | ‖f − fkh‖2Zk ≤ β

}
where β is defined so that r(·, ·) +

∑
s′∈S P (s′ | ·, ·)V kh+1(s′) ∈ Fkh with high probability, and recall

that Zk = {(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H] is the set of state-action pairs defined in Line 5. However, as
one can observe, the complexity of such a bonus function could be extremely high as it is defined
by a dataset Zk whose size can be as large as T = KH . A high-complexity bonus function could
potentially introduce instability issues in the algorithm. Technically, we require a stable bonus
function to allow for highly concentrated estimate of the one-step backup so that the confidence
region Fkh is accurate even for bounded β. Our strategy to “stabilize” the bonus function is to reduce
the size of the dataset by importance sampling, so that only important state-action pairs are kept
and those unimportant ones (which potentially induce instability) are ignored. Another benefit of
reducing the size of the dataset is that it leads to superior computational complexity when evaluating
the bonus function in practice. In later part of this section, we introduce an approach to estimate the
importance of each state-action pair and a corresponding sampling method based on that. Finally,
we note that importance sampling has also been applied in practical RL systems. For instance, in
prioritized experience replay [49], the importance is measured by the TD error.

Sensitivity Sampling. Here we present a framework to subsample a given dataset, so that the
confidence region is approximately preserved while the size of the dataset is greatly reduced. Our
framework is built upon the sensitivity sampling technique introduced in a different context [35, 21,
22] to compress datasets. Our definition of sensitivity is similar to those in previous results [21, 22].

Definition 3. For a given set of state-action pairs Z ⊆ S × A and a function class F , for each
z ∈ Z , define the λ-sensitivity of (s, a) with respect to Z and F to be

sensitivityZ,F,λ(s, a) = max
f,f ′∈F

‖f−f ′‖2Z≥λ

(f(s, a)− f ′(s, a))2

‖f − f ′‖2Z
.

Sensitivity measures the importance of each data point z in Z by considering the pair of functions
f, f ′ ∈ F such that z contributes the most to ‖f − f ′‖2Z . In Algorithm 2, we define a procedure to
sample each state-action pair with sampling probability proportional to the sensitivity. In this analysis,
we show that after applying Algorithm 2 on the input dataset Z , with high probability, the confidence
region

{
f ∈ F | ‖f − fkh‖2Z ≤ β

}
is approximately preserved, while the size of the subsampled

dataset is upper bounded by the eluder dimension of F times the log-covering number of F .

The Stable Bonus Function. With the above sampling procedure, we are now ready to obtain a
stable bonus function which is formally defined in Algorithm 3. In Algorithm 3, we first subsample
the given dataset Z and then round the reference function f̄ and all data points in the subsampled

6

Algorithm 2 Sensitivity-Sampling(F , Z , λ, ε, δ)
1: Input: function class F , set of state-action pairs Z ⊆ S ×A, accuracy parameters λ, ε > 0 and

failure probability δ ∈ (0, 1)
2: Initialize Z ′ ← {}
3: For each z ∈ Z , let pz to be smallest real number such that 1/pz is an integer and

pz ≥ min{1, sensitivityZ,F,λ(z) · 72 ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2} (3)

4: For each z ∈ Z , independently add 1/pz copies of z into Z ′ with probability pz
5: return Z ′

Algorithm 3 Bonus(F , f̄ , Z , δ)
1: Input: function class F , reference function f̄ ∈ F , state-action pairs Z ⊆ S × A and failure

probability δ ∈ (0, 1)
2: Z ← Sensitivity-Sampling

(
F ,Z, δ/(16T), 1/2, δ

)
. Subsample the dataset

3: Z ← {} if |Z| ≥ 4T/δ or the number of distinct elements in Z exceeds

6912dimE(F , δ/(16T 2)) log(64H2T 2/δ) lnT ln(4N (F , δ/(566T))/δ)

4: Let f̂ ∈ C(F , 1/(8
√

4T/δ)) be such that ‖f̄ − f̂‖∞ ≤ 1/(8
√

4T/δ) . Round f̄
5: Ẑ ← {}
6: for z ∈ Z do . Round state-action pairs
7: Let ẑ ∈ C(S ×A, 1/(8

√
4T/δ)) be such that supf∈F |f(z)− f(ẑ))| ≤ 1/(8

√
4T/δ)

8: Ẑ ← Ẑ ∪ {ẑ}
9: return ŵ(·, ·) := w(F̂ , ·, ·), where F̂ =

{
f ∈ F | ‖f − f̂‖2

Ẑ
≤ 3β(F , δ) + 2

}
and

β(F , δ) = c′H2 ·log2(T/δ)·dimE(F , δ/T 3)·ln(N (F , δ/T 2)/δ)·log (N (S ×A, δ/T)) · T/δ)
(4)

for some absolute constants c′ > 0.

dataset Z to their nearest neighbors in a 1/(8
√

4T/δ)-cover. We discard the subsampled dataset if
its size is too large (which happens with low probability as guaranteed by our analysis), and then
define the confidence region using the new dataset and the rounded reference function.

We remark that in Algorithm 3, we round the reference function f̄ and the state-action pairs in Z
mainly for the purpose of theoretical analysis. In practice, the reference function and the state-action
pairs are always stored with bounded precision, in which case explicit rounding is unnecessary.
Moreover, when applying Algorithm 3 in practice, if the eluder dimension of the function class is
unknown in advance, one may treat β(F , δ) in (4) as a tunable parameter.

3.2 Computational Efficiency

Finally, we discuss how to implement our algorithm computationally efficiently. To implement
Algorithm 1, in Line 8, one needs to solve an empirical risk minimization (ERM) problem which
can often be efficiently solved using appropriate optimization methods. To implement Algorithm 3,
one needs to evaluate the width function w(F̂ , ·, ·) for a confidence region F̂ of the form F̂ ={
f ∈ F | ‖f − f̂‖2Z ≤ β

}
. To evaluate the width function, it suffices to have access to a regression

oracle by invoking known reductions in [34, 24]. In particular, when F is the class of linear functions,
there is a closed-form formula for the width function and thus the width function can be efficiently
evaluated in this case. To implement Algorithm 2, one needs to efficiently estimate λ-sensitivity of
all state-action pairs in a given set Z . When F is the class of linear functions, sensitivity is equivalent
to leverage score [17] which can be efficiently estimated [12, 11]. For a general function class F , we
give an algorithm to estimate the λ-sensitivity in the supplementary material which is computationally
efficient if one can efficiently judge whether a given state-action pair z is ε-independent of a set
of state-actions pairs Z with respect to F for a given ε > 0. Note that judging whether a given

7

state-action pair is ε-independent of a set of state-action pairs can be again reduced to evaluating the
width function.

We believe that the running time of our algorithm can be further reduced by using the doubling trick
or online sampling algorithms, and we leave it as a future work to further optimize the running time.

4 Theoretical Guarantee

In this section we provide the theoretical guarantee of Algorithm 1, which is stated in Theorem 1.
Theorem 1. Under Assumption 1, after interacting with the environment for T = KH steps, with
probability 1− δ, Algorithm 1 achieves a a regret bound of Reg(K) ≤

√
ι ·H2 · T , where

ι ≤ C · log2 (T/δ) · dim2
E

(
F , δ/T 3

)
· ln
(
N
(
F , δ/T 2

)
/δ
)
· log (N (S ×A, δ/T) · T/δ)

for some constant C > 0.
Remark 1. For the tabular setting, we may setF to be the entire function space of S×A → [0, H+1].
Recall that when S and A are finite, for any ε > 0, dimE(F , ε) ≤ |S||A|, log(N (F , ε)) =

Õ(|S||A|) and log(N (S × A, ε)) = O(log(|S||A|)), and thus the regret bound in Theorem 1
is Õ(

√
|S|3|A|3H2T) which is worse than the near-optimal bound in [7]. By a more refined

analysis specialized to the tabular setting, the regret bound of our algorithm can be improved to
Õ(
√
|S|2|A|2H2T). We would like to stress that our algorithm and analysis tackle a much more

general setting and recovering the optimal regret bound for the tabular setting is not the focus of the
current paper.

Remark 2. When F is the class of d-dimensional linear functions, we have dimE(F , ε) = Õ(d),
log(N (F , ε)) = Õ(d) and log(N (S × A, ε)) = Õ(d) and thus the regret bound in Theorem 1 is
Õ(
√
d4H2T), which is worse by a Õ(

√
d) factor when compared to the bound in [29, 61], and is

worse by a Õ(d) factor when compared to the bound in [66]. Note that for our algorithm, a regret
bound of Õ(

√
d3H2T) is achievable using a more refined analysis (see Remark 3) for the linear case

which matches the results in [29, 61]. Moreover, unlike our algorithm, the algorithm in [66] requires
solving the Planning Optimization Program and is thus computationally intractable. Finally, we
would like to stress that our algorithm and analysis tackle the case that F is a general function class
which contains the linear case studied in [29, 61] as a special case.

Here we provide an overview of the proof to highlight the technical novelties in the analysis. The
formal proof is provided in the supplementary material.

The Stable Bonus Function. Similar to the analysis in [29, 61], to account for the dependency
structure in the data sequence, we need to bound the complexity of the bonus function bkh(·, ·). When
F is the class of d-dimensional linear functions (as in [29, 61]), b(·, ·) = ‖φ(·, ·)‖Λ−1 for a covariance
matrix Λ ∈ Rd×d, whose complexity is upper bounded by d2 which is the number of entries in
the covariance matrix Λ. However, such simple complexity upper bound is no longer available for
the class of general functions considered in this paper. Instead, we bound the complexity of the
bonus function by relying on the fact that the subsampled dataset has bounded size. Scrutinizing the
sampling algorithm (Algorithm 2), it can be seen that the size of the subsampled dataset is upper
bounded by the sum of the sensitivity of the data points in the given dataset times the log-convering
number of the function class F . To upper bound the sum of the sensitivity of the data points in the
given dataset, we rely on a novel combinatorial argument which establishes a surprising connection
between the sum of the sensitivity and the eluder dimension of the function class F . We show that
the sum of the sensitivity of data points is upper bounded by the eluder dimension of the dataset up to
logarithm factors. Hence, the complexity of the subsampled dataset, and therefore, the complexity of
the bonus function, is upper bound by the log-covering number of S × A (the complexity of each
state-action pair) times the product of the eluder dimension of the function class and the log-covering
number of the function class (the number of data points in the subsampled dataset).

In order to show that the confidence region is approximately preserved when using the subsampled
dataset Z ′, we show that for any f, f ′ ∈ F , ‖f − f ′‖2Z′ is a good approximation to ‖f − f ′‖2Z . To
show this, we apply a union bound over all pairs of functions on the cover of F which allows us
to consider fixed f, f ′ ∈ F . For fixed f, f ′ ∈ F , note that ‖f − f ′‖2Z′ is an unbiased estimate of

8

‖f − f ′‖2Z , and importance sampling proportinal to the sensitivity implies an upper bound on the
variance of the estimator which allows us to apply concentration bounds to prove the desired result.
We note that the sensitivity sampling framework used here is very crucial to the theoreical guarantee
of the algorithm. If one replaces sensitivity sampling with more naïve sampling approaches (e.g.
uniform sampling), then the required sampling size would be much larger, which does not give any
meaningful reduction on the size of the dataset and also leads to a high complexity bonus function.

Remark 3. When F is the class of d-dimensional linear functions, our upper bound on the size of
the subsampled dataset is Õ(d2). However, in this case, our sampling algorithm (Algorithm 2) is
equivalent to the leverage score sampling [17] and therefore the sample complexity can be further
improved to Õ(d) using a more refined analysis [53]. Therefore, our regret bound can be improved to
Õ(
√
d3H2T), which matches the bounds in [29, 61]. However, the Õ(d) sample bound is specialized

to the linear case and heavily relies on the matrix Chernoff bound which is unavailable for the class
of general functions considered in this paper. This also explains why our regret bound in Theorem 1,
when applied to the linear case, is larger by a

√
d factor when compared to those in [29, 61]. We

leave it as an open question to obtain more refined bound on the size of the subsampled dataset and
improve the overall regret bound of our algorithm.

The Confidence Region. Our algorithm applies the principle of optimism in the face of uncertainty
(OFU) to balance exploration and exploitation. Note that V kh+1 is the value function estimated at
step h+ 1. In our analysis, we require the Q-function Qkh estimated at level h to satisfy Qkh(·, ·) ≥
r(·, ·) +

∑
s′∈S P (s′|·, ·)V kh+1(s′) with high probability. To achieve this, we optimize the least

squares objective to find a solution fkh ∈ F using collected data. We then show that fkh is close
to r(·, ·) +

∑
s′∈S P (s′|·, ·)V kh+1(s′). This would follow from standard analysis if the collected

samples were independent of V kh+1. However, V kh+1 is calculated using the collected samples and
thus they are subtly dependent on each other. To tackle this issue, we notice that V kh+1 is computed
by using fkh+1 and the bonus function bkh+1, and both fkh+1 and the bonus function bkh+1 have
bounded complexity, thanks to the design of bonus function. Hence, we can construct a 1/T -cover to
approximate V kh+1. By doing so, we can now bound the fitting error of fkh by replacing V kh+1 with its
closest neighbor in the 1/T -cover which is independent of the dataset. By a union bound over all
functions in the 1/T -cover, it follows that with high probability, r(·, ·) +

∑
s′∈S P (s′|·, ·)V kh+1(s′) ∈{

f ∈ F | ‖f − fkh‖2Zk ≤ β
}

for some β that depends only on the complexity of the bonus function
and the function class F .

Regret Decomposition and the Eluder Dimension. By standard regret decomposition for op-
timistic algorithms, the total regret is upper bounded by the summation of the bonus function∑K
k=1

∑H
h=1 b

k
h

(
skh, a

k
h

)
. To bound the summation of the bonus function, we use an argument

similar to that in [48], which shows that the summation of the bonus function can be upper bounded
in terms of the eluder dimension of the function class F , if the confidence region is defined using the
original dataset. In the formal analysis (Lemma 9 and Lemma 10), we adapt the argument in [48]
(more specifically, Proposition 3 and Lemma 2 in [48]) to show that even if the confidence region
is defined using the subsampled dataset, the summation of the bonus function can be bounded in a
similar manner.

5 Conclusion

In this paper, we give the first provably efficient value-based RL algorithm with general function
approximation. Our algorithm achieves a regret bound of Õ(poly(dH)

√
T) where d is a complexity

measure that depends on the eluder dimension and log-covering numbers of the function class.
One interesting future direction is to extend our results to policy-based methods, by combining our
techniques with, e.g., those in [9].

9

Broader Impact

This work is mainly theoretical. By devising a provably efficient RL algorithm with general value func-
tion approximation, we believe our various theoretical insights could potentially guide practitioners
to build theoretically-principled and robust RL systems.

Disclosure of Funding

Ruosong Wang and Ruslan Salakhutdinov were supported in part by NSF IIS1763562, US Army
W911NF1920104 and ONR Grant N000141812861.

References
[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.

In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.
[2] S. Agrawal and R. Jia. Optimistic posterior sampling for reinforcement learning: worst-case

regret bounds. In Advances in Neural Information Processing Systems, pages 1184–1194, 2017.
[3] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,

M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[4] A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies with bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learning, 71(1):89–
129, 2008.

[5] A. Ayoub, Z. Jia, C. Szepesvari, M. Wang, and L. F. Yang. Model-based reinforcement learning
with value-targeted regression. In International Conference on Machine Learning, 2020.

[6] M. G. Azar, R. Munos, and H. J. Kappen. Minimax pac bounds on the sample complexity of
reinforcement learning with a generative model. Machine learning, 91(3):325–349, 2013.

[7] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. arXiv
preprint arXiv:1703.05449, 2017.

[8] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.
[9] Q. Cai, Z. Yang, C. Jin, and Z. Wang. Provably efficient exploration in policy optimization.

arXiv preprint arXiv:1912.05830, 2019.
[10] J. Chen and N. Jiang. Information-theoretic considerations in batch reinforcement learning. In

International Conference on Machine Learning, pages 1042–1051, 2019.
[11] K. L. Clarkson and D. P. Woodruff. Low-rank approximation and regression in input sparsity

time. Journal of the ACM (JACM), 63(6):1–45, 2017.
[12] M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford. Uniform sampling for

matrix approximation. In Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, pages 181–190, 2015.

[13] V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback.
In Conference on Learning Theory, 2008.

[14] C. Dann and E. Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning.
In Advances in Neural Information Processing Systems, pages 2818–2826, 2015.

[15] C. Dann, L. Li, W. Wei, and E. Brunskill. Policy certificates: Towards accountable reinforcement
learning. arXiv preprint arXiv:1811.03056, 2018.

[16] K. Dong, J. Peng, Y. Wang, and Y. Zhou.
√
n-regret for learning in markov decision processes

with function approximation and low bellman rank. arXiv preprint arXiv:1909.02506, 2019.
[17] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Sampling algorithms for l 2 regression

and applications. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 1127–1136. Society for Industrial and Applied Mathematics, 2006.

[18] S. S. Du, S. M. Kakade, R. Wang, and L. F. Yang. Is a good representation sufficient for sample
efficient reinforcement learning? In International Conference on Learning Representations,
2020.

10

[19] S. S. Du, J. D. Lee, G. Mahajan, and R. Wang. Agnostic q-learning with function approximation
in deterministic systems: Tight bounds on approximation error and sample complexity. arXiv
preprint arXiv:2002.07125, 2020.

[20] S. S. Du, Y. Luo, R. Wang, and H. Zhang. Provably efficient q-learning with function ap-
proximation via distribution shift error checking oracle. In Advances in Neural Information
Processing Systems, pages 8058–8068, 2019.

[21] D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 569–578,
2011.

[22] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets
for k-means, pca and projective clustering. In Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms, pages 1434–1453. SIAM, 2013.

[23] S. Filippi, O. Cappe, A. Garivier, and C. Szepesvári. Parametric bandits: The generalized linear
case. In Advances in Neural Information Processing Systems, pages 586–594, 2010.

[24] D. Foster, A. Agarwal, M. Dudik, H. Luo, and R. Schapire. Practical contextual bandits with
regression oracles. In International Conference on Machine Learning, pages 1539–1548, 2018.

[25] T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[26] Z. Jia, L. F. Yang, and M. Wang. Feature-based q-learning for two-player stochastic games.
arXiv preprint arXiv:1906.00423, 2019.

[27] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and R. E. Schapire. Contextual decision
processes with low bellman rank are pac-learnable. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1704–1713. JMLR. org, 2017.

[28] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient? In Advances
in Neural Information Processing Systems, pages 4863–4873, 2018.

[29] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan. Provably efficient reinforcement learning with
linear function approximation. arXiv preprint arXiv:1907.05388, 2019.

[30] S. M. Kakade. On the sample complexity of reinforcement learning. PhD thesis, University of
London London, England, 2003.

[31] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine
learning, 49(2-3):209–232, 2002.

[32] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[33] K. R. Koedinger, E. Brunskill, R. S. Baker, E. A. McLaughlin, and J. Stamper. New potentials for
data-driven intelligent tutoring system development and optimization. AI Magazine, 34(3):27–
41, 2013.

[34] A. Krishnamurthy, A. Agarwal, T.-K. Huang, H. Daumé III, and J. Langford. Active learning
for cost-sensitive classification. In International Conference on Machine Learning, pages
1915–1924, 2017.

[35] M. Langberg and L. J. Schulman. Universal ε-approximators for integrals. In Proceedings of
the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 598–607. SIAM,
2010.

[36] T. Lattimore and M. Hutter. Near-optimal pac bounds for discounted mdps. Theoretical
Computer Science, 558:125–143, 2014.

[37] L. Li, Y. Lu, and D. Zhou. Provably optimal algorithms for generalized linear contextual bandits.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2071–2080. JMLR. org, 2017.

[38] Y. Li, Y. Wang, and Y. Zhou. Nearly minimax-optimal regret for linearly parameterized bandits.
In Conference on Learning Theory, pages 2173–2174, 2019.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

11

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529, 2015.

[41] A. Modi, N. Jiang, A. Tewari, and S. Singh. Sample complexity of reinforcement learning using
linearly combined model ensembles. arXiv preprint arXiv:1910.10597, 2019.

[42] A. Modi, N. Jiang, A. Tewari, and S. Singh. Sample complexity of reinforcement learning using
linearly combined model ensembles. In International Conference on Artificial Intelligence and
Statistics, pages 2010–2020, 2020.

[43] R. Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pages 560–567,
2003.

[44] R. Munos and C. Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(May):815–857, 2008.

[45] I. Osband and B. Van Roy. Model-based reinforcement learning and the eluder dimension. In
Advances in Neural Information Processing Systems, pages 1466–1474, 2014.

[46] I. Osband and B. Van Roy. On lower bounds for regret in reinforcement learning. arXiv preprint
arXiv:1608.02732, 2016.

[47] I. Osband, B. Van Roy, D. Russo, and Z. Wen. Deep exploration via randomized value functions.
arXiv preprint arXiv:1703.07608, 2017.

[48] D. Russo and B. Van Roy. Eluder dimension and the sample complexity of optimistic exploration.
In Advances in Neural Information Processing Systems, pages 2256–2264, 2013.

[49] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

[50] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement learning for
autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[51] A. Sidford, M. Wang, X. Wu, L. F. Yang, and Y. Ye. Near-optimal time and sample complexities
for for solving discounted markov decision process with a generative model. arXiv preprint
arXiv:1806.01492, 2018.

[52] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. Nature,
550(7676):354, 2017.

[53] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913–1926, 2011.

[54] A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite MDPs: PAC analysis.
Journal of Machine Learning Research, 10(Nov):2413–2444, 2009.

[55] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and M. L. Littman. Pac model-free reinforcement
learning. In Proceedings of the 23rd international conference on Machine learning, pages
881–888. ACM, 2006.

[56] W. Sun, N. Jiang, A. Krishnamurthy, A. Agarwal, and J. Langford. Model-based rl in contextual
decision processes: Pac bounds and exponential improvements over model-free approaches. In
Conference on Learning Theory, pages 2898–2933, 2019.

[57] C. Szepesvári and R. Munos. Finite time bounds for sampling based fitted value iteration. In
Proceedings of the 22nd international conference on Machine learning, pages 880–887, 2005.

[58] I. Szita and C. Szepesvári. Model-based reinforcement learning with nearly tight exploration
complexity bounds. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), pages 1031–1038, 2010.

[59] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Thirtieth AAAI conference on artificial intelligence, 2016.

[60] R. Wang, S. S. Du, L. F. Yang, and S. M. Kakade. Is long horizon reinforcement learning more
difficult than short horizon reinforcement learning? arXiv preprint arXiv:2005.00527, 2020.

[61] Y. Wang, R. Wang, S. S. Du, and A. Krishnamurthy. Optimism in reinforcement learning with
generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.

12

[62] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas. Dueling network
architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581, 2015.

[63] L. Yang and M. Wang. Sample-optimal parametric q-learning using linearly additive features.
In International Conference on Machine Learning, pages 6995–7004, 2019.

[64] L. F. Yang and M. Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and
regret bound. arXiv preprint arXiv:1905.10389, 2019.

[65] A. Zanette and E. Brunskill. Tighter problem-dependent regret bounds in reinforcement learning
without domain knowledge using value function bounds. arXiv preprint arXiv:1901.00210,
2019.

[66] A. Zanette, A. Lazaric, M. Kochenderfer, and E. Brunskill. Learning near optimal policies with
low inherent bellman error. arXiv preprint arXiv:2003.00153, 2020.

[67] A. Zanette, A. Lazaric, M. J. Kochenderfer, and E. Brunskill. Limiting extrapolation in linear
approximate value iteration. In Advances in Neural Information Processing Systems, pages
5616–5625, 2019.

[68] Z. Zhang, Y. Zhou, and X. Ji. Almost optimal model-free reinforcement learning via reference-
advantage decomposition. arXiv preprint arXiv:2004.10019, 2020.

[69] D. Zhou, J. He, and Q. Gu. Provably efficient reinforcement learning for discounted mdps with
feature mapping. arXiv preprint arXiv:2006.13165, 2020.

13

A Missing Proofs

A.1 Analysis of the Stable Bonus Function

Our first lemma gives an upper bound on the sum of the sensitivity in terms of the eluder dimension
of the function class F .
Lemma 1. For a given set of state-action pairs Z ,∑

z∈Z
sensitivityZ,F,λ(z) ≤ 4dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln |Z|.

Proof. For each z ∈ Z , let f, f ′ ∈ F be an arbitrary pair of functions such that ‖f − f ′‖2Z ≥ λ and

(f(z)− f ′(z))2

‖f − f ′‖2Z
is maximized, and we define L(z) = (f(z) − f ′(z))2 for such f and f ′. Note that 0 ≤ L(z) ≤
(H + 1)2. Let Z =

⋃log((H+1)2|Z|/λ)−1
α=0 Zα ∪ Z∞ be a dyadic decomposition with respect to L(·),

where for each 0 ≤ α < log((H + 1)2|Z|/λ), define

Zα = {z ∈ Z | L(z) ∈ ((H + 1)2 · 2−α−1, (H + 1)2 · 2−α]}

and
Z∞ = {z ∈ Z | L(z) ≤ λ/|Z|}.

Clearly, for any z ∈ Z∞, sensitivityZ,F,λ(z) ≤ 1/|Z| and thus∑
z∈Z∞

sensitivityZ,F,λ(z) ≤ 1.

Now we bound
∑
z∈Zα sensitivityZ,F,λ(z) for each 0 ≤ α < log((H + 1)2|Z|/λ) separately. For

each α, let Nα = |Zα|/dimE(F , (H + 1)2 · 2−α−1) and we decompose Zα into Nα + 1 disjoint
subsets, i.e., Zα =

⋃Nα+1
j=1 Zαj , by using the following procedure. Let Zα = {z1, z2, . . . , z|Zα|}

and we consider each zi sequentially. Initially Zαj = {} for all j. Then, for each zi, we find the
largest 1 ≤ j ≤ Nα such that zi is (H + 1)2 · 2−α−1-independent of Zαj with respect to F . We
set j = Nα + 1 if such j does not exist, and use j(zi) ∈ [Nα + 1] to denote the choice of j for zi.
If j ≤ Nα then we add zi to Zαj . By the design of the algorithm, for each zi, it is clear that zi is
dependent on each of Zα1 ,Zα2 , . . . ,Zαj(zi)−1.

Now we show that for each zi ∈ Zα,

sensitivityZ,F,λ(zi) ≤ 2/j(zi).

For any zi ∈ Zα, we use f, f ′ ∈ F to denote the pair of functions in F such that ‖f − f ′‖2Z ≥ λ and

(f(zi)− f ′(zi))2

‖f − f ′‖2Z
is maximized. Since zi ∈ Zα, we must have (f(zi) − f ′(zi))2 > (H + 1)2 · 2−α−1. Since zi is
dependent on each of Zα1 ,Zα2 , . . . ,Zαj(zi)−1, for each 1 ≤ k < j(zi), we have

‖f − f ′‖Zαk ≥ (H + 1)2 · 2−α−1,

which implies

sensitivityZ,F,λ(zi) =
(f(zi)− f ′(zi))2

‖f − f ′‖2Z
≤ (H + 1)2 · 2−α

‖f − f ′‖2Z

≤ (H + 1)2 · 2−α∑j(zi)−1
k=1 ‖f − f ′‖Zαk + (f(zi)− f ′(zi))2

≤ 2/j(zi).

14

Moreover, by the definition of (H + 1)2 · 2−α−1-independence, we have |Zαj | ≤ dimE(F , (H +

1)2 · 2−α−1) for all 1 ≤ j ≤ Nα. Therefore,∑
z∈Zα

sensitivityZ,F,λ(z) ≤
∑

1≤j≤Nα

|Zαj | · 2/j +
∑

z∈ZαNα+1

2/Nα

≤2dimE(F , (H + 1)2 · 2−α−1) ln(Nα) + |Zα| · 2dimE(F , (H + 1)2 · 2−α−1)

|Zα|
≤3dimE(F , (H + 1)2 · 2−α−1) ln(|Z|).

By the monotonicity of eluder dimension, it follows that∑
z∈Z

sensitivityZ,F,λ(z)

≤
log((H+1)2|Z|/λ)−1∑

α=0

∑
z∈Zα

sensitivityZ,F,λ(z) +
∑
z∈Z∞

sensitivityZ,F,λ(z)

≤3 log((H + 1)2|Z|/λ)dimE(F , λ/|Z|) ln(|Z|) + 1

≤4 log((H + 1)2|Z|/λ)dimE(F , λ/|Z|) ln(|Z|).

Using Lemma 1, we can prove an upper bound on the number of distinct elements in Z ′ returned by
the sampling algorithm (Algorithm 2).
Lemma 2. With probability at least 1 − δ/4, the number of distinct elements in Z ′ returned by
Algorithm 2 is at most

1728dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln(|Z|) ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2.

Proof. Note that pz ≤ min{1, 2 · sensitivityZ,F,λ(z) · 72 ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2},

since for any real number x < 1, there always exists x̂ ∈ [x, 2x] such that 1/x̂ is an integer. Let Xz

be a random variable defined as

Xz =

{
1 z ∈ Z ′
0 z /∈ Z ′ .

Clearly, the number of distinct elements in Z ′ is upper bounded by
∑
z∈Z Xz and E[Xz] = pz . By

Lemma 1,∑
z∈Z

E[Xz] ≤ 576dimE(F , λ/|Z|) log((H+1)2|Z|/λ) ln(|Z|) ln(4N (F , ε/72·
√
λδ/(|Z|))/δ)/ε2.

By Chernoff bound, with probability at least 1− δ/4, we have∑
z∈Z

Xz ≥ 1728dimE(F , λ/|Z|) log((H+1)2|Z|/λ) ln(|Z|) ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2.

Our second lemma upper bounds the number of elements in Z ′ returned by Algorithm 2.
Lemma 3. With probability at least 1− δ/4, |Z ′| ≤ 4|Z|/δ.

Proof. Let Xz be the random variable which is defined as

Xz =

{
1/pz z is added into Z ′
0 otherwise

.

Note that |Z ′| =
∑
z∈Z Xz and E[Xz] = 1. By Markov inequality, with probability 1 − δ/4,

|Z ′| ≤ 4|Z|/δ.

15

Our third lemma shows that for the given set of state-action pairs Z and function class F , Algorithm 2
returns a set of state-action pairs Z ′ so that ‖f − f ′‖2Z is approximately preserved for all f, f ′ ∈ F .
Lemma 4. With probability at least 1− δ/2, for any f, f ′ ∈ F ,

(1− ε)‖f − f ′‖2Z − 2λ ≤ ‖f − f ′‖2Z′ ≤ (1 + ε)‖f − f ′‖2Z + 8|Z|λ/δ.

Proof. In our proof, we separately consider two cases: ‖f − f ′‖2Z < 2λ and ‖f − f ′‖2Z ≥ 2λ.

Case I: ‖f − f ′‖2Z < 2λ. Consider f, f ′ ∈ F with ‖f − f ′‖2Z < 2λ. Conditioned on the
event defined in Lemma 3 which holds with probability at least 1 − δ/4, we have ‖f − f ′‖2Z′ ≤
|Z ′| · ‖f − f ′‖2Z ≤ 8|Z|λ/δ. Moreover, we always have ‖f − f ′‖Z′ ≥ 0. In summary, we have

‖f − f ′‖2Z − 2λ ≤ ‖f − f ′‖2Z′ ≤ ‖f − f ′‖2Z + 8|Z|λ/δ.

Case II: ‖f − f ′‖2Z ≥ 2λ. We first show that for any fixed f, f ′ ∈ F with ‖f − f ′‖2Z ≥ λ, with
probability at least 1− δ/(4N (F , ε/72 ·

√
λδ/(|Z|))), we have

(1− ε/4)‖f − f ′‖2Z ≤ ‖f − f ′‖2Z′ ≤ (1 + ε/4)‖f − f ′‖2Z .
To prove this, for each z ∈ Z , define

Xz =

{
1
pz

(f(z)− f ′(z))2 z is added into Z ′ for 1/pz times
0 otherwise

.

Clearly, ‖f − f ′‖Z′ =
∑
z∈Z Xz and E[Xz] = (f(z)− f ′(z))2. Moreover, since ‖f − f ′‖2Z ≥ λ,

by (3) and Definition 3, we have

max
z∈Z

Xz ≤ ‖f − f ′‖2Z · ε2/(72 ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ).

Moreover, E[X2
z] ≤ (f(z)− f ′(z))4/pz . Therefore, by Hölder’s inequality,∑

z∈Z
Var[Xz] ≤

∑
z∈Z

E[X2
z] ≤

∑
z∈Z

(f(z)− f ′(z))2 ·max
z∈Z

(f(z)− f ′(z))2/pz

≤‖f − f ′‖4Z · ε2/(72 ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ).

Therefore, by Bernstein inequality,
Pr
[
|‖f − f ′‖2Z − ‖f − f ′‖2Z′ | ≥ ε/4 · ‖f − f ′‖2Z

]
= Pr

[∣∣∣∣∣∑
z∈Z

E[Xz]−
∑
z∈Z

Xz

∣∣∣∣∣ ≥ ε/4 · ‖f − f ′‖2Z
]

≤2 exp

(
− ε2/16 · ‖f − f ′‖4Z

2
∑
z∈Z Var[Xz] + 2 maxz∈Z Xz · ε/4 · ‖f − f ′‖2Z/3

)
≤(δ/4)/

(
N (F , ε/72 ·

√
λδ/(|Z|))

)2

.

By union bound, the above inequality implies that with probability at least 1− δ/4, for any (f, f ′) ∈
C(F, ε/72 ·

√
λδ/(|Z|))× C(F, ε/72 ·

√
λδ/(|Z|)) with ‖f − f ′‖2Z ≥ λ,

(1− ε/4)‖f − f ′‖2Z ≤ ‖f − f ′‖2Z′ ≤ (1 + ε/4)‖f − f ′‖2Z′ .

Now we condition on the event defined above and the event defined in Lemma 3. Consider f, f ′ ∈ F
with ‖f − f ′‖2Z ≥ 2λ. Recall that there exists (f̂ , f̂ ′) ∈ C(F, ε/72 ·

√
λδ/(|Z|)) × C(F, ε/72 ·√

λδ/(|Z|)) such that ‖f − f̂‖∞ ≤
√
λ/(25|Z|) and ‖f ′ − f̂ ′‖∞ ≤

√
λ/(25|Z|). Therefore,

‖f̂ − f̂ ′‖2Z =
∑
z∈Z

(f̂(z)− f̂ ′(z))2

=
∑
z∈Z

(f(z)− f ′(z) + (f̂(z)− f(z)) + (f ′(z)− f̂ ′(z)))2

≥
(
‖f − f ′‖Z − ‖f̂ − f‖Z − ‖f ′ − f̂ ′‖Z

)2

≥
(√

2λ− 2
√
λ/25

)2

≥ λ.

16

Therefore, conditioned on the event defined above, we have

(1− ε/4)‖f̂ − f̂ ′‖2Z ≤ ‖f̂ − f̂ ′‖2Z′ ≤ (1 + ε/4)‖f̂ − f̂ ′‖2Z′ .

Conditioned on the event defined in Lemma 3 which holds with probability at least 1− δ/4, we have

‖f − f ′‖2Z′ ≤
(
‖f̂ − f̂ ′‖Z′ + ‖f − f̂‖Z′ + ‖f ′ − f̂ ′‖Z′

)2

≤
(
‖f̂ − f̂ ′‖Z′ + 2

√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2

≤
(

(1 + ε/6)‖f̂ − f̂ ′‖Z + 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2

≤
(

(1 + ε/6)‖f − f‖Z + 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|) + 4

√
|Z| · ε/72 ·

√
λδ/(|Z|)

)2

≤(1 + ε)‖f − f‖2Z ,

where the last inequality holds since ‖f − f‖Z ≥
√
λ.

Similarly,

‖f − f ′‖2Z′ ≥
(
‖f̂ − f̂ ′‖Z′ − ‖f − f̂‖Z′ − ‖f ′ − f̂ ′‖Z′

)2

≥
(
‖f̂ − f̂ ′‖Z′ − 2

√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2

≥
(

(1− ε/6)‖f̂ − f̂ ′‖Z − 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2

≥
(

(1− ε/6)‖f − f‖Z − 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)− 2

√
|Z| · ε/72 ·

√
λδ/(|Z|)

)2

≥(1− ε)‖f − f‖2Z .

Combining Lemma 2, Lemma 3 and Lemma 4 with a union bound, we have the following proposition.

Proposition 1. With probability at least 1 − δ, the size of Z ′ returned by Algorithm 2 satisfies
|Z ′| ≤ 4|Z|/δ, the number of distinct elements in Z is at most

1728dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln(|Z|) ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2,

and for any f, f ′ ∈ F ,

(1− ε)‖f − f ′‖2Z − 2λ ≤ ‖f − f ′‖2Z′ ≤ (1 + ε)‖f − f ′‖2Z + 8|Z|λ/δ.

Proposition 2. For Algorithm 3, suppose |Z| ≤ KH = T , the following holds.

1. With probability at least 1− δ/(16T),

w(F , s, a) ≤ ŵ(s, a) ≤ w(F , s, a)

where F = {f ∈ F | ‖f − f̄‖2Z ≤ β(F , δ)}, and F = {f ∈ F | ‖f − f̄‖2Z ≤
9β(F , δ) + 12}.

2. ŵ(·, ·) ∈ W for a function setW with

log |W| ≤ 6912dimE(F , δ/(16T 2)) log(16(H + 1)2T 2/δ) lnT ln(4N (F , δ/(566T))/δ)

· log
(
N (S ×A, 1/(8

√
4T/δ)) · 4T/δ

)
+ log(N (F , 1/(8

√
4T/δ)))

≤ C · dimE(F , δ/T 3) · log(H2T 2/δ) · lnT · ln(N (F , δ/T 2)/δ)

· log (N (S ×A, δ/T)) · T/δ) ,

for some absolute constant C > 0 if T is sufficiently large.

17

Proof. For the first part, conditioned on the event defined in Proposition 1, for any f ∈ F , we have

‖f − f̄‖2Z/2− 1/2 ≤ ‖f − f̄‖2Z ≤ 3‖f − f̄‖2Z/2 + 1/2.

Therefore, we have

‖f − f̂‖2Ẑ ≤ (‖f − f̂‖Z +
√

4T/δ/(8
√

4T/δ))2

≤(‖f − f̄‖Z +
√

4T/δ/(8
√

4T/δ) +
√

4T/δ/(8
√

4T/δ))2

≤2‖f − f̄‖2Z + 2(
√

4T/δ/(8
√

4T/δ) +
√

4T/δ/(8
√

4T/δ))2 ≤ 3‖f − f̄‖2Z + 2

and

‖f − f̂‖2Ẑ ≥ (‖f − f̂‖Z −
√

4T/δ/(8
√

4T/δ))2

≥(‖f − f̄‖Z −
√

4T/δ/(8
√

4T/δ)−
√

4T/δ/(8
√

4T/δ))2

≥‖f − f̄‖2Z/2− (
√

4T/δ/(8
√

4T/δ) +
√

4T/δ/(8
√

4T/δ))2 ≥ ‖f − f̄‖2Z/3− 2.

Therefore, for any f ∈ F , we have ‖f − f̄‖2Z ≤ β(F , δ), which implies ‖f − f̂‖2
Ẑ
≤ 3β(F , δ) + 2

and thus f ∈ F̂ . Moreover, for any f ∈ F̂ , we have ‖f − f̂‖2
Ẑ
≤ 3β(F , δ) + 2, which implies

‖f − f̄‖2Z ≤ 9β(F , δ) + 12.

For the second part, note that ŵ(·, ·) is uniquely defined by F̂ . When |Z| ≥ 4T/δ or the number of
distinct elements in Z exceeds

6912dimE(F , δ/(16T 2)) log(16(H + 1)2T 2/δ) lnT ln(4N (F , δ/(566T))/δ),

we have |Ẑ| = 0 and thus F̂ = F . Otherwise, F̂ is defined by f̂ and Ẑ . Since f̂ ∈
C(F , 1/(8

√
4T/δ)), the total number of distinct f̂ is upper bounded by N (F , 1/(8

√
4T/δ)). Since

there are at most

6912dimE(F , δ/(16T 2)) log(16(H + 1)2T 2/δ) lnT ln(4N (F , δ/(566T))/δ)

distinct elements in Ẑ , while each of them belongs to C(S ×A, 1/(8
√

4T/δ)) and |Ẑ| ≤ 4T/δ, the
total number of distinct Ẑ is upper bounded by(
N (S ×A, 1/(8

√
4T/δ)) · 4T/δ

)6912dimE(F,δ/(16T 2)) log(16(H+1)2T 2/δ) lnT ln(4N (F,δ/(566T))/δ)

.

A.2 Analysis of the Algorithm

We are now ready to prove the regret bound of Algorithm 1. The next lemma establishes a bound on
the estimate of a single backup.
Lemma 5 (Single Step Optimization Error). Consider a fixed k ∈ [K]. Let

Zk = {(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H]

as defined in Line 5 in Algorithm 1. For any V : S → [0, H], define

DkV :=
{(
sτh′ , a

τ
h′ , r

τ
h′ + V (sτh′+1)

)}
(τ,h′)∈[k−1]×[H]

and
f̂V := arg min

f∈F
‖f‖2DkV .

For any V : S → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at least
1− δ, such that conditioned on EV,δ , for any V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we have∥∥∥∥∥f̂V ′(·, ·)− r(·, ·)−∑

s′∈S
P (s′ | ·, ·)V ′(s′)

∥∥∥∥∥
Zk

≤ c′ ·
(
H
√

log(2/δ) + logN (F , 1/T)
)

for some absolute constant c′ > 0.

18

Proof. In our proof, we consider a fixed V : S → [0, H], and define

fV (·, ·) := r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)V (s′).

For any f ∈ F , we consider
∑

(τ,h)∈[k−1]×[H] ξ
τ
h(f) where

ξτh(f) := 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h)) · (fV (sτh, a

τ
h)− rτh − V (sτh+1)).

For any (τ, h) ∈ [k − 1]× [H], define Fτh as the filtration induced by the sequence
{(sth′ , ath′)}(t,h′)∈[τ−1]×[H] ∪ {(sτ1 , aτ1), (sτ2 , a

τ
2), . . . , (sτh, a

τ
h)}.

Then E [ξτh(f) | Fτh] = 0 and
|ξτh(f)| ≤ 2(H + 1) |f(sτh, a

τ
h)− fV (sτh, a

τ
h)| .

By Azuma-Hoeffding inequality, we have

Pr

∣∣∣∣∣∣
∑

(τ,h)∈[k−1]×[H]

ξτh(f)

∣∣∣∣∣∣ ≥ ε
 ≤ 2 exp

(
− ε2

8(H + 1)2‖f − fV ‖2Zk

)
.

Let

ε =

(
8(H + 1)2 log

(
2N (F , 1/T)

δ

)
· ‖f − fV ‖2Zk

)1/2

≤ 4(H + 1)‖f − fV ‖Zk ·
√

log(2/δ) + logN (F , 1/T).

We have, with probability at least 1− δ, for all f ∈ C(F , 1/T),∣∣∣∣∣∣
∑

(τ,h)∈[k−1]×[H]

ξτh(f)

∣∣∣∣∣∣ ≤ 4(H + 1)‖f − fV ‖Zk ·
√

log(2/δ) + logN (F , 1/T).

We define the above event to be EV,δ , and we condition on this event for the rest of the proof.

For all f ∈ F , there exists g ∈ C(F , 1/T), such that ‖f − g‖∞ ≤ 1/T , and we have∣∣∣∣∣∣
∑

(τ,h)∈[k−1]×[H]

ξτh(f)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
(τ,h)∈[k−1]×[H]

ξτh(g)

∣∣∣∣∣∣+ 2(H + 1)

≤ 4(H + 1)‖g − fV ‖Zk ·
√

log(2/δ) + logN (F , 1/T) + 2(H + 1)

≤ 4(H + 1)(‖f − fV ‖Zk + 1) ·
√

log(2/δ) + logN (F , 1/T) + 2(H + 1).

Consider V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T . We have
‖fV ′ − fV ‖∞ ≤ ‖V ′ − V ‖∞ ≤ 1/T.

For any f ∈ F ,

‖f‖2Dk
V ′
− ‖fV ′‖2Dk

V ′
=‖f − fV ′‖2Zk + 2

∑
(sτ
h′ ,a

τ
h′)∈Z

k

(f(sτh′ , a
τ
h′)

− fV ′(sτh′ , aτh′)) · (fV ′(sτh′ , aτh′)− rτh′ − V ′(sτh′+1)).

For the second term, we have,

2
∑

(sτ
h′ ,a

τ
h′)∈Z

k

(f(sτh′ , a
τ
h′)− fV ′(sτh′ , aτh′)) · (fV ′(sτh′ , aτh′)− rτh′ − V ′(sτh′+1))

≥2
∑

(sτ
h′ ,a

τ
h′)∈Z

k

(f(sτh′ , a
τ
h′)− fV (sτh′ , a

τ
h′)) · (fV (sτh′ , a

τ
h′)− rτh′ − V (sτh′+1))

− 4(H + 1) · ‖V ′ − V ‖∞ · |Zk|

=
∑

(τ,h)∈[k−1]×[H]

ξτh(f)− 4(H + 1) · ‖V ′ − V ‖∞ · |Zk|

≥ − 4(H + 1)(‖f − fV ‖Zk + 1) ·
√

log(2/δ) + logN (F , 1/T)− 2(H + 1)

− 4(H + 1) · ‖V ′ − V ‖∞ · |Zk|

≥ − 4(H + 1)(‖f − fV ′‖Zk + 2) ·
√

log(2/δ) + logN (F , 1/T)− 6(H + 1).

19

Recall that f̂V ′ = arg minf∈F ‖f‖2Dk
V ′

. We have ‖f̂V ′‖2Dk
V ′
− ‖fV ′‖2Dk

V ′
≤ 0, which implies,

0 ≥ ‖f̂V ′‖2Dk
V ′
− ‖fV ′‖2Dk

V ′

= ‖f̂V ′ − fV ′‖2Zk
+ 2

∑
(sτ
h′ ,a

τ
h′)∈Z

k

(f̂(sτh′ , a
τ
h′)− fV ′(sτh′ , aτh′)) · (fV ′(sτh′ , aτh′)− rτh′ − V ′(sτh′+1))

≥ ‖f̂V ′ − fV ′‖2Zk
− 4(H + 1)(‖f̂V ′ − fV ′‖Zk + 2) ·

√
log(2/δ) + logN (F , 1/T)− 6(H + 1).

Solving the above inequality, we have,

‖f̂V ′ − fV ′‖Zk ≤ c′ ·
(
H ·

√
log δ−1 + logN (F , 1/T)

)
for an absolute constant c′ > 0.

Lemma 6 (Confidence Region). In Algorithm 1, let Fkh be a confidence region defined as

Fkh =
{
f ∈ F | ‖f − fkh‖2Zk ≤ β(F , δ)

}
.

Then with probability at least 1− δ/8, for all k, h ∈ [K]× [H],

r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)V kh+1(s′) ∈ Fkh ,

provided

β(F , δ) ≥ c′ ·
(
H
√

log(T/δ) + log(|W|) + logN (F , 1/T)
)2

for some absolute constant c′ > 0. HereW is given as in Propostion 2.

Proof. For all (k, h) ∈ [K]× [H], the bonus function bkh(·, ·) ∈ W . Note that

Q := {min {f(·, ·) + w(·, ·), H} | w ∈ W, f ∈ C(F , 1/T)} ∪ {0}

is a (1/T)-cover of

Qkh+1(·, ·) =

{
min

{
fkh+1(·, ·) + bkh+1(·, ·), H

}
h < H

0 h = H
.

I.e., there exists q ∈ Q such that ‖q −Qkh+1‖∞ ≤ 1/T . This implies

V :=

{
max
a∈A

q(·, a) | q ∈ Q
}

is a (1/T)-cover of V kh+1 with log(|V|) ≤ log |W| + logN (F , 1/T) + 1. For each V ∈ V , let
EV,δ/(8|V|T) be the event defined in Lemma 5. By Lemma 5, we have Pr

[⋂
V ∈V EV,δ/(8|V|T)

]
≥

1− δ/(8T). We condition on
⋂
V ∈V EV,δ/(8|V|T) in the rest part of the proof.

Recall that fkh is the solution of the optimization problem in Line 8 of Algorithm 1, i.e., fkh =
arg minf∈F ‖f‖2Dkh . Let V ∈ V such that ‖V − V kh+1‖∞ ≤ 1/T . Thus, by Lemma 5, we have∥∥∥∥∥fkh (·, ·)−

(
r(·, ·) +

∑
s′∈S

P (s′ | ·, ·)V kh+1(s′)

)∥∥∥∥∥
Zk

≤c′ ·
(
H
√

log(T/δ) + logN (F , 1/T) + log |W|
)

for some absolute constant c′. Therefore, by a union bound, for all (k, h) ∈ [K] × [H], we have
fkh (·, ·)−

(
r(·, ·) +

∑
s′∈S P (s′ | ·, ·)V kh+1(s′)

)
∈ Fkh with probability at least 1− δ/8.

20

The above lemma guarantees that, with high probability, r(·, ·) +
∑
s′∈S P (s′ | ·, ·)V kh+1(·, ·) lies in

the confidence region. With this, it is guaranteed that
{
Qkh
}

(h,k)∈[H]×[K]
are all optimistic, with high

probability. This is formally presented in the next lemma.
Lemma 7. With probability at least 1− δ/4, for all (k, h) ∈ [K]× [H], for all (s, a) ∈ S ×A,

Q∗h(s, a) ≤ Qkh(s, a) ≤ r(s, a) +
∑
s′∈S

P (s′|s, a)V kh+1(s′) + 2bkh(s, a).

Proof. For each (k, h) ∈ [K]× [H], define

Fkh =
{
f ∈ F | ‖f − fkh‖2Zk ≤ β(F , δ)

}
.

Let E be the event that for all (k, h) ∈ [K] × [H], r(·, ·) +
∑
s′∈S P (s′ | ·, ·)V kh+1(s′) ∈ Fkh . By

Lemma 6, Pr[E] ≥ 1− δ/8. Let E ′ be the event that for all (k, h) ∈ [K]× [H] and (s, a) ∈ S ×A,
bkh(s, a) ≥ w(Fkh , s, a). By Proposition 2 and union bound, E ′ holds failure probability at most δ/8.
In the rest part of the proof we condition on E and E ′.
Note that

max
f∈Fkh

|f(s, a)− fkh (s, a)| ≤ w(Fkh , s, a) ≤ bkh(s, a).

Since
r(·, ·) +

∑
s′∈S

P (s′ | ·, ·)V kh+1(s′) ∈ Fkh ,

for any (s, a) ∈ S ×A we have∣∣∣∣∣r(s, a) +
∑
s′∈S

P (s′ | s, a)V kh+1(s′)− fkh (s, a)

∣∣∣∣∣ ≤ bkh(s, a).

Hence,

Qkh(s, a) ≤ fkh (s, a) + bkh(s, a) ≤ r(s, a) +
∑
s′∈S

P (s′|s, a)V kh+1(s′) + 2bkh(s, a).

Now we prove Q∗h(s, a) ≤ Qkh(s, a) by induction on h. When h = H + 1, the desired inequality
clearly holds. Now we assume Q∗h+1(·, ·) ≤ Qkh+1(·, ·) for some h ∈ [H]. Clearly we have
V ∗h+1(·) ≤ V kh+1(·). Therefore, for all (s, a) ∈ S ×A,

Q∗h(s, a) = r(s, a) +
∑
s′∈S

P (s′|s, a)V ∗h+1(s′)

≤ min

{
H, r(s, a) +

∑
s′∈S

P (s′|s, a)V kh+1(s′)

}
≤ min

{
H, fkh (s, a) + bkh(s, a)

}
= Qkh(s, a).

The next lemma upper bounds the regret of the algorithm by the sum of bkh(·, ·).
Lemma 8. With probability at least 1− δ/2,

Reg(K) ≤ 2

K∑
k=1

H∑
h=1

bkh
(
skh, a

k
h

)
+ 4H

√
KH · log(8/δ).

Proof. In our proof, for any (k, h) ∈ [K]× [H − 1] define

ξkh =
∑
s′∈S

P (s′ | skh, akh)
(
V kh+1(s′)− V πkh+1(s′)

)
−
(
V kh+1(skh+1)− V πkh+1(skh+1)

)
21

and define Fkh as the filtration induced by the sequence

{(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H] ∪ {(sk1 , ak1), (sk2 , a
k
2), . . . , (skh, a

k
h)}.

Then
E
[
ξkh | Fkh

]
= 0 and |ξkh| ≤ 2H.

By Azuma-Hoeffding inequality, with probability at least 1− δ/4,

K∑
k=1

H−1∑
h=1

ξkh ≤ 4H
√
KH · log(8/δ).

We condition on the above event in the rest of the proof. We also condition on the event defined in
Lemma 7 which holds with probability 1− δ/4.

Recall that

Reg(K) =

K∑
k=1

(
V ∗1 (sk1)− V πk1 (sk1)

)
≤

K∑
k=1

V k1 (sk1)− V πk1 (sk1).

We have

Reg(K) ≤
K∑
k=1

(
r(sk1 , a

k
1) +

∑
s′∈S

P (s′ | sk1 , ak1)V k2 (s′) + 2bk1(sk1 , a
k
1)

−r(sk1 , ak1)−
∑
s′∈S

P (s′ | sk1 , ak1)V πk2 (s′)

)

=

K∑
k=1

∑
s′∈S

P (s′ | sk1 , ak1)(V k2 (s′)− V πk2 (s′)) + 2bk1(sk1 , a
k
1)

=

K∑
k=1

V k2 (sk2)− V πk2 (sk2) + ξk1 + 2bk1(sk1 , a
k
1)

≤
K∑
k=1

V k3 (sk3)− V πk3 (sk3) + ξk1 + ξk2 + 2bk1(sk1 , a
k
1) + 2bk2(sk2 , a

k
2)

≤
K∑
k=1

H−1∑
h=1

ξkh +

K∑
k=1

H∑
h=1

2bkh(skh, a
k
h).

Therefore,

Reg(K) ≤ 2

K∑
k=1

H∑
h=1

bkh(skh, a
k
h) + 4H

√
KH · log(8/δ).

It remains to bound
∑K
k=1

∑H
h=1 b

k
h(skh, a

k
h), for which we will exploit fact that F has bounded

eluder dimension.
Lemma 9. With probability at least 1− δ/4, for any ε > 0,

K∑
k=1

H∑
h=1

I
(
bkh(skh, a

k
h

)
> ε
)
≤
(
cβ(F , δ)

ε2
+H

)
· dimE(F , ε)

for some absolute constant c > 0. Here β(F , δ) is as defined in (4).

Proof. Let E be the event that or all (k, h) ∈ [K]× [H],

bkh(·, ·) ≤ w(Fkh, ·, ·)

22

where
Fkh = {f ∈ F : ‖f − fkh‖2Zk ≤ 9β + 12}.

By Proposition 2, E holds with probability at least 1− δ/4. In the rest of the proof, we condition on
E .

Let L = {(skh, akh) | bkh(skh, a
k
h) > ε} with |L| = L. We show that there exists (skh, a

k
h) ∈ L

such that (skh, a
k
h) is ε-dependent on at least L/dimE(F , ε) − H disjoint subsequences in Zk ∩

L. We demonstrate this by using the following procedure. Let L1,L2, . . . ,LL/ dimE(F,ε)−1 be
L/dimE(F , ε)− 1 disjoint subsequences of L which are initially empty. We consider

{(sk1 , ak1), (sk2 , a
k
2), . . . , (skH , a

k
H)} ∩ L

for each k ∈ [K] sequentially. For each k ∈ [K], for each z ∈ {(sk1 , ak1), (sk2 , a
k
2), . . . , (skH , a

k
H)}∩L,

we find j ∈ [L/dimE(F , ε)− 1] such that z is ε-independent of Lj and then add z into Lj . By the
definition of ε-independence, |Lj | ≤ dimE(F , ε) for all j and thus we will eventually find some
(skh, a

k
h) ∈ L such that (skh, a

k
h) is ε-dependent on each of L1,L2, . . . ,LL/ dimE(F,ε)−1. Among

L1,L2, . . . ,LL/ dimE(F,ε)−1, there are at most H − 1 of them that contain an element in

{(sk1 , ak1), (sk2 , a
k
2), . . . , (skH , a

k
H)} ∩ L,

and all other subsequences only contain elements in Zk ∩ L. Therefore, (skh, a
k
h) is ε-dependent on

at least L/dimE(F , ε)−H disjoint subsequences in Zk ∩ L.

On the other hand, since (skh, a
k
h) ∈ L, we have bkh(skh, a

k
h) > ε, which implies there exists f, f ′ ∈ F

with ‖f − fkh‖2Zk ≤ 9β + 12 and ‖f ′ − fkh‖2Zk ≤ 9β + 12 such that f(z)− f ′(z) > ε. By triangle
inequality, we have ‖f − f ′‖2Zk ≤ 36β + 48. On the other hand, since (skh, a

k
h) is ε-dependent on at

least L/dimE(F , ε)−H disjoint subsequences in Zk ∩ L, we have

(L/dimE(F , ε)−H)ε2 ≤ ‖f − f‖2Zk ≤ 36β + 48,

which implies

L ≤
(

36β + 48

ε2
+H

)
dimE(F , ε).

Lastly, we apply the above lemma to bound the overall regret.
Lemma 10. With probability at least 1− δ/4,

K∑
k=1

H∑
1

bkh(skh, a
k
h

)
≤ 1 + 4H2dimE(F , 1/T) +

√
c · dimE(F , 1/T) · T · β(F , δ),

for some absolute constant c > 0. Here β(F , δ) is as defined in (4).

Proof. In the proof we condition on the event defined in Lemma 9. We define wkh := bkh
(
skh, a

k
h

)
.

Let w1 ≥ w2 ≥ . . . ≥ wT be a permutation of {wkh}(k,h)∈[K]×[H]. By the event defined in Lemma 9,
for any wt ≥ 1/T , we have

t ≤
(
cβ(F , δ)
w2
t

+H

)
dimE(F , wt) ≤

(
cβ(F , δ)
w2
t

+H

)
dimE(F , 1/T),

which implies

wt ≤
(

t

dimE(F , 1/T)
−H

)−1/2

·
√
cβ(F , δ).

Moreover, we have wt ≤ 4H . Therefore,
T∑
t=1

wt ≤1 + 4H2 dimE(F , 1/T) +
∑

H dimE(F,1/T)<t≤T

(
t

dimE(F , 1/T)
−H

)−1/2

·
√
cβ(F , δ)

≤1 + 4H2 dimE(F , 1/T) + 2
√
c · dimE(F , 1/T) · T · β(F , δ).

23

We are now ready to prove our main theorem.

Proof of Theorem 1. By Lemma 8 and Lemma 10, with probability at least 1− δ,

Reg(K) ≤ min

{
KH,

K∑
k=1

H∑
h=1

2bkh
(
skh, a

k
h

)
+ 4H

√
KH · log(8/δ)

}

≤ c ·min

{
KH,

(
dimE(F , 1/T) ·H2

+
√

dimE(F , 1/T) · T · β(F , δ).+H
√
KH · log δ−1

)}
for some absolute constants c > 0. Substituting the value of β(F , δ) completes the proof.

B Estimating the Sensitivity

In this section, we present a computationally efficient algorithm to estimate the λ-sensitivity of all
state-action pairs in a give set Z ⊆ S ×A with respect to a given function class F . The algorithm is
formally described in Algorithm 4.

Algorithm 4 Estimate(F , Z , λ)
1: Input: function class F , set of state-action pairs Z ⊆ S ×A, accuracy parameter λ
2: Initialize sensitivityest

Z,F,λ(z)← 0 for all z ∈ Z
3: for α ∈ {0, 1, . . . , log((H + 1)2|Z|/λ)− 1} do
4: Set Nα ← |Z|/dimE(F , (H + 1)2 · 2−α−1)
5: Initialize Zαj ← {} for each j ∈ [Nα]
6: for z ∈ Z do
7: if z is dependent on Zαj for all j ∈ [Nα] then
8: jα(z)← Nα + 1
9: else

10: jα(z)← min{j ∈ [Nα] | z is independent of Zαj }
11: Add z into Zαj
12: sensitivityαZ,F,λ(z)← 2

jα(z)

13: for z ∈ Z do
14: sensitivityest

Z,F,λ(z)← 1
|Z| +

∑
0≤α<log((H+1)2|Z|/λ) sensitivity

α
Z,F,λ(z)

15: return {sensitivityest
Z,F,λ(z)}z∈Z

Given a function class F , a set of state-action pairs Z and an accuracy parameter λ, Algorithm 4
returns an estimate of the λ-sensitivity for each z ∈ Z . With Algorithm 4, we can now implement
Algorithm 2 computationally efficiently by replacing (3) in Algorithm 2 with

pz ≥ min{1, sensitivityest
Z,F,λ(z) · 72 ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ)/ε2}

where for each z ∈ Z , sensitivityest
Z,F,λ(z) is the estimated λ-sensitivity returned by Algorithm 4. Ac-

cording to the analysis in Section A.1, to prove the correctness of Algorithm 2 after this modification,
it suffices to prove that

sensitivityest
Z,F,λ(z) ≥ sensitivityZ,F,λ(z)

for each z ∈ Z and∑
z∈Z

sensitivityest
Z,F,λ(z) ≤ 4dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln |Z|,

which we prove in the remaining part of this section.

Lemma 11. For each z ∈ Z , sensitivityest
Z,F,λ(z) ≥ sensitivityZ,F,λ(z).

24

Proof. In our proof we consider a fixed z ∈ Z . Let f, f ′ ∈ F be an arbitrary pair of functions such
that ‖f − f ′‖2Z ≥ λ and

(f(z)− f ′(z))2

‖f − f ′‖2Z
is maximized and we define L(z) = (f(z)− f ′(z))2 for such f and f ′. If L(z) ≤ λ/|Z|, then we
have sensitivityest

Z,F,λ(z) ≥ 1/|Z| ≥ sensitivityZ,F,λ(z). Otherwise, there exists 0 ≤ α < log((H +

1)2|Z|/λ) such that L(z) ∈ ((H + 1)2 · 2−α−1, (H + 1)2 · 2−α]. Since L(z) > (H + 1)2 · 2−α−1

and z is dependent on each of Zα1 ,Zα2 , . . . ,Zαjα(z)−1, we have

(f(z)− f ′(z))2

‖f − f ′‖2Z
≤ (H + 1)2 · 2−α

(H + 1)2 · 2−α−1(jα(z)− 1) + (f(z)− f ′(z))2

≤ 2

jα(z)
= sensitivityαZ,F,λ(z) ≤ sensitivityest

Z,F,λ(z).

Lemma 12.
∑
z∈Z sensitivityest

Z,F,λ(z) ≤ 4dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln |Z|.

Proof. For each 0 ≤ α < log((H + 1)2|Z|/λ), by the definition of (H + 1)2 · 2−α−1-independence,
we have |Zαj | ≤ dimE(F , (H + 1)2 · 2−α−1) ≤ dimE(F , λ/|Z|) for each j ∈ [Nα]. Therefore,∑

z∈Z
sensitivityαZ,F,λ(z) ≤

∑
z∈Z

2

jα(z)
=

∑
jα(z)=Nα

2

jα(z)
+

∑
jα(z)>Nα

2

jα(z)

≤2dimE(F , λ/|Z|) ln |Z|+ 2dimE(F , (H + 1)2 · 2−α−1) ≤ 3dimE(F , λ/|Z|) ln |Z|.

Therefore, ∑
z∈Z

sensitivityest
Z,F,λ(z) ≤ 3dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln |Z|+ 1

≤4dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln |Z|.

C Model Misspecification

In this section, we study the case when there is a misspecification error. Formally, we consider the
following assumption.

Assumption 3. There exists a set of functions F ⊆ {f : S × A → [0, H + 1]} and a real number
ζ > 0, such that for any V : S → [0, H], there exists fV ∈ F which satisfies

max
(s,a)∈S×A

∣∣∣∣∣fV (s, a)− r(s, a) +
∑
s′∈S

P (s′ | s, a)V (s′)

∣∣∣∣∣ ≤ ζ.
We call ζ the misspecification error.

Our algorithm for the misspecification case is identical the original algorithm except for the change
of β(F , δ). In particular, we change the definition of β(F , δ) (defined in (4)) as follows.

β(F , δ) =c′

(
H2 · log2

(
T

δ

)
· dimE

(
F , δ

T 3

)
· ln

(
N
(
F , δ

T 2

)
δ

)

· log

(
N
(
S ×A, δT

)
· T

δ

)
+ ζHT

)
(5)

for some absolute constant c′ > 0. With this, we can now reprove Lemma 5 in the misspecified case.

25

Lemma 13 (Misspecified Single Step Optimization Error). Suppose F satisfies Assumption 3.
Consider a fixed k ∈ [K]. Let

Zk = {(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H]

as defined in Line 5 in Algorithm 1. For any V : S → [0, H], define

DkV :=
{(
sτh′ , a

τ
h′ , r

τ
h′ + V (sτh′+1)

)}
(τ,h′)∈[k−1]×[H]

and
f̂V := arg min

f∈F
‖f‖2DkV .

For any V : S → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at least
1− δ, such that conditioned on EV,δ , for any V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we have∥∥∥∥∥f̂V ′(·, ·)− r(·, ·)−∑

s′∈S
P (s′ | ·, ·)V ′(s′)

∥∥∥∥∥
Zk

≤ c′ ·
(
H
√

log(2/δ) + logN (F , 1/T) + THζ
)

for some absolute constant c′ > 0.

Proof. In our proof, we consider a fixed V : S → [0, H], and define

fV (·, ·) := r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)V (s′).

Note that unlike Lemma 5, we may have fV 6∈ F . By Assumption 3, we immediately have

min
f∈F
‖f − fV ‖2Zk ≤ |Z

k|ζ2 ≤ Tζ2.

For any f ∈ F , we consider
∑

(τ,h)∈[k−1]×[H] ξ
τ
h(f) where

ξτh(f) := 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h)) · (fV (sτh, a

τ
h)− rτh − V (sτh+1)).

Similar to Lemma 5, we still have, with probability at least 1− δ, for all f ∈ C(F , 1/T),∣∣∣∣∣∣
∑

(τ,h)∈[k−1]×[H]

ξτh(f)

∣∣∣∣∣∣ ≤ 4(H + 1)‖f − fV ‖Zk ·
√

log(2/δ) + logN (F , 1/T).

We define the above event to be EV,δ , and we condition on this event for the rest of the proof. Similarly,
we have, for all f ∈ F ,∣∣∣∣∣∣

∑
(τ,h)∈[k−1]×[H]

ξτh(f)

∣∣∣∣∣∣ ≤ 4(H + 1)(‖f − fV ‖Zk + 1) ·
√

log(2/δ) + logN (F , 1/T) + 2(H + 1).

Consider V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T . We still have

‖fV ′ − fV ‖∞ ≤ ‖V ′ − V ‖∞ ≤ 1/T.

Again by the same argument as in the proof of Lemma 5, we have for any f ∈ F ,

‖f‖2Dk
V ′
− ‖fV ′‖2Dk

V ′
≥ ‖f − fV ′‖2Zk − 4(H + 1)(‖f − fV ′‖Zk + 2)

·
√

log(2/δ) + logN (F , 1/T)− 6(H + 1).

Let f̃V ′ = arg minf∈F ‖f − fV ′‖2Zk . Recall that f̂V ′ = arg minf∈F ‖f‖2Dk
V ′

. We have

‖f̂V ′‖Dk
V ′
≤ ‖f̃V ′‖Dk

V ′
≤ ‖fV ′‖Dk

V ′
+ ‖f̃V ′ − fV ′‖Zk ≤ ‖fV ′‖Dk

V ′
+
√
Tζ,

26

which implies,(
‖f̂V ′‖Dk

V ′
+ ‖fV ′‖Dk

V ′

)
·
√
Tζ ≥ ‖f̂V ′‖2Dk

V ′
− ‖fV ′‖2Dk

V ′

=‖f̂V ′ − fV ′‖2Zk
+ 2

∑
(sτ
h′ ,a

τ
h′)∈Z

k

(f̂(sτh′ , a
τ
h′)− fV ′(sτh′ , aτh′)) · (fV ′(sτh′ , aτh′)− rτh′ − V ′(sτh′+1))

≥‖f̂V ′ − fV ′‖2Zk
− 4(H + 1)(‖f̂V ′ − fV ′‖Zk + 2) ·

√
log(2/δ) + logN (F , 1/T)− 6(H + 1).

Since ‖f̂V ′‖Dk
V ′

+ ‖fV ′‖Dk
V ′
≤ 4H

√
T , solving the above inequality, we have,

‖f̂V ′ − fV ′‖Zk ≤ c′ ·
√
H2 (log δ−1 + logN (F , 1/T)) + THζ

for an absolute constant c′ > 0.

Similar to Lemma 6, we have the following lemma.
Lemma 14 (Misspecified Confidence Region). Suppose F satisfies Assumption 3. In Algorithm 1,
let Fkh be a confidence region defined as

Fkh =
{
f ∈ F | ‖f − fkh‖2Zk ≤ β(F , δ)

}
.

Then with probability at least 1− δ/8, for all k, h ∈ [K]× [H],

r(·, ·) +
∑
s′∈S

P (s′ | ·, ·)V kh+1(s′) ∈ Fkh ,

provided
β(F , δ) ≥ c′ ·

(
H2 (log(T/δ) + log(|W|) + logN (F , 1/T)) + THζ

)
for some absolute constant c′ > 0. HereW is given as in Propostion 2.

Proof. The proof is nearly identical to that of Lemma 6.

Combining Lemma 14 with Lemma 7–10, we obtain the following theorem.
Theorem 2. Under Assumption 3, after interacting with the environment for T = KH steps, with
probability at least 1− δ, Algorithm 1 achieves a regret bound of

Reg(K) ≤
√
ι ·H2 · T +

√
dimE (F , 1/T) ·H · ζ · T,

where

ι ≤ C · log2

(
T

δ

)
· dim2

E

(
F , δ

T 3

)
· ln

(
N
(
F , δ

T 2

)
δ

)
· log

(
N
(
S ×A, δT

)
· T

δ

)
for some absolute constants C > 0.

27

	Introduction
	Related Work

	Preliminaries
	Algorithm
	Stable UCB via Importance Sampling
	Computational Efficiency

	Theoretical Guarantee
	Conclusion
	Missing Proofs
	Analysis of the Stable Bonus Function
	Analysis of the Algorithm

	Estimating the Sensitivity
	Model Misspecification

