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A More Background

In this section, we introduce more detailed background knowledge.

A.1 Normalizing Flows

Let x be a high-dimensional continuous variable. We suppose that x is drawn from p∗(x), which
is the true data distribution. Given a collected dataset D = {x1,x2, ...,xD}, we are interested in
approximating p∗(x) with a model pθ(x). We optimize θ by minimizing the negative log-likelihood

L(D) =
D∑
i=1

− log pθ(xi). (1)

For some settings, variable x̃ is discrete, e.g., image pixel values are often integers. In these cases,
we dequantize x̃ by adding continuous noise µ to it, resulting in a continuous variable x = x̃+ µ.
As shown by Ho et al. [3], the log-likelihood of x̃ is lower-bounded by the log-likelihood of x.

Normalizing flows enable computation of pθ(x), even though it is usually intractable for many
other model families. A normalizing flow [11] is composed of a series of invertible functions
f = f1 ◦ f2 ◦ ...◦ fK , which transform x to a latent code z drawn from a simple distribution. Therefore,
with the change of variables formula, we can rewrite log pθ(x) to be

log pθ(x) = log pZ(z) +

K∑
i=1

log

∣∣∣∣det( ∂fi
∂ri−1

)∣∣∣∣ , (2)

where ri = fi(ri−1), r0 = x, and rK = z.

A.2 Invertible d× d Convolutions

Emerging convolutions [4] combine two autoregressive convolutions [2, 8]. Formally,

M′1 = M1 �A1, M′2 = M2 �A2, y = M′2 ? (M
′
1 ? x),

where M1,M2 are convolutional kernels whose size is c× c× d× d, and A1,A2 are binary masks.
The symbol ? represents the convolution operator.1 An emerging convolutional layer has the same
receptive fields as standard convolutional layers, which can capture correlations between a target pixel
and its neighbor pixels. However, like other autoregressive convolutions, computing the inverse of an

1In practice, a convolutional layer is usually implemented as an aggregation of cross-correlations. We follow
Hoogeboom et al. [4] and omit this detail.
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emerging convolution requires sequentially traversing each dimension of input, so its computation is
not parallelizable and is a computational bottleneck when the input is high-dimensional.

Periodic convolutions [1, 4] use discrete Fourier transformations to transform both the input and the
kernel to Fourier domain. A periodic convolution is computed as

yu,:,: =
∑
v

F−1(F(M(p)
u,v,:,:)�F(xv,:,:)),

where F is a discrete Fourier transformation, and M(p) is the convolution kernel whose size is
c× c× d× d. The computational complexity of periodic convolutions is O(c2hw log(hw) + c3hw).
In our experiments, we found that the Fourier transformation requires a large amount of memory.
These two problems impact the efficiency of both training and sampling when the input is high-
dimensional.

B Memory-Efficient Woodbury Transformations

Memory-Efficient Woodbury transformations can effectively reduce the space complexity. The main
idea is to perform spatial transformations along the height and width axes separately, i.e., a height
transformation and a width transformation. The transformations are:

xc = (I(c) +U(c)V(c))x,

xw = reshape(xc, (ch, w)),

xw = xc(I
(w) +U(w)V(w)),

xh = reshape(xw, (cw, h)),

y = xh(I
(h) +U(h)V(h)),

y = reshape(y, (c, hw)), (3)
where reshape(x, (n,m)) reshapes x to be an n × m matrix. Matrices I(w) and I(h) are w- and
h-dimensional identity matrices, respectively. Matrices U(w),V(w),U(h), and V(h) are w × dw,
dw ×w, w× dw, and dw ×w matrices, respectively, where dw and dh are constant latent dimensions.

Using the Woodbury matrix identity and the Sylvester’s determinant identity, we can compute the
inverse and Jacobian determinant:

y = reshape(y, (cw, h)),

xh = y(I(h) −U(h)(I(dh) +V(h)U(h))−1V(h)),

xw = reshape(xh, (ch, w)),

xw = xw(I
(w) −U(w)(I(dw) +V(w)U(w))−1V(w)),

xc = reshape(xw, (c, hw)),

x = (I(c) −U(c)(I(dc) +V(c)U(c))−1V(c))xc, (4)

log

∣∣∣∣det(∂y∂x )
∣∣∣∣ = hw log

∣∣det(I(dc) +V(c)U(c))
∣∣+ ch log

∣∣det(I(dw) +V(w)U(w))
∣∣

+cw log
∣∣det (I(dh) +V(h)U(h)

)∣∣ , (5)

where I(dw) and I(dh) are dw- and dh-dimensional identity matrices, respectively. The Jacobian of
the reshape() is an identity matrix, so its log-determinant is 0.

We call Equation 3 the memory-efficient Woodbury transformation because it reduces space complex-
ity from O(c+ hw) to O(c+ h+ w). This method is effective when h and w are large. To analyze
its complexity, we let all latent dimensions be less than d as before. The complexity of forward
transformation is O(dchw); the complexity of computing the determinant is O(d(c+ h+ w) + d3);
and the complexity of computing the inverse is O(dchw + d2(c + ch + cw) + d3). The same as
Woodbury transformations, when the input is high dimensional, we can omit d. Therefore, the
computational complexities of the memory-efficient Woodbury transformation are also linear with
the input size.

We list the complexities of different methods in Table 1. We can see that the computational complexi-
ties of Woodbury transformations are comparable to other methods, and maybe smaller when the
input is high-dimensional, i.e., the c, h, w are big.
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Table 1: Comparisons of computational complexities.
Method Forward Backward

1x1 convolution O(c2hw + c3) O(c2hw)
Periodic conolution O(chw log(hw) + c3hw) O(chw log(hw) + c2hw)
Emerging convolution O(c2hw) O(c2hw)
ME-Woodbury transformation O(dchw) O(dchw)
Woodbury transformation O(dchw) O(dchw)

C Parameter Settings

In this section, we present additional details about our experiments to aid reproducibility.

C.1 Experiments of Quantitative Evaluation

In the experiments of qualitative evalution, we compare Woodbury transformations with 3 permutation
layer baselines, i.e., 1x1 convolution, emerging convolution, and periodic coupling, and 2 coupling
layer baselines, i.e., neural spline coupling, and MaCow. For all generalized permutation methods,
we use affine coupling, which is composed of 3 convolutional layers, and the 2 latent layers have 512
channels. For the neural spline coupling, we set the number of spline bins to 4. The spline parameters
are generated by a neural network, which is also composed of convolutional layers. For 32 × 32
images, we set the number of channels to 256, and for 64 × 64 images, we set it to 224. Ma et al.
[10] used steps containing a MaCow unit, i.e., 4 autoregressive convolution coupling layers, and a
full Glow step. For fair comparison, we directly use the MaCow unit to replace the affine coupling.
For 32× 32 images, we set the convolution channel to 384, and for 64× 64 images, we set it to 296.

We run each method to fixed number of iterations and test it every 10, 000 iterations. The bpds
reported in our main paper are the best bpds obtained by each method. The bpds are single-run results.
This is because each run of the experiment requires 3 to 5 days, and running each model multiple
times is a major cost. We found in our experiments that for the same model and parameter settings,
the bpds’ standard deviation of multiple runs are very small, i.e., around 0.003, so single run results
are sufficient for comparing bpd.

C.2 Hyper-parameter Settings

We use Adam [6] to tune the learning rates, with α = 0.001, β1 = 0.9, and β2 = 0.999. We
use uniform dequantization. The sizes of models we use, and mini-batch sizes for training in our
experiments are listed in Table 2.

Table 2: Model sizes and mini-batch sizes.
Dataset Mini-batch size Levels(L) Steps(K) Coupling channels

CIFAR-10 32x32 64 3 8 512
ImageNet 32x32 64 3 8 512
ImageNet 64x64 32 4 16 512
LSUN Church 96x96 16 5 16 256
CelebA-HQ 64x64 8 4 16 512
CelebA-HQ 128x128 4 5 24 256
CelebA-HQ 256x256 4 6 16 256

C.3 Latent Dimension Settings

In all our experiments, we set the latent dimensions of Woodbury transformations, and ME-Woodbury
transformations as in Table 3.
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Table 3: Latent dimensions of Woodbury transformations and ME-Woodbury transformations. The
numbers in the brackets represent the latent dimension used in that level. For example, the dc :
{8, 8, 16}, represents that the settings of dc at the three levels are 8, 8, and 16.

Dataset Woodbury ME-Woodbury

CIFAR-10 32x32 dc : {8, 8, 16} dc : {8, 8, 16}
ds : {16, 16, 8} dh : {16, 16, 8}

dw : {16, 16, 8}
ImageNet 32x32 dc : {8, 8, 16} dc : {8, 8, 16}

ds : {16, 16, 8} dh : {16, 16, 8}
dw : {16, 16, 8}

ImageNet 64x64 dc : {8, 8, 16, 16} dc : {8, 8, 16, 16}
ds : {16, 16, 8, 8} dh : {16, 16, 8, 8}

dw : {16, 16, 8, 8}
LSUN Church 96x96 dc : {8, 8, 16, 16, 16} —

ds : {16, 16, 16, 8, 8}
CelebA-HQ 64x64 dc : {8, 8, 16, 16} —

ds : {16, 16, 8, 8}
CelebA-HQ 128x128 dc : {8, 8, 16, 16, 16} —

ds : {16, 16, 16, 8, 8}
CelebA-HQ 256x256 dc : {8, 8, 16, 16, 16, 16} —

ds : {16, 16, 16, 16, 8, 8}
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D Sample Quality Comparisons

We compare the samples generated by Woodbury-Glow and Glow models trained on the CelebA-HQ
dataset. We follow Kingma and Dhariwal [7] and randomly hold out 3,000 images as a test set. We
use 5-bits images. We use 64× 64, 128× 128, 256× 256 images. Due to the our limited computing
resources, we use relatively small models. The model sizes and other settings are listed in Table 2
and Table 3. We generate samples from the models during different phases of training and display
them in Figure 1, and Figure 2 (The results of 64× 64 images are shown in the main paper). For the
128× 128 images, both Glow and Woodbury-Glow generate distorted images at iteration 100,000,
but Woodbury-Glow seems to improve in later stages, stabilizing the shapes of faces and structure of
facial features. Glow, continues generating faces with distorted overall shapes as training continues.
For the 256× 256 images, neither model ever trains sufficiently to generate highly realistic faces, but
Woodbury-Glow makes significantly more progress in these 300,000 iterations than Glow. Glow’s
samples at 300,000 are still mostly random swirls with an occasional recognizable face, while almost
all of Woodbury-Glow’s samples look like faces, though distorted. Due to limits on our computational
resources, we stopped the higher resolution experiments at 300,000 iterations (rather than running to
600,000 iterations as we did for the 64× 64 experiments in the main paper). With a larger model and
longer training time, it seems Woodbury-Glow would reach higher sample quality much faster than
Glow.

The likelihoods of test set under the trained model are listed in Table 3. For the 64×64 and 128×128
images, Woodbury-Glow scores higher likelihood than Glow. For the 256 × 256 images, their
likelihoods are almost identical, and are better than the score reported in [7]. This may be due to three
possible reasons: (1) We use affine coupling rather than additive coupling, which is a non-volume
preserving layer and may improve the likelihoods; (2) Since the test set is randomly collected, it is
different from the one used in [7]; And (3) The model used in [7] is very large, so it may be somewhat
over-fitting. Surprisingly, the clear difference in sample quality is not reflected by the likelihoods.
This discrepancy may be because we use 5-bit images, and the images are all faces, so the dataset is
less complicated than other datasets such as ImageNet. Moreover, even though Glow cannot generate
reasonable 256× 256 samples, the colors of these samples already match the colors of real images
well, so these strange samples may non-intuitively be equivalently likely as the face-like samples
from Woodbury-Glow.

Table 4: Bit per-dimension results on CelebA-HQ
Size of images Glow Woodbury-Glow

64× 64 1.27 1.23
128× 128 1.09 1.04
256× 256 0.93 0.93
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Woodbury-Glow
Iteration 100,000

Woodbury-Glow
Iteration 200,000

Woodbury-Glow
Iteration 300,000

Glow
Iteration 100,000

Glow
Iteration 200,000

Glow
Iteration 300,000

Figure 1: Random samples of 128× 128 images drawn with temperature 0.7 from a model trained
on CelebA data.
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Woodbury-Glow
Iteration 150,000

Woodbury-Glow
Iteration 220,000

Woodbury-Glow
Iteration 300,000

Glow
Iteration 150,000

Glow
Iteration 220,000

Glow
Iteration 300,000

Figure 2: Random samples of 256× 256 images drawn with temperature 0.7 from a model trained
on CelebA data.
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E Additional Samples

In this section, we include additional samples from Woodbury-Glow models trained on our various
datasets. These samples complement our quantitative analysis. We train our models on CIFAR-10 [9],
ImageNet [12], the LSUN church dataset [13], and the CelebA-HQ dataset [5]. Specifically, for
ImageNet, we use 32× 32 and 64× 64 images. For the LSUN dataset, we use the same approach as
Kingma and Dhariwal [7] to resize the images to be 96× 96. For the CelebA-HQ dataset, we use
64×64, 128×128, and 256×256 images. For LSUN and CelebA-HQ datasets, we use 5-bit images.
The parameter settings of our models are in Table 2 and Table 3. The samples are in Figures 3, 4, 5,
6, 7, 8, and 9.

Figure 3: CIFAR-10 32× 32 Woodbury-Glow samples.

Figure 4: ImageNet 32× 32 Woodbury-Glow samples.
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Figure 5: ImageNet 64× 64 Woodbury-Glow samples.

Figure 6: LSUN church 96× 96 Woodbury-Glow samples (temperature 0.875).
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Figure 7: CelebA-HQ 64× 64 Woodbury-Glow samples (temperature 0.7).

Figure 8: CelebA-HQ 128× 128 Woodbury-Glow samples (temperature 0.5).

Figure 9: Selected CelebA-HQ 256× 256 Woodbury-Glow samples (temperature 0.5).
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