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Abstract

In suitably initialized wide networks, small learning rates transform deep neural
networks (DNNs) into neural tangent kernel (NTK) machines, whose training
dynamics is well-approximated by a linear weight expansion of the network at ini-
tialization. Standard training, however, diverges from its linearization in ways that
are poorly understood. We study the relationship between the training dynamics of
nonlinear deep networks, the geometry of the loss landscape, and the time evolu-
tion of a data-dependent NTK. We do so through a large-scale phenomenological
analysis of training, synthesizing diverse measures characterizing loss landscape
geometry and NTK dynamics. In multiple neural architectures and datasets, we find
these diverse measures evolve in a highly correlated manner, revealing a universal
picture of the deep learning process. In this picture, deep network training exhibits
a highly chaotic rapid initial transient that within 2 to 3 epochs determines the final
linearly connected basin of low loss containing the end point of training. During
this chaotic transient, the NTK changes rapidly, learning useful features from the
training data that enables it to outperform the standard initial NTK by a factor of 3
in less than 3 to 4 epochs. After this rapid chaotic transient, the NTK changes at
constant velocity, and its performance matches that of full network training in 15%
to 45% of training time. Overall, our analysis reveals a striking correlation between
a diverse set of metrics over training time, governed by a rapid chaotic to stable
transition in the first few epochs, that together poses challenges and opportunities
for the development of more accurate theories of deep learning.

The remarkable empirical success of deep learning across a range of domains stands in stark contrast
to our theoretical understanding of the mechanisms underlying this same success [1]. Indeed, we are
currently far from a mature, unified mathematical theory of deep learning that is powerful enough to
universally guide engineering design choices. As in many other fields of inquiry, a key prerequisite to
any such theory is careful empirical measurements of the deep learning process, with the scientific
aim of unearthing combinations of variables that obey correlated dynamical laws that can serve as the
inspiration for future theories. Indeed, a large body of work has studied, mainly in isolation, diverse
and intriguing phenomenological properties, as well as extreme simplifying theoretical limits, of deep
learning. In particular, we focus on 3 intertwined aspects of deep learning that have previously been
studied largely in isolation: (1) the large scale structure of deep learning loss surfaces, (2) the local
geometry of such loss surfaces, and (3) and the performance of linearized training methods, like the
neural tangent kernel (NTK), that has gained attention through its ability to theoretically describe
an infinite width low learning rate limit of deep learning in terms of kernel machines with random
data-independent kernels. The fundamental goal of this work is to obtain a more integrative view of
the intertwined relations between loss landscape geometry at multiple scales of organization and the
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Figure 1: A conceptual overview of diverse deep learning phenomenology. (A) A schematic picture
of the region of low loss (black area) in weight space as a network of high dimensional basins with
lower dimensional intersections, motivated by recent work [2, 3, 4, 5, 6]. Two networks (red points)
in different basins can be connected by a low loss nonlinear path (yellow) but not by a low loss
linear path (orange). (B) A schematic view of the process of hierarchically exploring loss landscapes
by spawning child networks [7]. A randomly initialized parent network (blue point) is trained up
to a certain spawn epoch (green point) at which two (or more) child networks are spawned from
with identical weights and then subsequently trained independently with different SGD minibatches
(bifurcating blue lines). Two children spawned later (earlier) than a very early transition time in parent
training, will arrive at the same (different) basin on the loss landscape. (C) A schematic view of NTK
training. The black curve is the space of functions fw realizable by varying the parameters w of a
neural network and full network training proceeds along this curved function manifold (blue to green
to red points). NTK training linearizes the manifold at initialization (blue point), and trains along
the tangent space (blue line). Such linearized training is equivalent to kernel regression in function
space where the kernel is closely related to the tangent plane along which training occurs. This panel
shows a case where NTK and full nonlinear training are similar in that the kernel at initialization
does not change much over learning, as shown schematically by the similar orientations of the initial
(blue), intermediate (green) and final (red) tangent spaces. (D) The same as in panel (C), except now
showing schematically a case where the NTK method is very different from full nonlinear training, in
which the kernel changes considerably, as evidenced by the strong twisting of tangent spaces (blue,
green and red lines), resulting in a final learned kernel (associated with the red tangent space) that is
quite different from the initial random kernel (associated with the blue tangent space). (E) Consider
an error landscape with a sharp and a wide minimum separated by an error barrier. With a small
learning rate (bottom), a learning trajectory starting at an initial point (blue) will slowly descend
through intermediate points (green) to a minimum position (red) in the sharp minimum, and is unable
to escape it. With a larger learning rate (top), a learning trajectory that starts in the sharp minimum at
a position (blue point) that is even lower than the error barrier, can escape the sharp minimum.

dynamics of learning in deep networks, by performing simultaneous measurements of many diverse
properties. We describe the previous work that motivates our current measurements in Section 1, and
we summarize our results and contributions in Section 8, which can be read right after Section 1.

1 Diverse aspects of deep learning phenomenology
The large scale geometric structure of neural loss landscapes. Recent work has revealed many
insights into the shape of loss functions over the high dimensional space of neural network parameters.
For example, [2, 3] demonstrates that training even within a random, low-dimensional affine subspace
of parameter space can yield a network with low test loss. This suggests that the region of parameter
space with low test loss must be a relatively high dimensional object, such that low dimensional
random affine hyperplanes can generically intersect it. Moreover, [4, 8, 5] show that different,
independently trained networks in weight space with low loss can be connected through nonlinear
pathways (found via an optimization process) that never leave this low loss manifold. However,
direct linear pathways connecting two such independently trained networks typically always leave
the low loss manifold. The loss function restricted to such linear paths then yields a loss barrier at
an intermediate point between the two networks. [6] builds and provides evidence for a unifying
geometric model of the low-loss manifold consisting of a network of mutually intersecting high
dimensional basins (Fig. 1A). Two networks within a basin can be connected by a straight line that
never leaves the low-loss manifold, while two networks in different basins can be connected by a
piecewise linear path of low loss that is forced to traverse the intersection between two basins. [9]
uses these insights to argue that deep ensembles are hard to beat using local subspace sampling
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methods due to the geometry of this underlying loss landscape. [7] provides further evidence for this
large-scale structure by demonstrating thatafter a very early stage of training of a parent network
(but not earlier) two child networks trained starting from the parameters of the parent end up in the
same low loss basin at the end of training, and could be connected by alinear path in weight space
that does not leave the low loss manifold (Fig. 1B). Furthermore, [10, 11] show that the properties of
the �nal minimum found are strongly in�uenced by the very early stages of training. Taken together,
these results present an intriguing glimpse into the large scale structure of the low loss manifold, and
the importance of early training dynamics in determining the �nal position on the manifold.

Neural tangent kernels, linearized training and the in�nite width limit. The neural tangent
kernel (NTK) has garnered much attention as it provides a theoretical foothold to understand deep
networks, at least in an in�nite width limit with appropriate initialization scale and low learning rate
[12, 13]. In such a limit, a network does not move very far in weight space over the course of training,
and so one can view learning as a linear process occurring along the tangent space to the manifold of
functions fw realizable by the parametersw, at the initial functionf 0 (Fig. 1C). This learning process
is well described by kernel regression with a certain random kernel associated with the tangent space
at initialization. The NTK is also a special case of Taylorized training [14], which approximates the
realizable function spacefw to higher order in the vicinity of initialization. Various works compare
the training of deep networks to the NTK [15, 16, 17, 18]. In many cases, state of the art networks
outperform their random kernel counterparts by signi�cant margins, suggesting that deep learning in
practice may indeed explore regions of function space far from initialization, with the tangent space
twisting signi�cantly over training time, and hence the kernel being learned from the data (Fig. 1D).
However, the nature and extent of this function space motion, the degree of tangent space twisting,
and how and when data is infused into alearnedtangent kernel, remains poorly understood.

The local geometric structure of neural loss landscapes.Much effort has gone into charac-
terizing the local geometry of loss landscapes in terms of Hessian curvature and its impact on
generalization and learning. Interestingly [19] analyses the Hessian eigenspectrum of loss landscapes
at scale, demonstrating that learning leads to the emergence of a small number of large Hessian
eigenvalues, and many small ones, bolstering evidence for the existence of many �at directions in low
loss regions depicted schematically in Fig. 1A. [20] shows that the gradients of logits with respect to
parameters cluster tightly based on the logit over training time, leading directly to the emergence
of very sharp Hessian eigenvalues. Moreover, a variety of work has explored relations between the
curvature of local minima found by training and their generalization properties [21, 22, 23, 24, 25,
6, 26], and how learning rate and batch size affect the curvature of the minima found [27, 28, 29],
with larger learning rates generically enabling escape from sharper minima (Fig. 1E). [30] makes
a connection between learning rates and the validity of NTK training, showing that for in�nitely
wide networks, training with a learning rate above a scale determined by the top eigenvalue of the
Hessian at initialization results in a learning trajectory that outperforms NTK training, presumably by
exploring nonlocal regions of function space far away from initialization.

Towards an integrative view. Above, we have reviewed previously distinct strands of inquiry
into deep learning phenomenology that have made little to no contact with each other. Indeed, we
currently have no understanding of how local and global loss geometry interacts with the degree of
kernel learning in state of the art architectures and training regimes used in practice. For example, at
what point in training is the fate of the �nal chosen basin in Fig. 1 A,B irrevocably determined? Does
the kernel change signi�cantly from initialization as in Fig. 1D? If so, when during training does
the tangent kernel start to acquire knowledge of the data? Also, when does kernel learning �nally
stabilize? What relations do either of these times have to the time at which basin fate is determined?
How does local geometry in terms of curvature change as all these events occur? Here we address
these questions to obtain an integrative view of the learning process across a range of networks and
datasets. While we only present results for ResNet20 trained on CIFAR10 and CIFAR100 in the main
paper, in Appendix C we �nd similar results for a WideResNet, variations of Resnets and a Simple
CNN trained on CIFAR10 and CIFAR100, indicating our results hold generally across architectures,
datasets and training protocols. Many experimental details are covered in our Appendix.

2 De�nition of measurement metrics for geometry and training
We now mathematically formalize the quantities introduced in the previous section as well as de�ne
more quantities whose dynamics we will measure during training. LetS= (( xi ;yi);1 � i � m) be
m training examples, withyi 2 f 0;1gK , whereK is the number of classes. Letfw(x) denote the
K-dimensional output vector of logits, of a neural network parameterized by weightsw 2 Rd on
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input x. We are interested in the average classi�cation errorR0� 1
S (w) over the samplesS. For training

purposes, we also consider a (surrogate) loss`(ŷ;y) for predictingŷ when the true label isy. Denote
by g(ŷ;y) the gradient ofy07! `(y0;y), evaluated aty0= ŷ. Write gw(S) for concatenation of the
gradient vectorsg( fw(xi);yi), for i = 1; : : : ;m. Let Jw(x) 2 RK� d be the Jacobian offw(x) with
respect to the parametersw. De�ne Jw(S) 2 RmK� d to be the concatenation ofJw(x1); : : : ;Jw(xm),
which is then the Jacobian offw(S) with respect to the parametersw. Thekth row of Jw(x), denoted
(Jw(x)) k, is a vector inRd. Let Hw(x) be theK � d � d tensor where(Hw(x)) k = Ñw(Jw(x)) k 2 Rd� d

is the Hessian of logitk w.r.t. weightsw.
Training Dynamics, Linearized training, and introduction of a data-dependent NTK. Let
(wt )t2N be the weights at each iteration of SGD, based on minibatch estimates of the training loss
R̂S̄(w) = 1

n å xi2S̄`( fw(xi);yi), whereS̄� Sis a subsample of data of sizen. We write ft (x) for fwt (x)
and similarly forgt , Jt , andHt . The SGD update with learning rateh is then

Dt := wt+ 1 � wt = � hÑwRS̄(wt ); (1)
Consider also a second-order Taylor expansion to approximate the change to the logits for inputxi :

ft+ 1(xi) � ft (xi) � Jt (xi)Dt + kDtkHt (xi ) ; (2)
where

kDtk(Ht (xi ))T
k

:= hDt ; (Ht (xi))T
k Dt i : (3)

Note, that for an in�nitesimalh , the dynamics in Eq. (1) are those of gradient �ow, and terms higher
than order 1 in Eq. (2) vanish. In this case, steepest descent in the parameter space corresponds to
steepest descent in the function space using aneural tangent kernel(NTK),

kt (x;x0) = Jt (x)Jt (x0)T : (4)
Let kt (S) denote them by m gram matrix withi; j entrykt (xi ;x j ). If kt (S) = kt0(S) for t > t0, i.e., if
the tangent kernel is constant over time, then the dynamics correspond to those of training the neural
network linearized at timet0. The kernel has been shown to be nearly constant in the case of very
wide neural networks at initialization (see, e.g., [12, 31, 32, 33, 16, 34]). Intuitively, we can think
of each of thed columns ofJw(x) 2 RK� d as a tangent vector to the manifold of realizable neural
network functions in the ambient space of all functions ofK logits over input spacex, at the point
fw(x) in function space. Thus the span of thed columns ofJw(x), asx varies, constitute the tangent
planes in function space depicted schematically in Fig. 1CD. Since the kernel is the Gram matrix
associated with these tangent functions, evaluated at the training points, then if the tangent space
twists substantially, the kernel necessarily changes (as in Fig. 1D).

Conversely, if the NTK does not change substantially from initialization, then the full SGD training
can be well approximated by training along the tangent space tof0 at initialization, yielding the
linearized training dynamics. This approach can be generalized to training along higher order Taylor
approximations of the manifoldfw(x) in the vicinity of the initial functionf0 [14]. In this work, in
order to explore function space geometry and its impact on training, we extend this approach by
doing full network training up to timẽt, and then linearized training subsequently. This yields a
linearized training trajectoryf wt̃

tg
T
t= t̃ , which can then be compared to the weight dynamics under full

training (see Appendix for details). This approach geometrically corresponds to training along an
intermediate tangent plane (one of the green planes in Fig. 1CD), or equivalently, corresponds to
learning with adata-dependentNTK. This novel examination of how much training time is required
to learn a high performing NTK, distinct from the random one used at initialization, and relations
between this time and both the local and large scale structure of the loss landscape, constitutes a key
contribution of our work.
Hierarchical exploration of the loss landscape through parents and children. In order to ex-
plore the loss landscape and the stability of training dynamics in a more multiscale hierarchical
manner than is possible using completely independent training runs, we employ a method of parent-
child spawning [7] (shown schematically in Fig. 1B). In this process, a parent network is trained from
initialization to a spawning timets, yielding a parent weight trajectoryf wtg

ts
t= 0. At the spawn time

ts, several copies of the parent network are made, and these so-called children are then trained with
independent minibatch stochasticity, yielding different child weight trajectoriesf wts;a

t gT
t= ts, wherea

indexes the children, andT is the �nal training time. We will be interested in various measures of the
distance between children after training, as a function of their spawn timets, as well as measures of
the distance between the same network (either parent or child) at two different training times. We
turn to these various distance measures next.
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Kernel distance. For �nite width networks, the kernelkt (S) = kwt (S) changes with training timet.
We compare two Kernel gram matrices in a scale-invariant manner by computing akernel distance:

S(w;w0) = 1�
Tr(kw(S)k T

w0(S))
p

Tr(kw(S)k T
w (S))

q
Tr(kw0(S)k T

w0(S))
:

Kernel velocity. We further track the speed at which the kernel changes. As discussed above, in
non-linear neural networks, we do not expect Eq. (3) to vanish. In order to capture the evolution of
the quantity in Eq. (3), we compute thekernel velocityv(t) � S(wt ;wt+ dt)=dt, i.e. the rate of change
of kernel distance. We use a time separation of 0:4 epochs to capture appreciable change.

Error barrier between children. To assess (and indeedde�ne) whether two children arrive at the
same basin or not at the end of training (see e.g. Fig. 1AB), we compute the error barrier between
children along alinear path interpolating between them in weight space. Letwa

t = a wt + ( 1� a )w0
t ,

wherew0
t andwt are the weights of two child networks, spawned from some iterationts, anda 2 [0;1].

At variousts we computemaxa 2[0;1] R̂S(wa
t ) � 1

2

�
R̂S(wt ) + R̂S(w0

t )
�
, which we call theerror barrier.

Note, that the error barrier at the end of training between two children is the same asinstability in [7].

ReLU activation pattern distance. In a ReLU network, the post-nonlinearity activations in layer
l are either greater or equal to0. We can thus construct a tensorBw(S), with (Bw(S)) i; j ;l = 1 if for
an inputxi , j th node in thel th layer is strictly positive, and(Bw(S)) i; j ;l = 0 otherwise. We compare
ReLU on/off similarity between networks parameterized byw andw0by computing the Hamming
distance betweenBw(S) andBw0(S), and normalizing by the total number of entries inBw(S).

Figure 2: SOTA ResNet20 trained on CIFAR10 using SGD with momentum and learning rate drops.

Figure 3: ResNet20 trained on CIFAR100 using SGD with momentum and learning rate drops.

Figure 4: ResNet20 trained on CIFAR10 using SGD with momentum and constant learning rate.

Figures 2 to 4: An integrated view of learning. (A) Parent network learning curves. (B)
Error barrier between pairs of children at the end of training, as a function of spawn time, with
children trained for same number of epochs as the parent. (C) and (D) Heatmaps representing the
ReLU and kernel distance between a parent network at different pairs of training times. Dashed black
lines indicate epochs at which the learning rate is dropped. (E) ReLU, function space, and kernel
distances between pairs children at the end of training, as a function of spawn time.

Function space distance. To compute the distance between the two functionsfw and fw0, parameter-
ized by weightsw andw0, we would ideally like to calculate the degree of disagreement between their
outputs averaged over the whole input spacex. However, since this is computationally intractable, we
approximate this distance by the normalized fraction of test examples on which their predicted labels
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