
Appendix

A Proof ofH(ε) increase

Theorem 1. Let ε be a noise variable independent fromX,Y , and g : ε, Y → Y be the augmentation
function. Let y′ = g(ε, y), and assume that (ε, x, y) 7→ (x, y′) is a one-to-one function. Then
H(Y ′|X) = H(Y |X) +H(ε).

Proof. First, by chain rule of conditional entropy, we have H(Y ′|X) = H(X,Y ′) − H(X) and
H(Y |X) = H(X,Y ) − H(X). Showing H(X,Y ′) = H(X,Y ) + H(ε), then subtracting H(X)
from both sides is enough to prove the desired statement.

Given any (x, y′), by the one-to-one assumption, there is exactly one inverse (ε, x, y). This
gives p(x, y′) = p(ε, x, y). Since ε is independent of (x, y), we have p(x, y′) = p(ε)p(x, y),
soH(X,Y ′) = E [− log p(x, y′)] = E [− log p(ε)− log p(x, y)] = H(ε) +H(X,Y ).

In Theorem 1, we stated that if (ε, x, y) 7→ (x, y′) is one-to-one, thenH(Y ′|X) increases byH(ε).
IfH(Y |X) is less thanH(ε) away from the maximum entropy distribution, the one-to-one condition
cannot be satisfied, and the theorem does not apply. For example, if Y were {0, 1} labels for binary
classification, andH(Y |X) = 1, then it would be impossible forH(Y ′|X) to be any larger, because
1 is the maximum entropy distribution over 2 discrete outcomes. This is generally not a concern in
practice, since standard ML setups have exactly one label y per example x. Such problems have
H(Y |X) = 0, leaving room for augmentation to increaseH(Y ′|X).

B ImageNet augmentation ablation

ILSVRC2012 classification experiments were trained on a TPU v2-128, using publicly available
source code from https://github.com/google/flax/tree/master/examples/imagenet.
This codebase applies random crops and random left-right flips to the training images. Training a
ResNet-50 baseline achieves 76% top-1 accuracy after 60 epochs. The same model with augmenta-
tions removed achieves 69% accuracy. This quantifies the performance increase data augmentation
provides.

C Pose Regression

We modified the open-source implementation provided at https://github.com/
google-research/google-research/tree/master/meta_learning_without_
memorization. Instead of re-generating a validation set from scratch using pose_data
code, we used 10% of the training dataset as a validation dataset to determine optimal noise
hyperparameters and outer learning rate while keeping the remaining default hyperparameters fixed.
Afterward, the validation set was merged back into the training set.

We encountered difficulty reproducing the experimental results for MR-MAML (2.26 (0.09)) from
Yin et al. [37], despite using publicly available code and IB hyperparameters suggested by authors
via email correspondence. It is possible that the discrepancy was due to another hyperparameter (e.g.
outer and inner loop learning rates) not being set properly. We followed the same evaluation protocol
as the authors via personal correspondence: for each independent trial, we trained until convergence
(the default number of iterations specified) and report the average post-update test error for the last
1000 training iterations. Early stopping on validation error followed by evaluation on the test set
may result in better performance across all methods, although we did not do this for the sake of
consistency in comparing with prior work.

Adding uniformly sampled noise U(−10α, 10α) hurts MR-MAML performance. We note that this
augmentation successfully reduces the gap between training and test error - indicating that it fixes
overfitting. However, it seems to result in underfitting on the training set as indicated by lower training
set performance. This is shown in Figure 7. We hypothesize that gradients become too noisy under
the current architecture, batch size, and learning rate hyperparameters set by the baseline when too
much noise is added. Sampling from a discrete set of 4 noise values ε ∈ {0, 0.25, 0.5, 0.75} provides
just enough task-level augmentation to combat overfitting without underfitting the training data.
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(a) MR-MAML (b) Uniform Augmentation (c) Discrete Augmentation

Figure 7: (b) Adding data augmentation via continuous uniform noise to MR-MAML decreases the
train-test gap, but seems to underfit data. We hypothesize that this might be addressed by increasing
the size of the model or using an alternate architecture to aid optimization, though we leave model
architecture changes out of the scope of this work. Sampling augmentations from a discrete set of
noise values (c) reduces both training and test error.

To investigate this further, Figure 8a displays test loss as a function of the number of additional
noise values ε added to ys, yq. As the number of discrete noise values becomes large, this becomes
approximately equivalent to the uniform noise scheme with α = 1. In our experiments, n different
noise values is equivalent to increasingH(Y ′|X) by log2 n, and this can be viewed as quantifying
the relationship between added noise and generalization. We find that MR-MAML achieves the
lowest error at 4 augmentations, while MAML achieves it at 2 augmentations. As the number of
noise values increases, performance gets worse for all methods. This shows it is important to tune the
amount of meta-augmentation. MR-MAML exhibits less underfitting than MAML, suggesting that
there are complementary benefits to IB regularization and augmentation when more noise is added.
Figure 8b shows single-trial test error performance over combinations of how many discrete noise
values are added across all IB strength parameters β. Our best model combines noise with β = 0,
which removes the IB constraint but preserves the stochastic weights used for MAML.

(a)

(b)

Figure 8: (a) Test performance (MSE) as a function of number of discrete noise augmentations.
Shaded regions correspond to standard deviation over 5 independent trials. (b) Figure 6b, but for
MR-MAML (single-trial).

D D’Claw data collection

The D’Claw dataset contains images from 10 different objects, placed between the fingers of the claw.
Each object had 2 classes, corresponding to whether the object was in the correct natural orientation
or not. This task is representative of defining a success detector that might be used as reward in
a reinforcement learning context, although we purely treat it as a supervised image classification
problem. The task is made more difficult because the claw occludes the view of the object.
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The smartphone camera from a Google Pixel 2 XL was used to collect 35 example images for each
class. All images were taken from the same point of view in a vertical orientation, but there is small
variation in camera location and larger variation in lighting conditions. The images were resized to
84x84 images before training.

E Few-shot image classification

All few-shot image classification experiments were run on a cloud machine with 4 NVIDIA Tesla
K80s and 32 Intel Broadwell CPUs. To maximize resource usage, four jobs were run at once.

Each experiment was trained for 60000 steps. The validation set accuracy was evaluated every 1000
steps, and the model with best validation set performance was then run on the test set. The code is a
modified version of the MAML codebase from https://github.com/cbfinn/maml, and uses the
same hyperparameters, network architecture, and datasets. These are briefly repeated below.

Omniglot The MAML model was trained with a meta batch size of 32 tasks, using a convolutional
model, 1 gradient step in the inner-loop, and an inner learning rate of α = 0.4. The problem was set
up as a 1-shot 5-way classification problem. The training set contained 1200 characters, the validation
set contained 100 characters, and the test set was the remaining 323 characters. Each character had
20 examples.

Mini-ImageNet The MAML model was trained with a meta batch size of 4 tasks, using a convolu-
tional model, 5 gradient steps in the inner loop, and an inner learning rate of α = 0.01. The problem
was set up as a 1-shot 5-way classification problem. There are 64 training classes, 16 validation
classes, and 20 test classes. Each class had 600 examples.

Meta-Dataset Mini-ImageNet experiments from the Meta-Dataset codebase
(branched from https://github.com/google-research/meta-dataset/commit/
ece21839d9b3b31dc0e5addd2730605df5dbb991). Used the default hyperparameters for
Matching Networks and Prototypical Networks.

D’Claw The experiments on D’Claw used the same model architecture as Mini-ImageNet, with a
meta batch size of 4 tasks, 5 gradient steps in the inner loop, and an inner learning rate of α = 0.01.
Unlike the Mini-ImageNet experiments, the problem was set up as a 1-shot 2-way classification
problem. For D’Claw experiments, the train set has 6 objects (12 classes), the validation set has 2
objects (4 classes), and the test set has 2 objects (4 classes). Each class had 35 examples. The train,
validation, and test splits were generated 3 times. Models were trained on each dataset, and the final
reported performance is the average of the 3 test-set performances.
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