
Appendix

A Algorithm Procedure

A full workflow of channel number search with the proposed transitionary APS is shown in Algo-
rithm 1. The overall procedure consists of two stages. In the first stage, we fix the controller ⇡(✓)
and initialize � of affine parameter sharing with maximal value, so that meta weights W can be
efficiently optimized. During this stage architectures are uniformly sampled from the search space
C and are thus equally updated. In the second stage, we gradually anneal � via Equation 5 so as
to transit the sharing level �. We alternatively update meta weights W and controller parameter ✓
based on architectures sampled from the controller.

Algorithm 1 RL-based CNS algorithm with Transitionary APS
Input:

Training data Dtr , validation data Dval;
Base network with meta weights W , transformation matrices P,Q
RL controller ⇡(✓) and channel search space C.

Output:
Optimal channel configurations.
// Stage 1: fast optimization of meta-weights W

1: Initialize P,Q with maximal �;
2: for t = 1, ..., T1 do
3: Sample the architecture a uniformly from C;
4: Update W via gradient descent with a on Dtr;
5: end for

// Stage 2: transitionary affine parameter sharing

6: for t = 1, ...T2 do
7: Sample the architecture from controller a ⇠ ⇡(✓);
8: Update W via gradient descent with a on Dtr;
9: Update ✓t+1 = ✓t + ⌘Ea [r✓ log p(a)R] on Dval;

10: Anneal � by updating P,Q in Equation (5);
11: end for

B Proof for Theorem 3.1

Theorem. For 8i ĩ and 8o õ, the overall level � of APS is maximized if R
�
Qi

�
✓ R

�
Qĩ

�
and

R
�
Po

�
✓ R

�
Põ

�
. � is minimized if R

�
Qi

�
✓ R?�Qĩ

�
and R

�
Po

�
✓ R?�Põ

�
.

To prove Theorem 3.1, we first show the case of two candidate decision (i, o) and (̃i, õ), after which
we can combine the pairwise optimal conditions together to yield Theorem 3.1. Without loss of
generality, suppose cĩ > ci and cõ > co, we have the following lemma:

Lemma 1. Given candidate decisions (i, o) and (̃i, õ), �(i, o; ĩ, õ) is maximized if R(Qi) ✓ R(Qĩ)

and R(Po) ✓ R(Põ); �(i, o; ĩ, õ) is minimized if R(Qi) ✓ R?(Qĩ) or R(Po) ✓ R?(Põ).

Proof. As �(i, o; ĩ, õ) is defined as the squared sum of pairwise correlation between Wi,o and Wĩ,õ,
we can explicitly write it out as:

�(i, o; ĩ, õ) =
ciX

x=1

coX

y=1

cĩX

x̃=1

cõX

ỹ=1

h
Covx,y,x̃,ỹ(W

i,o,Wĩ,õ)
i2

=
ciX

x=1

coX

y=1

cĩX

x̃=1

cõX

ỹ=1

h
E
�
W i,o

x,yW
ĩ,õ
x̃,ỹ

�
� E

�
W i,o

x,y

�
E
�
W ĩ,õ

x̃,ỹ

�i2
. (6)

13

Note that the second term can be removed since E
�
W i,o

x,y

�
= E

�
(qi

x)
>Wpo

y

�
= (qi

x)
>E

�
W)po

y = 0

and similarly E
�
W ĩ,õ

x̃,ỹ

�
= 0. Therefore �(i, o; ĩ, õ) can be simplified as

�(i, o; ĩ, õ) =
ciX

x=1

coX

y=1

cĩX

x̃=1

cõX

ỹ=1

E2
h
W i,o

x,y ·W
ĩ,õ
x̃,ỹ

i

=
X

x,y

X

x̃,ỹ

E2
h
(qi

x)
>Wpo

y · (qĩ
x̃)

>Wpõ
ỹ

i

=
X

x,y

X

x̃,ỹ

E2
h
(qi

x)
>Wpo

y · (põ
ỹ)

>W>qĩ
x̃

i

=
X

x,y

X

x̃,ỹ

⇣
(qi

x)
>E

h
Wpo

y (põ
ỹ)

>W>
i
qĩ
x̃

⌘2
. (7)

Expanding the expectation E[Wpo
y(p

õ
ỹ)

>W>] elementwisely, we have

E

2

64
w1po

y(p
õ
ỹ)

>w>
1 · · · w1po

y(p
õ
ỹ)

>w>
c

...
. . .

...
wcpo

y(p
õ
ỹ)

>w>
1 · · · wcpo

y(p
õ
ỹ)

>w>
c

3

75 =

2

64
(po

y)
>põ

ỹ · · · 0
...

. . .
...

0 · · · (po
y)

>põ
ỹ

3

75 (8)

where we have used the fact that E
h
wmpo

y(p
õ
ỹ)

>w>
n

i
= (po

y)
>E

h
w>

mwn

i
põ
ỹ = (po

y)
>põ

ỹ if m = n,
and 0 otherwise. With Equation 8, Equation 7 can be simplified to

�(i, o; ĩ, õ) =
X

x,x̃

X

y,ỹ

h
(qi

x)
>qĩ

x̃ · (po
y)

>põ
ỹ

i2

=
X

x,x̃

X

y,ỹ

h cX

m=1

qim,xq
ĩ
m,x̃ ·

cX

n=1

pon,yp
õ
n,ỹ

i2
. (9)

Without loss of generality, we take Qĩ and Põ as standard orthogonal basis, i.e. qĩx̃,x̃ = 1 and
qĩm,x = 0 for m 6= x̃ and x̃ 2 {1, ..., cĩ}, and similarly for Põ. Thus Equation 9 can be further
reduced to

X

x,x̃

X

y,ỹ

h
qix̃,x · poỹ,y

i2
=

ciX

x=1

coX

y=1

⇣ cĩX

x̃=1

(qix̃,x)
2
⌘
·
⇣ cõX

ỹ=1

(poỹ,y)
2
⌘

X

x

X

y

1 = cico. (10)

The equality holds if qim,x = 0 for m > cĩ and pon,y = 0 for n > cõ. Therefore the maximum is
attained when orthogonal basis of Qi and Po lie in the span of those in Qĩ and Põ respectively, i.e,
R(Qi) ✓ R(Qĩ) and R(Po) ✓ R(Põ).

Conversely, minimum for Equation 9 is attained if qim,x = 0 for m cĩ or pon,y = 0 for n cõ,
which is equivalent to R(Qi) ✓ R?(Qĩ) or R(Po) ✓ R?(Põ).

Finally, to prove Theorem 3.1, we only need to extend Lemma 1 to the case of multiple candidate
decisions. The maximum and minimum of � =

P
i,̃i

P
o,õ �(i, o; ĩ, õ) can be achieved when each

�(i, o; ĩ, õ) attains its maximum and minimum respectively. This corresponds to the intersection of
optimal conditions in Lemma 1, which is exactly Theorem 3.1.

C Implementation Details and Hyper-parameters

Design of RL controller We follow ENAS [25] to take the RL-based algorithm to illustrate channel
number search, and the overall formulation is given in Equation 1. Here we cover more details in
the design. For the RL controller, we take a two-layer LSTM with 100 hidden units, and channel
decisions are generated auto-regressively. The RL states contain the previous layer width decision, the
one-hot layer index encoding, and available FLOPs left. Naively, one could simply set the accuracy

14

as the reward for controller training. However, this may be not reasonable under budget-constrained
search. Instead we follow MNasNet [30] and design the reward R as:

R = Acc(a)⇥ [
B(a)
B

]� , where � =

⇢
↵ if B(a) < B
� otherwise , (11)

where a ⇠ ⇡(✓) is the layerwise channel decision, Acc(·) is the accuracy function, and ↵,� are
coefficients of FLOPs penalty. Such design is shown to approximate the pareto-optimal solutions [30].
We adopt policy gradient to maximize the reward function. To prevent the RL controller ⇡(✓) from
getting stuck in local-minimal, we follow [25] to add an entropy regularization.

Calculating the cosine similarity of gradients Given two different candidates (i, o) and (̃i, õ) of
one convolutional layer, we describe the steps to calculate the alignment of gradients (cos(g, g̃))
on the meta-weight. We change the channel configuration in one layer and fix all the other layers.
Specifically, for a = (a1, a2, ..., aL), we vary al 2 A and fix all the rest aj for j 6= l. Varying al 2 A
gives A different gradients on W . We thus compute and average the pairwise cosine similarities of
these gradients at different values of �, each of which involves A(A � 1)/2 combinations. Then
these averaged cosine values are summed over all layers to produce Figure 3(a). During the transition
of �, we repeat the above procedure at each training epoch to plot the cosine values in Figure 4.

Calculating the norm of coupled gradients To collect the norm of coupled gradients, we maintain
an accumulator for each candidate. During the searching process at time step t, each gradient
term Qt

�
rWL(Wt)

�
(Pt)> from al is added to its own accumulator. The corresponding coupled

gradients can be computed by summing over all candidate accumulators except for al and then
multiply Qt and Pt. Similar to the above subsection, the norm of coupled gradients across different
layers are then averaged. The accumulators are reset every epoch to fully show the level of coupling
change with respect to the parameter sharing transition. We follow such procedure at different values
of � to produce Figure 2(b). To plot the variation of coupled gradients in Figure 4, we repeat this
process at every training epoch, and clean accumulators before the start of next epoch. We also
empirically observe that the step-wise change of learning rates affects the observation of coupling.
Thus we set constant learning rate as 1e-2 during the collection of coupled gradients.

Efficient optimization of � The form of objective function � w.r.t to P ,Q can be readily obtained
by vectorizing the element-wise summation in Equation 9. Direct optimization of the sharing level
� could be computationally expensive. Instead, we alternatively update P,Q to minimize � with
lower frequencies. For instance, we fix P to optimize Q for ten iterations, where the product terms of
P are computed in advance and can be reused them for multiple turns. In this way the computational
burden can be effectively reduced. Furthermore, one can update P,Q separately for each layer,
which is an equivalent implementation but with less memory overhead.

Hyper-parameter settings Finally, the detailed hyper-parameters for the RL based CNS algorithms
on both CIFAR-10 and ImageNet datasets are shown in Table 3. Given the searched architecture, we
follow default settings of the base models to train stand-alone models from scratch.

D Visualization of Channel Configurations

We visualize the searched channel configurations under different FLOPs constraint of ResNet-18
and MobileNet-v2 in Figure 10. Note that for MobileNet-v2, we omit the output channels of the
depth-wise convolution in each block since it equals to the input channels. It can be observed
that for both ResNet-18 and MobileNet-v2 under various FLOPs constraint, APS-T tends to find
configurations with less channels in front layers and more channels in deep layers.

E More Results on Unconstrained Search

We provide more results on the architecture discrimination without FLOPs constraint in Figure 11.
The hyper-parameters are consistent to those used Figure 5. It can be found that both APS-O and
APS-T are relatively robust in the searched results. However, APS-I ends with large architecture
discrimination but sometimes converges to sub-optimal configurations. We conjecture it is possibly
due to early convergence of the controller as a result of insufficient training of meta weights W .

15

Table 3: Hyper-parameters for different base models on CIFAR-10 and ImageNet.
Hyper-parameters CIFAR-10 ImageNet

ResNet-20 ResNet-56 ResNet-18 MobileNet-v2
Channel Number C [4,8,16,32,64] [4,8,16,32,64] [32,48,64,80] [8,12,16,20]
Width Multipliers 1 1 2 default

Max Channel Width c 208 208 128 32
Batch Size Per GPU 256 256 256 256

Init. Learning Rate of W 1e-1 1e-1 1e-1 5e-2
Learning Rate Decay Stepwise Stepwise Cosine Cosine

Optimizer SGD SGD SGD SGD
Momentum 0.9 0.9 0.9 0.9

Nestrov False False True True
Learning Rate of P,Q 1e-3 1e-3 1e-3 1e-3

Learning Rate of ✓ 1.6e-4 1.6e-4 1.6e-4 1.6e-4
FLOPs Penalty ↵,� 0, -0.1 0, -0.06 0, -0.1 0,-0.1

Entropy Regularization 4e-3 4e-3 5e-1 4e-1
Weight Decay 2e-4 2e-4 1e-4 4e-5

Warmup Epochs 200 200 80 80
Max Epochs 600 600 160 160

(a) ResNet-18

(b) MobileNet-v2

Figure 10: Channel configurations of ResNet-18 and MobileNet-v2 under different FLOPs constraint.

16

Figure 11: More searching results of APS-O, APS-I and APS-T without FLOPs constraint.

17

	Introduction
	Preliminaries
	Problem Setup
	Parameter Sharing for CNS

	Methodology
	Affine Parameter Sharing
	Quantitative Measurement
	Parameter Sharing and the Searching Dynamics
	Transitionary Strategy

	Related Work
	Experiments
	Experimental Setup
	The Effect of Parameter Sharing
	Comparisons with state-of-the-arts

	Conclusion
	Algorithm Procedure
	Proof for Theorem 3.1
	Implementation Details and Hyper-parameters
	Visualization of Channel Configurations
	More Results on Unconstrained Search

