Appendix

A Proofs for Section 2

Proof of Lemma 2.1

Proof. We construct a "ghost" point:

$$
x_{1}=\mathcal{P}_{\mathcal{X}}\left(x-\frac{1}{\beta} \nabla_{x} \tilde{f}\left([x]_{\beta},[y]_{\beta}\right)\right), \quad y_{1}=\mathcal{P}_{\mathcal{Y}}\left(y+\frac{1}{\beta} \nabla_{y} \tilde{f}\left([x]_{\beta},[y]_{\beta}\right)\right) .
$$

From (x, y) to $\left(x_{1}, y_{1}\right)$ is just one step of extra-gradient with stepsize $\frac{1}{\beta_{0}}$. According to [34] or Section 4.5 of [4], we have

$$
\begin{align*}
& \nabla_{x} \dot{\tilde{f}}\left([x]_{\beta},[y]_{\beta}\right)^{T}\left([x]_{\beta}-\bar{x}\right)-\nabla_{y} \tilde{f}\left([x]_{\beta},[y]_{\beta}\right)^{T}\left([y]_{\beta}-\bar{y}\right) \\
\leq & \frac{\beta}{2}\left[\left(\|x-\bar{x}\|^{2}+\|y-\bar{y}\|^{2}\right)-\left(\left\|x_{1}-\bar{x}\right\|^{2}+\left\|y_{1}-\bar{y}\right\|^{2}\right)\right], \quad \forall \bar{x} \in \mathcal{X}, \bar{y} \in \mathcal{Y} . \tag{10}
\end{align*}
$$

1. Denote $x^{*}(y)=\arg \min _{x \in \mathcal{X}} \tilde{f}(x, y)$ and $y^{*}(x)=\arg \max _{y \in \mathcal{Y}} \tilde{f}(x, y)$. By convexity-concavity of \tilde{f}, we have

$$
\begin{align*}
\operatorname{gap}_{\tilde{f}}\left([z]_{\beta}\right) & =\tilde{f}\left([x]_{\beta},[y]_{\beta}\right)-\min _{x \in \mathcal{X}} \tilde{f}\left(x,[y]_{\beta}\right)+\max _{y \in \mathcal{Y}} \tilde{f}\left([x]_{\beta}, y\right)-\tilde{f}\left([x]_{\beta},[y]_{\beta}\right) \\
& \leq \nabla_{x} \tilde{f}\left([x]_{\beta},[y]_{\beta}\right)^{T}\left([x]_{\beta}-x^{*}\left([y]_{\beta}\right)\right)-\nabla_{y} \tilde{f}\left([x]_{\beta}, y_{k+1 / 2}\right)^{T}\left([y]_{\beta}-y^{*}\left([x]_{\beta}\right)\right) \\
& \leq \frac{\beta}{2}\left[\left(\left\|x-x^{*}\left([y]_{\beta}\right)\right\|^{2}+\left\|y-y^{*}\left([x]_{\beta}\right)\right\|^{2}\right)-\left(\left\|x_{1}-x^{*}\left([y]_{\beta}\right)\right\|^{2}+\left\|y_{1}-y^{*}\left([x]_{\beta}\right)\right\|^{2}\right)\right] \\
& \leq \beta\left[\left\|x-x^{*}\right\|^{2}+\left\|x^{*}-x^{*}\left([y]_{\beta}\right)\right\|^{2}+\left\|y-y^{*}\right\|^{2}+\left\|y^{*}-y^{*}\left([x]_{\beta}\right)\right\|^{2}\right] \tag{11}\\
& \leq \beta\left[\left\|x-x^{*}\right\|^{2}+\left\|y-y^{*}\right\|^{2}\right]+\frac{\beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}}\left[\left\|[x]_{\beta}-x^{*}\right\|^{2}+\left\|[y]_{\beta}-y^{*}\right\|^{2}\right] \\
& \leq\left(\beta+\frac{2 \beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}}\right)\left[\left\|x-x^{*}\right\|^{2}+\left\|y-y^{*}\right\|^{2}\right]+\frac{2 \beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}}\left[\left\|[x]_{\beta}-x\right\|^{2}+\left\|[y]_{\beta}-y\right\|^{2}\right] \tag{12}
\end{align*}
$$

where in the second inequality we apply $\sqrt{10}$, in the third and last inequalities we use Young's inequality, and in the fourth inequality we use $\left\|x^{*}-x^{*}\left([y]_{\beta}\right)\right\|=\left\|x^{*}\left(y^{*}\right)-x^{*}\left([y]_{\beta}\right)\right\| \leq \frac{\tilde{\ell}}{\tilde{\mu}} \|[y]_{\beta}-$ $y^{*} \|$ (and similarly for $\left\|y^{*}-y^{*}\left([x]_{\beta}\right)\right\|$, see Lemma B. 2 in [25]). From Lemma 3.1 and Proposition 3.2 in [48], we have

$$
\begin{equation*}
\left\|[x]_{\beta}-x\right\|^{2}+\left\|[y]_{\beta}-y\right\|^{2} \leq \frac{1}{(1-\tilde{\ell} / \beta)^{2}}\left[\left\|x-x_{1}\right\|^{2}+\left\|y-y_{1}\right\|^{2}\right] \leq \frac{2}{(1-\tilde{\ell} / \beta)^{3}}\left[\left\|x-x^{*}\right\|^{2}+\left\|y-y^{*}\right\|^{2}\right] \tag{13}
\end{equation*}
$$

Combining with (12), we have

$$
\begin{equation*}
\operatorname{gap}_{\tilde{f}}\left([z]_{\beta}\right) \leq\left(\beta+\frac{2 \beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}}+\frac{4 \beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}(1-\tilde{\ell} / \beta)^{3}}\right)\left[\left\|x-x^{*}\right\|^{2}+\left\|y-y^{*}\right\|^{2}\right] \tag{14}
\end{equation*}
$$

Then again from (10), for any arbitrary $\bar{y} \in \mathcal{Y}$ we have

$$
\begin{align*}
& \nabla_{x} \tilde{f}\left([x]_{\beta},[y]_{\beta}\right)^{T}\left([x]_{\beta}-x^{*}\left([y]_{\beta}\right)\right)-\nabla_{y} \tilde{f}\left([x]_{\beta},[y]_{\beta}\right)^{T}\left([y]_{\beta}-y\right) \\
\leq & \frac{\beta}{2}\left[\left(\left\|x-x^{*}\left([y]_{\beta}\right)\right\|^{2}+\|y-\bar{y}\|^{2}\right)-\left(\left\|x_{1}-x^{*}\left([y]_{\beta}\right)\right\|^{2}+\left\|y_{1}-\bar{y}\right\|^{2}\right)\right] \\
\leq & \frac{\beta}{2}\left\|x-x^{*}\left([y]_{\beta}\right)\right\|^{2}+\frac{\beta}{2}\left[\|y-\bar{y}\|^{2}-\left\|y_{1}-\bar{y}\right\|^{2}\right] \\
\leq & \frac{\beta}{2}\left\|x-x^{*}\left([y]_{\beta}\right)\right\|^{2}+\frac{\beta}{2}\left\|y-y_{1}\right\|\left\|y-\bar{y}+y_{1}-\bar{y}\right\| \\
\leq & \left(\beta+\frac{2 \beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}}+\frac{4 \beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}(1-\tilde{\ell} / \beta)^{3}}\right)\left[\left\|x-x^{*}\right\|^{2}+\left\|y-y^{*}\right\|^{2}\right]+\beta \mathcal{D}_{\mathcal{Y}}\left[\left\|y-y^{*}\right\|+\left\|y_{1}-y^{*}\right\|\right] \\
\leq & \left(\beta+\frac{2 \beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}}+\frac{4 \beta \tilde{\ell}^{2}}{\tilde{\mu}^{2}(1-\tilde{\ell} / \beta)^{3}}\right)\left[\left\|x-x^{*}\right\|^{2}+\left\|y-y^{*}\right\|^{2}\right]+2 \beta \mathcal{D}_{\mathcal{Y}}\left[\left\|x-x^{*}\right\|+\left\|y-y^{*}\right\|\right], \tag{15}
\end{align*}
$$

where in the fourth inequality, we bound $\left\|x-x^{*}\left([y]_{\beta}\right)\right\|^{2}$ the same way as we did from (11) to 13 , and in the last inequality we use $\left\|z-z^{*}\right\| \leq\left\|z_{1}-z^{*}\right\|$ (Proposition 3.2 in [48]). By noting that

$$
\nabla_{x} \tilde{f}\left([x]_{\beta},[y]_{\beta}\right)^{T}\left([x]_{\beta}-x^{*}\left([y]_{\beta}\right)\right) \geq 0
$$

we reach our conclusion.
2. Theorem 3.1 of [41] shows the relationship between $\left\|x-x^{*}\right\|+\left\|y-y^{*}\right\|$ and $\left\|x-[x]_{\beta}\right\|+\left\|y-[y]_{\beta}\right\|$ in the case $\beta=1$. The proof can be extended to the following general case:

$$
\left\|x-x^{*}\right\|+\left\|y-y^{*}\right\| \leq \frac{\beta+\tilde{\ell}}{\tilde{\mu}}\left[\left\|x-[x]_{\beta}\right\|+\left\|y-[y]_{\beta}\right\|\right] .
$$

The last relationship we want to show is just equation (13).

B Proofs for Section 3

Proof of Theorem 3.1

Proof. Because $\Phi_{x_{t}}(y):=\tilde{f}_{t}\left(x_{t}, y\right)=f\left(x_{t}, y\right)-\frac{\tau}{2}\left\|y-z_{t}\right\|^{2}$ is τ-strongly-concave, we have

$$
\Phi_{x_{t}}\left(y_{t}\right)-\Phi_{x_{t}}(y) \geq \frac{1}{2} \tau\left\|y-y_{t}\right\|^{2}+\nabla_{y} \tilde{f}\left(x_{t}, y_{t}\right)^{T}\left(y_{t}-y\right), \quad \forall y \in \mathcal{Y}
$$

With stopping criterion of the subproblem (3), we have

$$
\begin{equation*}
f\left(x_{t}, y_{t}\right)-f\left(x_{t}, y\right) \geq \frac{1}{2} \tau\left\|y-y_{t}\right\|^{2}+\frac{\tau}{2}\left\|y_{t}-z_{t}\right\|^{2}-\frac{\tau}{2}\left\|y-z_{t}\right\|^{2}-\epsilon^{(t)} \tag{16}
\end{equation*}
$$

Choose $y=\alpha_{t} \tilde{y}+\left(1-\alpha_{t}\right) y_{t-1}$ in 16 , where \tilde{y} is an arbitrary vector in \mathcal{Y}, then
$f\left(x_{t}, \tilde{y}\right)-f\left(x_{t}, y_{t}\right) \leq\left(1-\alpha_{t}\right)\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t}, y_{t-1}\right)\right]-\frac{\tau}{2} \alpha_{t}^{2}\left(\left\|v_{t}-\tilde{y}\right\|^{2}-\left\|v_{t-1}-\tilde{y}\right\|^{2}\right)-\frac{\tau}{2}\left\|y_{t}-z_{t}\right\|^{2}+\epsilon^{(t)}$.
Note that

$$
\begin{align*}
f\left(x_{t}, \tilde{y}\right)-f\left(x_{t}, y_{t-1}\right) & =f\left(x_{t-1}, \tilde{y}\right)-f\left(x_{t-1}, y_{t-1}\right)+f\left(x_{t-1}, y_{t-1}\right)-f\left(x_{t}, y_{t-1}\right)+f\left(x_{t}, \tilde{y}\right)-f\left(x_{t-1}, \tilde{y}\right) \\
& \leq f\left(x_{t-1}, \tilde{y}\right)-f\left(x_{t-1}, y_{t-1}\right)+f\left(x_{t}, \tilde{y}\right)-f\left(x_{t-1}, \tilde{y}\right)+\epsilon^{(t-1)} \tag{18}
\end{align*}
$$

where the inequality follows because $f\left(x_{t}, y_{t}\right)-\min _{x \in \mathcal{X}} f\left(x, y_{t}\right) \leq \epsilon^{(t)}$. Plugging this back to 17) and rearranging,

$$
\begin{align*}
\frac{1}{\alpha_{t}^{2}}\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t}, y_{t}\right)\right]+\frac{\tau}{2}\left\|v_{t}-\tilde{y}\right\|^{2} \leq & \frac{1-\alpha_{t}}{\alpha_{t}^{2}}\left[f\left(x_{t-1}, \tilde{y}\right)-f\left(x_{t-1}, y_{t-1}\right)\right]+\frac{\tau}{2}\left\|v_{t-1}-\tilde{y}\right\|^{2}+ \\
& \frac{1-\alpha_{t}}{\alpha_{t}^{2}}\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t-1}, \tilde{y}\right)\right]+\frac{1-\alpha_{t}}{\alpha_{t}^{2}} \epsilon^{(t-1)}+\frac{1}{\alpha_{t}^{2}} \epsilon^{(t)} \tag{19}
\end{align*}
$$

Using the update rule for sequence $\left\{\alpha_{t}\right\}_{t}$, for $t>1$ we have

$$
\begin{align*}
\frac{1}{\alpha_{t}^{2}}\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t}, y_{t}\right)\right]+\frac{\tau}{2}\left\|v_{t}-\tilde{y}\right\|^{2} \leq & \frac{1}{\alpha_{t-1}^{2}}\left[f\left(x_{t-1}, \tilde{y}\right)-f\left(x_{t-1}, y_{t-1}\right)\right]+\frac{\tau}{2}\left\|v_{t-1}-\tilde{y}\right\|^{2}+ \\
& \frac{1}{\alpha_{t-1}^{2}}\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t-1}, \tilde{y}\right)\right]+\frac{1}{\alpha_{t-1}^{2}} \epsilon^{(t-1)}+\frac{1}{\alpha_{t}^{2}} \epsilon^{(t)} \tag{20}
\end{align*}
$$

Iterating this inequality results in

$$
\begin{align*}
\frac{1}{\alpha_{t}^{2}}\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t}, y_{t}\right)\right]+\frac{\tau}{2}\left\|v_{t}-\tilde{y}\right\|^{2} \leq & \frac{1}{\alpha_{1}^{2}}\left[f\left(x_{1}, \tilde{y}\right)-f\left(x_{1}, y_{1}\right)\right]+\frac{\tau}{2}\left\|v_{1}-\tilde{y}\right\|^{2}+ \\
& \sum_{t=2}^{T} \frac{1}{\alpha_{t-1}^{2}}\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t-1}, \tilde{y}\right)\right]+\sum_{t=2}^{T} \frac{1}{\alpha_{t-1}^{2}} \epsilon^{(t-1)}+\sum_{t=2}^{T} \frac{1}{\alpha_{t}^{2}} \epsilon^{(t)} \\
= & f\left(x_{1}, \tilde{y}\right)-f\left(x_{1}, y_{1}\right)+\frac{\tau}{2}\left\|v_{1}-\tilde{y}\right\|^{2}+ \\
& \sum_{t=2}^{T} \frac{1}{\alpha_{t-1}^{2}}\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t-1}, \tilde{y}\right)\right]+\sum_{t=2}^{T} \frac{1}{\alpha_{t-1}^{2}} \epsilon^{(t-1)}+\sum_{t=2}^{T} \frac{1}{\alpha_{t}^{2}} \epsilon^{(t)} \tag{21}
\end{align*}
$$

where we use $\alpha_{1}=1$. Applying 19 with $t=1$ (note $\alpha_{1}=1$), we have

$$
\begin{equation*}
f\left(x_{1}, \tilde{y}\right)-f\left(x_{1}, y_{1}\right)+\frac{\tau}{2}\left\|v_{1}-\tilde{y}\right\|^{2} \leq \frac{\tau}{2}\left\|y_{0}-\tilde{y}\right\|^{2}+\epsilon^{(1)} . \tag{22}
\end{equation*}
$$

Combining with 21,

$$
\begin{aligned}
& \frac{1}{\alpha_{T}^{2}}\left[f\left(x_{T}, \tilde{y}\right)-f\left(x_{T}, y_{T}\right)\right]+\frac{\tau}{2}\left\|v_{T}-\tilde{y}\right\|^{2} \\
\leq & \frac{\tau}{2}\left\|y_{0}-\tilde{y}\right\|^{2}+\sum_{t=2}^{T} \frac{1}{\alpha_{t-1}^{2}}\left[f\left(x_{t}, \tilde{y}\right)-f\left(x_{t-1}, \tilde{y}\right]+\sum_{t=2}^{T} \frac{1}{\alpha_{t-1}^{2}} \epsilon^{(t-1)}+\sum_{t=1}^{T} \frac{1}{\alpha_{t}^{2}} \epsilon^{(t)}\right. \\
\leq & \frac{\tau}{2}\left\|y_{0}-\tilde{y}\right\|^{2}+\frac{1}{\alpha_{T-1}^{2}} f\left(x_{T}, \tilde{y}\right)-\sum_{t=2}^{T} \frac{1}{\alpha_{t-1}} f\left(x_{t-1}, \tilde{y}\right)+\sum_{t=2}^{T} \frac{1}{\alpha_{t-1}^{2}} \epsilon^{(t-1)}+\sum_{t=1}^{T} \frac{1}{\alpha_{t}^{2}} \epsilon^{(t)},
\end{aligned}
$$

where in the last inequality we use $\frac{1}{\alpha_{t}^{2}}-\frac{1}{\alpha_{t-1}^{2}}=\frac{1}{\alpha_{t}}$. Rearranging,

$$
\begin{aligned}
& \frac{\tau}{2}\left\|y_{0}-\tilde{y}\right\|^{2}+\sum_{t=2}^{T} \frac{1}{\alpha_{t-1}^{2}} \epsilon^{(t-1)}+\sum_{t=1}^{T} \frac{1}{\alpha_{t}^{2}} \epsilon^{(t)} \\
\geq & \frac{1}{\alpha_{T}^{2}}\left[f\left(x_{T}, \tilde{y}\right)-f\left(x_{T}, y_{T}\right)\right]+\frac{\tau}{2}\left\|v_{T}-\tilde{y}\right\|^{2}-\frac{1}{\alpha_{T-1}^{2}} f\left(x_{T}, \tilde{y}\right)+\sum_{t=2}^{T} \frac{1}{\alpha_{t-1}} f\left(x_{t-1}, \tilde{y}\right) \\
\geq & \sum_{t=1}^{T} \frac{1}{\alpha_{t}} f\left(x_{t}, \tilde{y}\right)-\frac{1}{\alpha_{T}^{2}} f\left(x_{T}, y_{T}\right) \\
\geq & \sum_{m=1}^{T} \frac{1}{\alpha_{m}} f\left(\sum_{t=1}^{T} \frac{1 / \alpha_{t}}{\sum_{k=1}^{T} 1 / \alpha_{k}} x_{t}, \tilde{y}\right)-\frac{1}{\alpha_{T}^{2}} f\left(x_{T}, y_{T}\right) \\
\geq & \sum_{m=1}^{T} \frac{1}{\alpha_{m}} f\left(\sum_{t=1}^{T} \frac{1 / \alpha_{t}}{\sum_{k=1}^{T} 1 / \alpha_{k}} x_{t}, \tilde{y}\right)-\frac{1}{\alpha_{T}^{2}} f\left(\tilde{x}, y_{T}\right)-\frac{1}{\alpha_{T}^{2}} \epsilon^{(T)}, \quad \forall \tilde{x} \in \mathcal{X},
\end{aligned}
$$

where in the third inequality we use the convexity of $f(\cdot, \tilde{y})$, and in the last inequality we use $f\left(x_{t}, y_{t}\right)-\min _{x \in \mathcal{X}} f\left(x, y_{t}\right) \leq \epsilon^{(t)}$. Note that

$$
\begin{equation*}
\sum_{m=1}^{t} \frac{1}{\overline{\alpha_{m}}}=\frac{1}{\alpha_{1}}+\left(\frac{1}{\alpha_{2}^{2}}-\frac{1}{\alpha_{1}^{2}}\right)+\left(\frac{1}{a_{3}^{2}}-\frac{1}{\alpha_{2}^{2}}\right)+\ldots+\left(\frac{1}{\alpha_{t}^{2}}-\frac{1}{\alpha_{t-1}^{2}}\right)=\frac{1}{\alpha_{t}^{2}} \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
f\left(\bar{x}_{T}, \tilde{y}\right)-f\left(\tilde{x}, y_{T}\right) \leq a_{T}^{2}\left[\frac{\tau}{2}\left\|y_{0}-\tilde{y}\right\|^{2}+2 \sum_{t=1}^{T} \frac{1}{\alpha_{t}^{2}} \epsilon^{(t)}\right], \quad \forall \tilde{x} \in \mathcal{X}, \tilde{y} \in \mathcal{Y} \tag{24}
\end{equation*}
$$

which directly implies

$$
\begin{equation*}
\operatorname{gap}_{f}\left(\bar{x}_{T}, y_{T}\right) \leq \alpha_{T}^{2}\left[\frac{\tau}{2} \mathcal{D}_{\mathcal{Y}}^{2}+2 \sum_{t=1}^{T} \frac{1}{\alpha_{t}^{2}} \epsilon^{(t)}\right] \tag{25}
\end{equation*}
$$

By choosing $\epsilon^{(t)}=\frac{3 \tau \mathcal{D} \mathcal{Y} \alpha_{t}^{2}}{2 \pi t^{2}}$,

$$
\begin{equation*}
\sum_{t=1}^{T} \frac{1}{\alpha_{t}^{2}} \epsilon^{(t)}=\frac{3 \tau \mathcal{D}_{\mathcal{Y}}}{2 \pi} \sum_{t=1}^{T} \frac{1}{t^{2}} \leq \frac{\tau \mathcal{D}_{\mathcal{Y}}}{4} \tag{26}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
\operatorname{gap}_{f}\left(\bar{x}_{T}, y_{T}\right) \leq \alpha_{T}^{2} \tau \mathcal{D}_{\mathcal{Y}}^{2} \tag{27}
\end{equation*}
$$

Proof of Proposition 3.1

Proof. First, we show that the initial point $\left(x_{t-1}, z_{t}\right)$ will not be infinitely far from the saddle point $\left(x_{t}^{*}, y_{t}^{*}\right)$ of the subproblem \downarrow at t -th iteration of outer loop. Since \mathcal{Y} is bounded, we have $\left\|z_{t}-y_{t}^{*}\right\| \leq \mathcal{D}_{\mathcal{Y}}$. Denote $x^{*}(y)=\operatorname{argmin}_{x} f(x, y)$. Since $f(\cdot, y)$ is μ-strongly convex, we have

$$
\begin{equation*}
\left\|x^{*}\left(y_{t-1}\right)-x^{*}\left(y_{t}\right)\right\| \leq \frac{l}{\mu}\left\|y_{t}-y_{t-1}\right\| \leq \frac{l}{\mu} \mathcal{D}_{\mathcal{Y}} \tag{28}
\end{equation*}
$$

where we use Lemma B. 2 in [25]. Further with the strong convexity of $f\left(\cdot, y_{t-1}\right)$, we have

$$
\left\|x_{t-1}-x_{t}^{*}\right\|^{2} \leq 2\left\|x_{t-1}-x^{*}\left(y_{t-1}^{*}\right)\right\|^{2}+2\left\|x^{*}\left(y_{t-1}^{*}\right)-x^{*}\left(y_{t}^{*}\right)\right\|^{2} \leq \frac{4 \epsilon^{(t-1)}}{\mu_{x}}+2\left(\frac{l}{\mu_{x}}\right)^{2} \mathcal{D} \mathcal{Y}
$$

Therefore, the distance from the initial point to the saddle point of the subproblem is bounded. From now, we use subscript to index the iteration of the inner-loop and $\left(x_{0}, y_{0}\right)$ denotes the initial point we specified above. We separate the discussion into deterministic and stochastic settings.

Deterministic setting. We apply a deterministic algorithm \mathcal{M} to solve the subproblem and \mathcal{M} has a linear rate described by (4). By Lemma 2.1) after K iterations of algorithm \mathcal{M},
$\left\|x_{K}-\left[x_{K}\right]_{\beta}\right\|^{2}+\left\|y_{K}-\left[y_{K}\right]_{\beta}\right\|^{2} \leq \frac{2}{(1-\tilde{\ell} / \beta)^{3}}\left[\left\|x_{K}-x^{*}\right\|^{2}+\left\|y_{K}-y^{*}\right\|^{2}\right]$

$$
\leq \frac{2}{(1-\tilde{\ell} / \beta)^{3}}\left(1-\frac{1}{\Delta_{\mathcal{M}, \tau}}\right)^{K}\left[\left\|x_{0}-x^{*}\right\|^{2}+\left\|y_{0}-y^{*}\right\|^{2}\right]
$$

Choosing

$$
K=\Delta_{\mathcal{M}, \tau} \log \frac{(1-\tilde{\ell} / \beta)^{3}\left(\left\|x_{0}-x^{*}\right\|^{2}+\left\|y_{0}-y^{*}\right\|^{2}\right)}{2 \epsilon}
$$

we have $\left\|x_{K}-\left[x_{K}\right]_{\beta}\right\|^{2}+\left\|y_{K}-\left[y_{K}\right]_{\beta}\right\|^{2} \leq \epsilon$. To satisfy condition (6), it suffices to set

$$
\epsilon=\min \left\{\frac{\tilde{\mu}^{2} \epsilon^{(t)}}{2 A(\beta+\tilde{\ell})^{2}},\left(\frac{\tilde{\mu} \epsilon^{(t)}}{4 \beta \mathcal{D}_{\mathcal{Y}}(\beta+\tilde{\ell})}\right)^{2}\right\}
$$

and we reach our conclusion.
Stochastic setting. We apply a stochastic algorithm \mathcal{M} to solve the subproblem and \mathcal{M} has a linear rate described by (5). With the same reasoning as in deterministic setting and applying Appendix B. 4 of [23], we have

$$
K(\epsilon) \leq \Delta_{\mathcal{M}, \tau} \log \frac{(1-\tilde{\ell} / \beta)^{3}\left(\left\|x_{0}-x^{*}\right\|^{2}+\left\|y_{0}-y^{*}\right\|^{2}\right)}{2 \Delta_{\mathcal{M}, \tau} \epsilon}+1
$$

and the conclusion follows directly.

Proof of Corollary 3.2

Proof. Because $2 /(t+2)^{2} \leq \alpha_{t}^{2} \leq 4 /(t+1)^{2}$, by Theorem 3.1. Algorithm 1 finds ϵ-saddle point after $T=\mathcal{O}\left(\sqrt{\mu / \epsilon} \cdot \mathcal{D}_{\mathcal{Y}}\right)$ outer-loop iterations. Note that the accuracy we want for solving subproblem , \star is

$$
\begin{equation*}
\epsilon^{(t)}=\frac{3 \tau \mathcal{D}_{\mathcal{Y}} \alpha_{t}^{2}}{2 \pi t^{2}} \geq \frac{6 \tau \mathcal{D}_{\mathcal{Y}}}{\pi t^{2}(t+2)^{2}} \geq \frac{6 \tau \mathcal{D}_{\mathcal{Y}}}{\pi T^{2}(T+2)^{2}}=\Omega\left(\epsilon^{2} \mu^{-1} \mathcal{D}_{\mathcal{Y}}^{-3}\right), \quad \forall t \in[T] \tag{29}
\end{equation*}
$$

By Proposition 3.1. it takes at most

$$
K=\mathcal{O}\left(\Delta_{\mathcal{M}, \tau} \log \left(\frac{\ell \mathcal{D}_{\mathcal{Y}}}{\min \{1, \mu, \tau\} \epsilon}\right)\right)
$$

gradient oracle calls for \mathcal{M} to solve the subproblem. The total complexity is then $K \cdot T$.

C Proofs for Section 4

Proof of Theorem 4.1

Proof. First we define ψ as the extended-value function of $g: \psi(x)=g(x)$ if $x \in \mathcal{X}$ and $\psi(x)=\infty$ if $x \notin \mathcal{X}$. Note that $g(x)=\max _{y \in \mathcal{Y}} f(x, y)$ is ℓ-weakly convex [Lemma 3, [47]]. It directly follows from the definition of ψ that ψ is also ℓ-weakly convex. Define the proximal point of x by

$$
\operatorname{prox}_{\tau \psi}(x)=\operatorname{argmin}_{z}\left\{\psi(z)+\frac{1}{2 \tau}\|z-x\|^{2}\right\}=\operatorname{argmin}_{z \in \mathcal{X}} g_{1 / \tau}(z ; x)
$$

By [Lemma 4.3 in [11]], as $\tau_{x}>\ell$,

$$
\begin{align*}
\left\|\nabla \psi_{1 / \tau_{x}}\left(x_{t}\right)\right\|^{2}=\tau_{x}^{2}\left\|x_{t}-\operatorname{prox}_{\psi / \tau_{x}}\left(x_{t}\right)\right\|^{2} & \leq \frac{2 \tau_{x}^{2}}{\tau_{x}-\ell}\left[g_{\tau_{x}}\left(x_{t} ; x_{t}\right)-g_{\tau_{x}}\left(\operatorname{prox}_{\psi / \tau_{x}}(x) ; x_{t}\right)\right] \\
& \leq \frac{2 \tau_{x}^{2}}{\tau_{x}-\ell}\left[g_{\tau_{x}}\left(x_{t} ; x_{t}\right)-g_{\tau_{x}}\left(x_{t+1} ; x_{t}\right)+\bar{\epsilon}\right] \\
& =\frac{2 \tau_{x}^{2}}{\tau_{x}-\ell}\left\{g\left(x_{t}\right)-\left[g\left(x_{t+1}\right)+\frac{\tau_{x}}{2}\left\|x_{t+1}-x_{t}\right\|^{2}\right]+\bar{\epsilon}\right\} \\
& \leq \frac{2 \tau_{x}^{2}}{\tau_{x}-\ell}\left[g\left(x_{t}\right)-g\left(x_{t+1}\right)+\bar{\epsilon}\right] \tag{30}
\end{align*}
$$

where in the first inequality we use $\left(\tau_{x}-\ell\right)$-strong convexity of $g_{\tau_{x}}\left(\cdot ; x_{t}\right)$, and the second inequality follows from $g_{\tau_{x}}\left(x_{t+1} ; x_{t}\right) \leq \min _{x \in \mathcal{X}} g_{\tau_{x}}\left(x ; x_{t}\right)+\bar{\epsilon}$. Summing from 0 to $T-1$, we get

$$
\begin{equation*}
\frac{1}{T} \sum_{t=0}^{T-1}\left\|\nabla \psi_{\tau_{x}}\left(x_{t}\right)\right\|^{2} \leq \frac{2 \tau_{x}^{2}}{\tau_{x}-\ell}\left[\frac{g\left(x_{0}\right)-g\left(x_{T}\right)}{T}+\bar{\epsilon}\right] \leq \frac{2 \tau_{x}^{2}}{\tau_{x}-\ell}\left[\frac{g\left(x_{0}\right)-g^{*}}{T}+\bar{\epsilon}\right] \tag{31}
\end{equation*}
$$

Proof of Corollary 4.2

Proof. According to Theorem 4.1. with $\tau_{x}=2 \ell$, it takes at most $T=\frac{4 \tau_{x}^{2}\left(g\left(x_{0}\right)-g^{*}\right)}{\left(\tau_{x}-\ell\right) \epsilon^{2}}=\frac{16 \ell\left(g\left(x_{0}\right)-g^{*}\right)}{\epsilon^{2}}$ outer-loops to find ϵ-stationary point. The auxiliary problem $\min _{x \in \mathcal{X}} g_{\tau_{x}}\left(x ; x_{t}\right)$ is then ℓ-SC-C and (3ℓ)-smooth. By Corollary 3.2 and discussion in Section 3.2. Algorithm 1 combined with EG/OGDA/GDA can solve such auxiliary problem with complexity $\tilde{\mathcal{O}}(\sqrt{\ell / \bar{\epsilon}})=\tilde{\mathcal{O}}(\ell / \epsilon)$ as $\bar{\epsilon}=\frac{\epsilon^{2}}{8 \ell}$ specified in Theorem 4.1. So the total complexity is $\tilde{\mathcal{O}}\left(\ell^{2} / \epsilon^{3}\right)$.

Proof of Corollary 4.3

Proof. As we assume each f_{i} has ℓ-Lipschitz gradient, $f(x, y)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x, y)$ has $\bar{\ell}$-Lipschitz gradient. According to Theorem 4.1, with $\tau_{x}=2 \bar{\ell}$, it takes at most $T=\frac{4 \tau_{x}^{2}\left(g\left(x_{0}\right)-g^{*}\right)}{\left(\tau_{x}-\bar{\ell}\right) \epsilon^{2}}=$ $\frac{16 \bar{\ell}\left(g\left(x_{0}\right)-g^{*}\right)}{\epsilon_{\bar{\ell}}^{2}}$ outer-loops to find ϵ-stationary point. The resulting auxiliary problem is $\bar{\ell}$-SC-C and $(3 \bar{\ell})$-smooth. By Corollary 3.2 . Algorithm 1 combined with EG/OGDA can solve such auxiliary problem with complexity

$$
\tilde{\mathcal{O}}\left(\left(n+\left(\frac{3 \bar{\ell}+\tau_{y}}{\min \left\{\bar{\ell}, \tau_{y}\right\}}\right)^{2}\right) \sqrt{\frac{\tau_{y}}{\bar{\epsilon}}}\right)
$$

Choosing $\tau_{y}=\bar{\ell} / \sqrt{n}$ and $\bar{\epsilon}=\frac{\epsilon^{2}}{8 \bar{\ell}}$, Algorithm 1 has complexity of $\tilde{\mathcal{O}}\left(n^{\frac{3}{4}} \bar{\ell} / \epsilon\right)$ to solve the auxiliary problem. The total complexity is therefore $\tilde{\mathcal{O}}\left(n^{\frac{3}{4}} \bar{\ell}^{2} \epsilon^{-3}\right)$.
When we further assume f has ℓ_{i}-cocoercive gradient, Algorithm 1 combined with SVRE can solve such auxiliary problem with complexity

$$
\tilde{\mathcal{O}}\left(\left(n+\frac{3 \bar{\ell}+\tau_{y}}{\min \left\{\bar{\ell}, \tau_{y}\right\}}\right) \sqrt{\frac{\tau_{y}}{\bar{\epsilon}}}\right) .
$$

Choosing $\tau_{y}=\bar{\ell} / n$ and $\bar{\epsilon}=\frac{\epsilon^{2}}{8 \bar{\ell}}$, Algorithm 1 has complexity of $\tilde{\mathcal{O}}\left(n^{\frac{1}{2}} \bar{\ell} / \epsilon\right)$ to solve the auxiliary problem. The total complexity is therefore $\tilde{\mathcal{O}}\left(n^{\frac{1}{2}} \bar{\ell}^{2} \epsilon^{-3}\right)$.

D Additional Experiments

In this section, we provide additional experiments on SC-C minimax problems to illustrate the performance of Catalyst framework. Here we focus on the comparison between the performance of EG, Catalyst-EG and DIAG [47]. We implement these algorithms in the same way as in Section 5 .

Figure 4: SC-C experiment on distributionally robust logistic regression

D. 1 Distributionally robust logistic regression

We consider the distributionally robust logistic regression problem [32]. This results in a minimax problem:

$$
\begin{equation*}
\min _{\theta} \max _{p \in \Delta_{n}} \sum_{i=1}^{n}-p_{i}\left[y_{i} \log \left(\hat{y}\left(X_{i}\right)\right)+\left(1-y_{i}\right) \log \left(1-\hat{y}\left(X_{i}\right)\right)\right] \text { such that }\|p-\mathbf{1} / n\| \leq \rho \tag{32}
\end{equation*}
$$

where θ parametrizes the classifier $\hat{y}(\cdot)$, and (y, X) is classification data. When $\hat{y}(x)=\frac{e^{\theta^{\top} x}}{1+e^{\theta^{\top} x}}$, it can be formulated as the following SC-C minimax problem:

$$
\begin{equation*}
\min _{\theta} \max _{p} \sum_{i=1}^{n} p_{i} \log \left(1+\exp \left(-y_{i} \theta^{\top} X_{i}\right)\right)+\frac{\lambda}{2}\|\theta\|^{2} \text { such that }\|p-\mathbf{1} / n\| \leq \rho \tag{33}
\end{equation*}
$$

where λ is a regularization parameter.
We conduct experiments on the Wisconsin breast cancer dataset [13], which has 30 attributes and 569 samples. We separate 80% of the data as our training set. We compare the performance of EG, Catalyst-EG and DIAG. We compare EG and Catalyst-EG under same stepsizes in Figure 4(a) We also report two different error measures under the best-tuned stepsizes in Figure 4(b) and 4(c) We observe that Catalyst-EG performs consistently well. As algorithms designed for SC-C setting, both DIAG and Catalyst-EG converge faster than EG.

