
We thank all the reviewers for their constructive suggestions and insightful comments. We will address all the suggested1

expositional changes such as the algorithm complexity, details on training, and adding all the suggested references. We2

will also release our codebase with clear comments and naming conventions to ensure reproducibility.3

Role of C and Quantitative Evaulations (R1,R2,R3,R4) The network output C corresponds to pure constraint satisfac-4

tion. No transition component was involved in the final output, owing to the projection nature of our iterative algorithm.5

In this sense, the constraint satisfaction functioned as the key criterion for our evalua-6

tions to measure the effectiveness of the learning model (e.g., see Fig 9). This criterion7

was fundamentally different from the previous work and we believed it to be a vital8

point to quantitatively reveal the nature of a constraint dynamic system. This fact is9

further evidenced by our latest experiment shown in the inset figures. We plotted the10

learned constraint Cnet (network output), the real, observed constraint Creal (analytical11

expression), and the magnitude of the positional correction ∆x against iteration steps.12

We observed that all three quantities converge to zero after 5 iterations (the same13

iteration number we set in training). Further, we calculated the Pearson correlation14

coefficient of our learned C and real C, using 1000 random frames, each with 5 iterations, and got a statistically15

significant correlation of 0.914 (for linear relations). This observation indicates a clear physical meaning of the network16

C that is almost identical to its analytical counterpart. To show this, we further operate on the learned C by relaxing its17

value and observe different levels of constraint satisfaction. For instance, we can predict rope / rigid behaviors with18

different stiffness by relaxing the network C to different extents (see figure (d)(e) above).19

Comparison with IN and Other Approaches (R1,R2,R3) We chose to make direct comparisons with IN because we20

believe it is the family of approaches most relevant to ours, which aims to uncover unknown dynamics from limited21

observation. We did not compare our method with differentiable physics solvers, such as ChainQueen, which assume22

known governing equations. One of the main reasons that our model can outperform IN is due to its implicit nature,23

realized by time-independent correction, which is inherently suited for tackling stiff systems such as rigid and articulated24

bodies. Such systems are challenging for explicit transitional methods due to the timestep restriction (imagine the25

difficulty on simulating a rigid body using springs with infinite stiffness). Currently, we reported the timestep size26

(∆t = .1 for all examples) in Supplementary. We will highlight this in Results and add further discussions endorsed by27

a new experiment we conducted to demonstrate the different timestep sensitivities between the two models. We are also28

happy to incorporate comparisons with other models, but to the best of our knowledge, our projection paradigm is the29

only approach that can uncover constraints in such a simple and end-to-end fashion.30

Real-World 3D Applications (R1,R2,R3,R4) There was no technical barrier that prevents our approach from31

being used in predicting 3D physical systems. Here we show a 3D cloth example, as asked by R4, to show-32

case its capability in predicting more complicated 3D physics. We are happy to extend all our four exam-33

ples to 3D to better demonstrate its scalability. On the other hand, we also want to argue that the main dif-34

ficulty on reasoning a real-world physical system lies in the system’s range of stiffness rather than its number35

of DoFs. E.g., a rigid body has 6 effective DoFs only, yet its dynamics is challenging to obtain using a tran-36

sitional learning model which does not take a rotational prior and has the same parameter size as ours (0.3M).37

The four examples we showed in our manuscript covered dynamic systems exhibiting38

a broad range of stiffness and different types of constraints, which we believe can39

characterize the main portion of real-world solid systems (rigid, soft, articulation, and40

collision). Last, as mentioned in Limitation, we acknowledge that our algorithm can41

process solids only (rigid, soft, or any system with a fixed material space). This model42

cannot predict Eulerian systems with temporally varying local relations (e.g., fluid). R1 made insightful suggestions on43

tackling such challenges by incorporating GNNs into neural projection. We will discuss this direction in Future Work.44

R1 Individual Comments Collision: All the collisions in the dataset are currently inelastic; Alg 2: Yes, the outer loop45

is for averaging corrections among groups and the projection function is the same as Alg 1.; Does ∆x converge to zero?46

Yes! More/fewer iterations at test time? More is fine (because of projection) but fewer does not work; Are sample47

points the same in Fig 6?: Yes; Error accumulation: The constraint errors do not accumulates but the trajectory errors48

do; IN and MLP: We used a single layer IN for comparison. MLP outperforms IN because it predicts correction only.49

R2 Individual Comments Size of benchmark: See Supplementary B1; Parameter variation: We randomized initial50

conditions for position, orientation, and external forces, all ranging from [−5, 5]; Problem structure: We used the51

analytical expressions to measure position, length, and angle constraints; Simulation: Our model is not sensitive to52

simulation algorithms as far as the underlying constraints can be observed from data; Single example: The plots for Fig53

3-6 were used specifically to accommodate the animated examples. We had obtained and will incorporate statistical54

data with more parameter variations; Grouping: Yes, the grouping information was set as a prior input.55

R3 Individual Comments Gradient of projection: The gradient was calculated using the standard auto-differentiation.56


