
Appendices

This supplementary material is separated into four sections. First, in Appendix A, we provided a
detailed description of the BART prior considered in the paper. Secondly, in Appendix B we give a
concise description of the posterior sampling procedure. Then, in Appendix C, we provide proofs for
the theoretical result in the main text. Finally, in Appendix D, we provide additional details on the
experimental setting as well as additional numerical results.

A The Bayesian Additive Regression Trees Prior

Following our definition in Section 3, for a fixed number of regression trees T , a T-additive regression
tree gE,B is essentially determined by (T1, β1), . . . , (TT , βT ), where for each tree t, Tt is a partition
of X into Kt subsets and βt is a vector of leaf values. Additionally, σ is the standard deviance of
the Gaussian observational noise. This section summarizes the discussion in [10] on how the prior
P((T1, β1), . . . , (TT , βT ), σ) is chosen. An appropriate prior can effectively prevent the individual
trees from being overly influential, thus regularizing the fit as an ensemble model. We refer the reader
to [10] for more details. Details about our specific choice of hyper-parameters for the priors can be
found in Section D.1.

We will assume independence amongst tree components (Tt, βt) and σ, and amongst each tree’s
terminal node parameters βt. The distribution of the sum-of-trees model can hence be simplified as:

p((T1, β1), . . . , (TT , βT ), σ) = p(σ)
∏
t p(βt|Tt)p(Tt)

p(βt|Tt) =
∏
k p(βt,k|Tt),

where βt,k is the k-th terminal node of the t-th tree. We further assume an identical form for each
of the component p(Tt) and for p(βt|Tt). The prior distributions to be specified are therefore p(Tt),
p(βt|Tt) and p(σ).

The Tt Prior The trees in BART are k-d trees and have axis-aligned splits. For the prior on Tt, we
will use what is commonly known as the “uniform” prior in the literature. This is usually specified in
the form of a generative model which consists of three components. Firstly, we specify the probability
that a given node of depth l ∈ N ∪ {0} is terminal. This takes the form psplit = α(1 + l)−β , where
α ∈ (0, 1) and β ∈ [0,∞). Secondly, a uniform distribution on {1, . . . , d} is used to decide which
of the available variables x1, . . . , xd to split on at each interior node. Lastly, a uniform distribution
on the set of possible values of that variable is used for the splitting rule assignment. See [9; 20] for
more details. Other priors are also possible, such as the Galton-Watson prior [71].

The βt|Tt Prior For the distribution of leaf values given a tree, we use a Gaussian distribution:

p(βt|Tt) =
∏Kt
k=1N

(
βt,k; 0, σ2

β

)
.

Let ymin = mini y
n
i and ymax = maxi y

n
i . In [10], the authors suggested to rescale y to have zero

mean and to ensure that ymin = −0.5 and ymax = 0.5, then taking σβ = 0.25/
√
T . This ensures that

the prior on g(x) is within the interval (ymin, ymax) with high probability.

The σ Prior For the prior on σ, we use the inverse chi-square distribution σ2 ∼ νλ/χ2
ν . This is also

a conjugate prior which, again, reduces the required computational effort in the MCMC procedure,
as elaborated in [10]. To find the appropriate hyper-parameters, we introduce q ∈ (0, 1), take σ̂ of
σ as the sample standard deviation of yn and calibrate for ν and λ such that P(σ < σ̂) = q. The
authors of [10] recommended (ν, q) = (3, 0.90) as it tends to avoid extremes and we hence follow
these recommendations.

Number of Trees T Finally, the number of regression trees T can either be chosen to be the default
value T = 200, or through cross-validation. [10] further pointed out that, in general, the model
performs reasonably well on prediction tasks so long as the value of T is not too small.
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B Bayesian Additive Regression Trees Posterior Sampling Procedure

In this appendix, we now describe the Bayesian backfitting MCMC algorithm first introduced in [10],
and which is used throughout our experiments. We will make use of the notation: T−j = E \ {Tj}
and similarly β−j = B \ {βj} for j = 1, . . . , T . Our target posterior is the distribution E ,B, σ|yn.
To sample from this posterior, we will make use of a Gibbs sampler, which, at each iteration, draws
(Tj , βj)|(T−j , β−j , σ, yn) sequentially for t = 1, . . . , T , then draws σ from σ|(E ,B, yn).

Sampling individual trees We note that drawing from (Tj , βj)|(T−j , β−j , σ, yn) is equivalent to
drawing from

(Tj , βj)|Rj , σ, where (Rj)k = yk −
∑
t6=j gTt,βt(xk),

for k = 1, . . . , n, which is the partial residual obtained without the j-th tree. Drawing from this
distribution is the same as drawing from the posterior of the residuals regression model with the j-th
tree Rj = gTj ,βj (x) + ε, where ε ∼ N (0, σ2). Since the prior distribution p(βj) and the likelihood
p(Rj |βj , Tj , σ) are Gaussian, the posterior distribution attains a closed form up to a normalising
constant

p(Tj |Rj , σ) ∝ p(Tj)
∫
RKj p(Rj |βj , Tj , σ)p(βj |Tj , σ)dβj ,

where dβj is the Lebesgue measure on RKj and Kj is the number of leaf nodes for tree j. Therefore
we can now sample Tj and βj via the following two-step procedure: first sample from Tj |Rj , σ, then
sample from βj |Tj , Rj , σ.

The draw of Tj |Rj , σ is done via a Metropolis-Hastings algorithm with the following proposal. Given
the current tree, grow a terminal node with probability 0.25, prune a pair of terminal nodes with
probability 0.25, change a non-terminal node’s split rule with probability 0.40, and finally swap a
split rule between parent and child with probability 0.10.

Sampling the standard deviation of the observational noise To sample from σ|(E ,B, yn), we
simply draw from the inverse chi-squared distribution defined in Appendix A.

C Proofs of Theoretical Results

In this appendix, we present the proofs of our theoretical results. Section C.1 provides a proof of
Proposition 1, Section C.2 provides a proof of Theorem 1, and Section C.3 provides a proof of
Proposition 2.

C.1 Proof of Proposition 1

Proof. We begin by deriving the integral of some arbitrary T -additive tree gE,B : X ×Ω→ R against
the probability measure Π on X . Fix ω ∈ Ω. Then, using linearity of integration, we get:

Π[gE,B(·, ω)] =
∫
X gE,B(x, ω)dΠ(x) =

∫
X
∑T
t=1

∑K
k=1 βt,k1χt,k(x)dΠ(x)

=
∑T
t=1

∑K
k=1 βt,k

∫
X 1χt,k(x)dΠ(x) =

∑T
t=1

∑K
k=1 βt,kΠ(χt,k).

We can use this expression to derive the posterior mean and variance for Π[g] given the data X, y:

E[Π[gE,B]|X, y] = E
[∑T

t=1

∑K
k=1 βt,kΠ(χt,k)

∣∣∣X, y] ,
V[Π[gE,B]|X, y] = E

[
(Π[gE,B]− E [Π [gE,B]|X, y])

2
∣∣∣X, y] .

Using a U-statistic estimate of these quantities based on posterior samples for the parameters leads to
our desired result.
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C.2 Proof of Theorem 1

Proof. Fixing ω ∈ Ω (i.e. fixing a realisation from the stochastic process) and starting with the
triangle inequality, we can decouple the integration error into several terms depending on g(·, ω):

|Π[f ]−Π[g(·, ω)]|
=
∣∣Π[f ]−Π[g(·, ω)] + 1

n

∑n
i=1 g(xi, ω)− 1

n

∑n
i=1 g(xi, ω) + 1

n

∑n
i=1 f(xi)− 1

n

∑n
i=1 f(xi)

∣∣
≤
∣∣Π[f ]− 1

n

∑n
i=1 f(xi)

∣∣+
∣∣Π[g(·, ω)]− 1

n

∑n
i=1 g(xi, ω)

∣∣
+
∣∣ 1
n

∑n
i=1 g(xi, ω)− 1

n

∑n
i=1 f(xi)

∣∣ . (4)

Note that by definition of the worst-case integration error inH, we have that for any h ∈ H:∣∣Π[h]− 1
n

∑n
i=1 h(xi)

∣∣ ≤ ‖h‖H × sup‖h‖H≤1

∣∣Π[h]− 1
n

∑n
i=1 h(xi)

∣∣ (5)

First, using Equation 5 in Equation 4, then using assumption A2 gives us that whenever n ≥ N ,
∃B > 0 such that:

|Π[f ]−Π[g(·, ω)]| ≤ B‖f‖Hγn +B‖g(·, ω)‖Hγn +
∣∣ 1
n

∑n
i=1 g(xi, ω)− 1

n

∑n
i=1 f(xi)

∣∣
= B(‖f‖H + ‖g(·, ω)‖H)γn +

∣∣ 1
n

∑n
i=1 g(xi, ω)− 1

n

∑n
i=1 f(xi)

∣∣ . (6)

To tackle the third term, we can use the Cauchy-Schwartz inequality, which states that ∀u, v ∈ Rn,
we have (

∑n
i=1 uivi)

2 ≤ (
∑n
i=1 u

2
i )(
∑n
i=1 v

2
i ). Taking ui = g(xi, ω)− f(xi) and vi = 1, we get:

(
∑n
i=1 g(xi, ω)−

∑n
i=1 f(xi))

2 ≤ n
∑n
i=1(g(xi, ω)− f(xi))

2.

Multiplying both sides by n−2 and taking square roots, we end up with:∣∣ 1
n

∑n
i=1 g(xi, ω)− 1

n

∑n
i=1 f(xi)

∣∣ ≤ ( 1
n

∑n
i=1(g(xi, ω)− f(xi))

2
) 1

2 = ‖g(·, ω)− f‖n. (7)

Plugging in Equation 7 into Equation 6, we get:

|Π[f ]−Π[g(·, ω)]| ≤ B(‖f‖H + ‖g(·, ω)‖H)γn + ‖g(·, ω)− f‖n
≤ B(‖f‖H + ‖g(·, ω)‖H) max(εn, γn) + ‖g(·, ω)− f‖n,

Using this inequality, we have that:

Pn (|Π[f ]−Π[g(·, ω)]| > Cn max(εn, γn))

≤ Pn (B(‖f‖H + ‖g(·, ω)‖H) max(εn, γn) + ‖g(·, ω)− f‖n ≥ Cn max(εn, γn))

≤ Pn (‖g − f‖n ≥ (Cn −B(‖f‖H + ‖g(·, ω)‖H)) max(εn, γn))

= Pn (‖g − f‖n ≥ An max(εn, γn))

≤ Pn (‖g − f‖n ≥ Anεn) , (8)

where we have taken An = Cn −B(‖f‖H + ‖g(·, ω)‖H). Clearly, since Cn →∞ as n→∞ and
B, ‖f‖H, ‖g(·, ω)‖H <∞, we must have An →∞ as n→∞. Hence, combining Assumption A1
and the upper bound of Equation 8, we have:

limn→∞ Pn[|Π[f ]−Π[g]| > Cn max(εn, γn)] = 0

which concludes our proof.

C.3 Proof of Proposition 2 and Discussion

Proof. Theorem 25 of [69] states that if a Markov chain with stationary distribution P is reversible
and geometrically ergodic, then a central limit theorem holds for any h ∈ L2(P). Taking h = Π[g],
which is in L2(P) by assumption, concludes the proof.

Geometric ergodicity is a well-studied concept in MCMC theory which ensures that the chain mixes
at a fast rate; see [69], Section 3.4., for a discussion of sufficient conditions, and Section 5.2. for
alternative sufficient conditions to obtain a CLT. Stronger results such as convergence almost surely or
in probability could also be obtained using stronger conditions on the Markov chain; see for example
Theorem 4 of [69] or Theorem 17.0.1 of [51]. Finally, all of the results aforementioned hold in the
asymptotic setting where the number of MCMC samples m→∞. However, finite m results could
be obtained using concentration inequalities; see for example [60].
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D Additional Numerical Experiments

In this appendix, we provide additional details on the numerical experiments in the paper including
the Genz functions in Section D.1, the step function in Section D.2 and the Bayesian survey design
experiment in Section D.3.

Figure 4 provides a summary of the algorithm. We first observe some data pairs {(xi, yi)}ni=1 and
then obtain the posterior on , which can be approximated by m MCMC samples. We then integrate
each of the samples and then take the mean to obtain an estimate of the integral Π̂BPNI[f ].

Figure 4: Bayesian Probabilistic Numerical Integration using Bayesian Additive Regression Trees
(BART-Int). Here, Π could either be known or replaced with an estimate Π̂.
Our code relies on gpytorch [25] for kernel hyper-parameter (lengthscale) tuning for the GP, and
dbarts [20] as backend for implementing BART-Int. We use the Imperial College London High
Performance Computing and the Department of Mathematics NextGen High Performance Computing
servers to conduct our experiments. Our code is available on GitHub https://github.com/
ImperialCollegeLondon/BART-Int and is subject to spontaneous maintenance.

D.1 Genz Integrand Families

The Genz functions [28] were taken from http://www.sfu.ca/~ssurjano, and are presented
in Table 4. They have two sets of parameters — d “ineffective” parameters u and d “effective”
parameters a which vary the level of difficulty. We use the default setting of u = (0.5, . . . , 0.5)> and
scale a suitably as the dimension increases to ensure numerical stability. Specifically, this is done by
bounding the L1-norm of a so that numerical stability is obtained (see [76] for details). As ground
truth, we analytically compute the integrals for these Genz test functions, which are again given in
Table 4. We compare the performance of BART-Int for each function and make comparisons with
two baselines: Monte Carlo integration (MI) and GP-BQ. Following the literature, we choose Π to be
the uniform distribution on [0, 1]d.

For BART-Int, we used an MCMC sampler described in Appendix B with a burn-in of 1000 samples
and took 5000 samples afterwards. These were then thinned by keeping every 5 samples. This led
to m = 1000. For the BART model, we used T = 50 trees, and the pair (α, β) = (0.95, 2) for
the terminating probability (see Appendix A for further details). We set σ = 0.1 to calibrate its
inverse-chi-squared prior [20] due to our knowledge that there is no observation noise, but keep it to
be non-zero to preserve the statistical properties of BART. For the rest of the hyper-parameters, we
used the default setting from dbarts. Note that we have applied very little tuning to the fitting of
BART.

For GP-BQ, we used a prior mean µ(x) = 0 and the Matérn kernel with smoothness 3/2:

k(x, y) =
(

1 +
√

3‖x−y‖2
ρ

)
exp

(
−
√

3‖x−y‖2
ρ

)
,

where ‖ · ‖2 is the Euclidean norm. The parameter ρ is called the lengthscale, which was selected
by maximising the marginal likelihood. To compute the kernel means, we used a MI estimate with
l = 106 randomly sampled points from Π.

All of our results are presented in the main text. To complement these, we show the empirical
distribution of the number of leaf nodes of the BART-Int method for each function in Figure 5.
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Recall that we chose the hyper-parameter values of (α, β) = (0.95, 2) for the prior on trees, which
guarantees that trees with 1, 2, 3, 4 and ≥5 terminal nodes receive prior probability of 0.05, 0.55,
0.28, 0.09 and 0.03 respectively. As we can see, the posterior distribution of number of leaves per
tree varies across target functions, demonstrating that BART is able to adapt to the target function.

For fixed targets, we see very little difference between the distribution for d = 1 and d = 10. This is
sub-optimal since, as mentioned in [72], the optimal number of leaves is O

(
n

d
2α+d

)
where α is the

Hölder smoothness of the target function. For fixed α, this suggests we should take a larger number
of leaves in larger dimensions. This suggests further improvements in performance could be obtained
by adapting the prior distribution as a function of d. On the other hand, the small number of leaves
may also be seen as an advantage from a computational viewpoint.
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Figure 5: Histogram distribution of the number of leaf nodes,K over T = 50 trees for the Continuous,
Corner Peak, Discontinuous, Gaussian, Oscillatory and Product Peak Genz function in dimensions
d = 1, 10.

D.2 Step Function

For the step function, we conducted experiments when integrating the function against either a uniform
or a truncated Gaussian distribution. It is clear that with Π being the uniform measure, Π[f ] = 0.5
for all dimensions. When Π is a multivariate Gaussian distribution with mean x = (0.5, . . . , 0.5)>

and identity variance matrix truncated to [0, 1]d, the integral is Π[f ] = 0.5 (by symmetry).

We first provide additional results when Π is uniform. The performance of BART-Int in this case
is presented in Section 5. Figure 6 illustrates the posterior estimates for both the step function and
its integral with BART-Int and GP-BQ. We can see that the posterior distribution of the integral for
BART is more concentrated around the value of the true integral than the GP. We can also see that the
GP has trouble estimating the discontinuity at x = 0.5. Finally a disadvantage of BART-Int is that
we see that uncertainty for both algorithms enlarge at areas where data is not observed, but for the
end regions near 0 and 1 BART exhibits lower uncertainty due to its stepwise property. It is true that
tree-based algorithms do not perform well for extrapolation tasks and this is quite evidently shown
with the uncertainty intervals at the end points.

Furthermore, Figure 7 illustrates the sequentially selected design points for each method. As we can
see, both the BART and GP methods adaptively select points in areas not covered by the initial design
points, and where the uncertainty about f is hence greatest.

As another toy example, we ran BART-Int, GP-BQ and MI on the step function integrated against
a truncated Gaussian measure. We started with nini = 20 design points and selected sequentially
nseq = 20 points according to the scheme introduced in Algorithm 1. The experimental set-ups for
BART-Int and GP-BQ were the same as in the previous experiment. The experiment was repeated
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Figure 6: Integration of the step function against a uniform distribution over [0, 1] with BART-Int and
GP-BQ with n = 20 points. Left: The posterior distribution on Π[f ]. Middle: The BART posterior
distribution on f . Posterior samples for BART are plotted as red points. Right: The GP posterior
distribution on f . The lines represent the posterior mean, the shaded areas give 95% credible regions
for the GP.
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Figure 7: Illustration of adaptive selection of design points through Algorithm 1 on the step function
integrated against a uniform measure over [0, 1] with nini = 20 and nseq = 20.
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Figure 8: Histogram distribution of the number of leaf nodes, K over T = 200 trees for the step
function in dimensions d = 1 and d = 10.

with 20 sets of initial points that were sampled randomly and independently from Π. Over these runs,
BART-Int achieved the smallest MAPE of 1.81e-02, whereas MI gave 1.15e-01 and GP-BQ yielded
2.83e-02.
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D.3 Bayesian Survey Design

To process the dataset in our experiments, we first randomly selected nini = 20 points as our design
points and another 10, 000 points as a candidate set. We then computed the logarithm of the income
and created an indicator for each person: 1 if their log income is above 10 and 0 otherwise.

All of the variables education, age, sex, own child, health insurance, marital status, employment and
disability are categorical and we hence used a one-hot encoding. The education variable is an ordinal
variable but we encoded it as a continuous variable for convenience. We then sampled nseq = 200
new points via sequential design using BART-Int and GP-BQ, and sampled randomly for MI.

As a baseline ground truth, we used all 454, 816 points in the dataset and estimated the mean via MI.
We also double-checked by using BART-Int with 10, 020 points from the design and candidate sets,
which yielded very similar results.

We repeated this set-up 20 times over different random initial points but the same candidate set. For
GP-BQ, we set the lengthscale and σ by maximising the marginal likelihood. For BART-Int, we
mostly followed the default settings but used T = 50 trees, 1000 burn-in points, 5000 posterior draws
after burn-in and kept every 3 draws from the posterior (thinning) so that m = 1666.
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