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A Contrastive Learning and Augmentation Algorithms

Algorithm 1 Graph Contrastive Learning

Initialize: Data {Gm : m ∈M}, f(·), g(·), T
1: for sampled minibatch of data {Gn : n ∈ N} do
2: for n = 1 to N do
3: Sample qi, qj from T
4: Ĝn,i ∼ qi(·|Gn) # 1st augmentation
5: hn,i = f(Ĝn,i)
6: zn,i = g(hn,i)

7: Ĝn,j ∼ qj(·|Gn) # 2nd augmentation
8: hn,j = f(Ĝn,j)
9: zn,j = g(hn,j)

10: end for
11: define `n = −log exp(sim(zn,i,zn,j)/τ)∑N

n′=1,n′ 6=n
exp(sim(zn,i,zn′,j)/τ)

12: ` = 1
N

∑N
n=1 `n

13: # Asymmetric and simplified compared to the SimCLR loss
14: Update encoder f(·) and g(·) to minimize ` # maximize agreement
15: end for
16: return Encoder f(·)

Algorithm 2 Data Augmentation: Subgraph

Initialize: Graph G = {V, E}, augmentation ratio k, sampled graph Gsamp = {Vsamp, Esamp} where
Vsamp = Esamp = ∅, neighbor vertex set Vneigh = ∅

1: Sample a node v ∈ V , such that Vsamp = {v} and Vneigh = N (v)
2: while |Vsamp| ≤ k|V| do
3: Sample a node v ∈ Vneigh
4: if v ∈ Vsamp then
5: Continue
6: end if
7: Update Vsamp = Vsamp ∪ {v}, Vneigh = Vneigh ∪N (v)
8: end while
9: Update Esamp = {e|e ∈ E and (e[0] ∈ Vsamp or e[1] ∈ Vsamp)}

10: return Gsamp
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Algorithm 3 Data Augmentation: Subgraph-W

Initialize: Graph G = {V, E}, augmentation ratio k, sampled graph Gsamp = {Vsamp, Esamp} where
Vsamp = Esamp = ∅, neighbor vertex set Vneigh = ∅

1: Sample a node v ∈ V , such that Vsamp = {v} and Vneigh = N (v)
2: while |Vsamp| ≤ k|V| do
3: Update Vsamp = Vsamp ∪ Vneigh, Vneigh = ∪v∈Vsamp

N (v)
4: end while
5: Update Esamp = {e|e ∈ E and (e[0] ∈ Vsamp or e[1] ∈ Vsamp)}
6: return Gsamp

Algorithm 4 Data Augmentation: Subgraph-D

Initialize: Graph G = {V, E}, augmentation ratio k, sampled graph Gsamp = {Vsamp, Esamp} where
Vsamp = Esamp = ∅, neighbor vertex set Vneigh = ∅

1: Sample a node v ∈ V , such that Vsamp = {v} and Vneigh = N (v)
2: while |Vsamp| ≤ k|V| do
3: Sample a node v ∈ Vneigh
4: if v ∈ Vsamp then
5: Continue
6: end if
7: Update Vsamp = Vsamp ∪ {v}, Vneigh = N (v)
8: end while
9: Update Esamp = {e|e ∈ E and (e[0] ∈ Vsamp or e[1] ∈ Vsamp)}

10: return Gsamp

B Detailed Settings for Augmentation Experiments (Section 4 in Main Text)

We evaluate our proposed framework with different augmentation pairs in the semi-supervised
learning setting on graph classification [1] via pre-training & finetuing where pre-training is performed
with 100 epochs, 0.001 learning rate, and finetuning follows the 10-fold evaluation finetuning in [2]
that achieves the comparable SOTA performance in the fully-supervised setting. Graph convolutional
network (GCN) is adopted as the GNN-based encoder also following [2]. Experiments are performed
with 1% (if there are over 10 samples for each class) and 10% label rate for 5 times with mean and
standard deviation of accuracies (%) reported.

C Graph Contrastive Learning for Superpixel Graphs

Table S1: Superpixel graph dataset statistics.
Datasets Category Graph Num. Avg. Node Avg. Degree
MNIST Superpixel Graphs 70000 70.57 8

Superpixel graphs (statistics in Table S1) gain from all augmentations except attribute masking as
shown in Figure S1. For node dropping, it corresponds to pixel discarding and for subgraph to
cropping, which are already shown as useful augmentations in images [3]. Surprisingly, attribute
masking corresponding to image completion hurts the performance, which might result from our
implementation: node attributes of superpixel graphs contain information of pixel value and location,
and we might only mask the pixel value part rather than all analog to image completion. We do not
find a related augmentation with edge perturbation and leave it for future work.

D Difficulty of Contrastive Tasks v.s. Semi-Supervised Performance

We first note that, for edge perturbation, attribute masking, and node dropping, their extents could
be an indicator of the difficulty for corresponding contrastive tasks. We observed earlier in Figure 4
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Figure S1: Semi-supervised learning accuracy gain (%) when contrasting different augmentation pairs, compared
to training from scratch under MNIST. Pairing “Identical" stands for a no-augmentation baseline for contrastive
learning, where the positive pair diminishes and the negative pair consists of two non-augmented graphs. Warmer
colors indicate better performance gains. The baseline training-from-scratch accuracy is 79.71%.

(main text) that, at least for COLLAB, properly increasing the extents could enhance the downstream
performances.

We also note that, for attribute masking and node dropping, their patterns could correlate the difficulty
as well. With larger control factor α in masking/dropping distribution, the vertices with more
connections are masked/dropped with higher probability, intuitively leading to a“harder” task. We
again observed in Figure 5 (main text) that at least COLLAB performances benefited from the harder
task with the pattern change, while overly simple contrastive tasks with very negative α would not
help.

Table S2: Performance on contrastive learning with different implemented subgraph. The intuitively simplest
subgraph-W performs the worst among the three.

Augmentations Subgraph-W Subgraph Subgraph-D
PROTEINS 71.50±0.85 72.67±0.60 72.74±0.56
COLLAB 57.66±1.64 63.63±1.20 65.47±1.43

For subgraph, we propose the following variants with difficulty levels. Contrastive learning with
subgraphs sampled via depth-first-search (DFS) encouraged random walk is more difficult than
that via width-first-search (WFS) encouraged, since the latter preserves more structure information
(connections) to assist GNNs to recover semantic information [4]. Notice that our default subgraph
encourages neither DFS nor WFS, and therefore we additionally proposed subgraph-D(FS) and
subgraph-W(FS) (Algorithms summarized in Appendix A) with the intuitive difficulty rank: subgraph-
W < subgraph < subgraph-D. Experiments on PROTEINS and COLLAB in Table S2 agrees with
our previous conjecture, that the simplest subgraph-W yields the worst performance among the three.

E Datasets and Training in Various Settings (Section 5 in Main Text))

Semi-supervised Learning

For all datasets we perform experiments with 1% (if there are over 10 samples for each class) and
10% label rate for 5 times, each of which corresponds to a 10-fold evaluation as [2], with mean and
standard deviation of accuracies (%) reported. For pre-training, learning rate is tuned in {0.01, 0.001,
0.0001} and epoch number in {20, 40, 60, 80, 100} where grid search is performed. We follow
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Table S3: Datasets statistics for semi-supervised learning and unsupervised representation learning.
Datasets Category Graph Num. Avg. Node Avg. Degree

NCI1 Biochemical Molecules 4110 29.87 1.08
PROTEINS Biochemical Molecules 1113 39.06 1.86

DD Biochemical Molecules 1178 284.32 715.66
MUTAG Biochemical Molecules 188 17.93 19.79
COLLAB Social Networks 5000 74.49 32.99

RDT-B Social Networks 2000 429.63 1.15
RDB-M Social Networks 2000 429.63 497.75
GITHUB Social Networks 4999 508.52 594.87
IMDB-B Social Networks 1000 19.77 96.53
MNIST Superpixel Graphs 70000 70.57 8

CIFAR10 Superpixel Graphs 60000 117.63 8

the default setting in [2] for finetuning that achieves the SOTA performance in the fully-supervised
setting.

Unsupervised Representation Learning

Experiments are performed for 5 times each of which corresponds to a 10-fold evaluation as [5], with
mean and standard deviation of accuracies (%) reported.

Transfer Learning

Table S4: Datasets statistics for transfer learning.
Datasets Category Utilization Graph Num. Avg. Node Avg. Degree

ZINC-2M Biochemical Molecules Pre-Training 2000000 26.62 57.72
PPI-306K Protein-Protein Intersection Networks Pre-Training 306925 39.82 729.62

BBBP Biochemical Molecules Finetuning 2039 24.06 51.90
Tox21 Biochemical Molecules Finetuning 7831 18.57 38.58

ToxCast Biochemical Molecules Finetuning 8576 18.78 38.52
SIDER Biochemical Molecules Finetuning 1427 33.64 70.71
ClinTox Biochemical Molecules Finetuning 1477 26.15 55.76
MUV Biochemical Molecules Finetuning 93087 24.23 52.55
HIV Biochemical Molecules Finetuning 41127 25.51 54.93

BACE Biochemical Molecules Finetuning 1513 34.08 73.71
PPI Protein-Protein Intersection Networks Finetuning 88000 49.35 890.77

F Theoretical Justification

Mutual information maximization. We first conceptually depict the essence of our framework,
rigorously showing that GraphCL can be viewed as a kind of mutual information maximization
between the latent representations of two kinds of augmented graphs. We rewrite GraphCL loss for
each data point as:

`n = −log exp(sim(zn,i, zn,j)/τ)∑N
n′=1,n′ 6=n exp(sim(zn,i, zn′,j)/τ)

, (1)
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which can be rewrited for a batch of graphs as:

` = − 1

N

N∑
n=1

log
exp(sim(zn,i, zn,j)/τ)∑N

n′=1,n′ 6=n exp(sim(zn,i, zn′,j)/τ)

= − 1

N

N∑
n=1

[sim(zn,i, zn,j)/τ − log(

N∑
n′=1,n′ 6=n

exp(sim(zn,i, zn′,j)/τ))]

= − 1

N

N∑
n=1

sim(g(f(Ĝn,i)), g(f(Ĝn,j)))
τ

+
1

N

N∑
n=1

log(

N∑
n′=1,n′ 6=n

exp(
sim(g(f(Ĝn,i)), g(f(Ĝn,j)))

τ
)),

(2)

We rewrite (2) as the expectation form (and therefore remove the subscript n):

` = −EP(Ĝi,Ĝj)

sim(g(f(Ĝi)), g(f(Ĝj)))
τ

+ EPĜi
log(EPĜj

exp(
sim(g(f(Ĝi)), g(f(Ĝj)))

τ
))− logN

= EPĜi
{−EP(Ĝj |Ĝi)

sim(g(f(Ĝi)), g(f(Ĝj)))
τ

+ log(EPĜj
exp(

sim(g(f(Ĝi)), g(f(Ĝj)))
τ

))} − logN

= EPĜi
{−EP(Ĝj |Ĝi)

T (f(Ĝi), f(Ĝj)) + log(EPĜj
eT (f(Ĝi),f(Ĝj)))} − logN, (3)

where P(Ĝi,Ĝj)
,P(Ĝj |Ĝi)

,PĜi
are respectively the joint, conditional and marginal distribution of

augmented graphs, and T (·, ·) is a learnable score function that we parametrize with the similarity
function sim(·, ·), temperature factor τ and the projection head g(·). Thus, (3) fits the formulation
of the InfoNCE loss [6, 7] such that minimizing (3) is equivalent to maximizing a lower bound of
the mutual information between the latent representations of two views of graphs hi = f(Ĝi),hj =
f(Ĝj). We would like to highlight the crucial role of the projection head in the framework, that
provides the learnable weights to construct a function space for the score function, to reach a much
tighter lower bound compared with dropping the projection head (the key role of it is also empirically
verified in [3]).

General framework. Furthermore, we draw the connection between GraphCL and recently pro-
posed contrastive learning methods that we demonstrate that GraphCL can be rewrited as a general
framework unifying a broad family of contrastive learning methods on graph-structured data, through
our rewriting (3) as (we neglect logN for simplicity):

` = EPĜi
{−EP(Ĝj |Ĝi)

T (f1(Ĝi), f2(Ĝj)) + log(EPĜj
eT (f1(Ĝi),f2(Ĝj)))}, (4)

where we maximize a lower bound of the mutual information between hi = f1(Ĝi),hj = f2(Ĝj) that
the compositions of (f1, Ĝi), (f2, Ĝj) determine our desired views of graphs. In our implementation,
we choose f1 = f2 and generate Ĝi, Ĝj through data augmentation, while with various choices of the
compositions result in (4) instantiating as other specific contrastive learning algorithms including
[8, 9, 10, 5, 11, 12, 13].

• DGI, HDGI, DMGI [8, 9, 10]. DGI intends to maximize the agreement between the local and
global representations. Thus, it sets f1 a GNN encoder, f2 is the concatenation of f1 and a node
pooling layer, and Ĝi = Ĝj = G. HDGI is an application of DGI in heterogenous graphs that the
GNN encoder f1 is a heterogenous GNN. DMGI is an extension of DGI into multiplex networks
that perform DGI with multiple relationship types and the final representations are aggregated with
multiple learned features.

• InfoGraph [5]. InfoGraph is an extension of DGI in graph-level representation learning, which is
aimed at optimize the similarity between node embeddings and graph embeddings, and there for it
sets f1 = f2 as a GNN encoder, Ĝi = G is the original graph and Ĝj is the sampled subgraph.

• GMI [11]. GMI intends to maximize the agreement between the raw node & edge features and the
encoded node & edge features, and therefore in the node loss `node it sets Ĝi,node = Ĝj,node = G,
f1,node(·) = I(·) is the identical function and f2,node(·) is a GNN encoder, and similar for the edge
loss `edge where f2,node(·), f2,edge(·) share weights. The final loss is expressed as ` = `node + `edge.
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G Experiments on Node Classification

GraphCL in node classification. GraphCL is also evaluated in the unsupervised representation
learning in node classification following [8], where unsupervised methods generate node embeddings
with GAT as the GNN-based encoder that are fed into a down-stream classifier as shown in Table S5,
and semi-supervised learning following [14] with GCN, GIN and GAT as encoders as shown in Table
S6, verifying the advantage of GraphCL.

Table S5: Comparing classification accuracy on top of learned node representations. The compared deep graph
infomax (DGI, [8]) performance is from the original paper under the same experiment setting.

Methods Cora Citeseer

DGI 82.30±0.60 71.80±0.70
NodeDrop v.s. Identical 82.41±0.10 72.22±0.18

NodeDrop v.s. NodeDrop 81.76±0.17 73.14±0.15
EdgePert v.s. Identical 82.45±0.11 72.23±0.17
EdgePert v.s. EdgePert 82.32±0.15 73.11±0.19
AttrMask v.s. Identical 82.45±0.12 72.31±0.13
AttrMask v.s. AttrMask 81.78±0.17 72.05±0.22
Subgraph v.s. Identical 82.49±0.12 72.33±0.18
Subgraph v.s. Subgraph 81.71±0.14 73.12±0.17

Table S6: Node classification experiments with different models contrasting identical vs. different augmentation.
Performance on the standard test sets of PATTERN SBM graphs. Results are averaged over 4 runs with 4
different seeds.

Models 10% baseline NodeDrop EdgePert AttrMask Subgraph

GCN 70.53±0.72 67.91±0.38 68.61±0.69 68.11±0.51 67.79±0.33
GIN 96.61±2.77 97.52±0.57 98.09±0.49 97.23±0.42 98.35±0.49
GAT 76.71±8.27 75.86±3.36 79.73±7.08 84.72±2.00 85.30±2.31
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