
Neural Dynamic Policies
for End-to-End Sensorimotor Learning

Shikhar Bahl∗
CMU

Mustafa Mukadam
FAIR

Abhinav Gupta
CMU

Deepak Pathak
CMU

Abstract

The current dominant paradigm in sensorimotor control, whether imitation or
reinforcement learning, is to train policies directly in raw action spaces such
as torque, joint angle, or end-effector position. This forces the agent to make
decision at each point in training, and hence, limit the scalability to continuous,
high-dimensional, and long-horizon tasks. In contrast, research in classical robotics
has, for a long time, exploited dynamical systems as a policy representation to
learn robot behaviors via demonstrations. These techniques, however, lack the
flexibility and generalizability provided by deep learning or deep reinforcement
learning and have remained under-explored in such settings. In this work, we begin
to close this gap and embed dynamics structure into deep neural network-based
policies by reparameterizing action spaces with differential equations. We propose
Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution
space as opposed to prior policy learning methods where action represents the
raw control space. The embedded structure allow us to perform end-to-end policy
learning under both reinforcement and imitation learning setups. We show that
NDPs achieve better or comparable performance to state-of-the-art approaches on
many robotic control tasks using both reward-based training and demonstrations.
Project video and code are available at: https://shikharbahl.github.io/
neural-dynamic-policies/.

1 Introduction

y
if t
n t

Tf t
in itar frtT f It

TT f

Vanilla Policy NDP (Ours)

Figure 1: Vector field induced by NDPs. The goal
is to draw the planar digit 4 from the start position.
The dynamical structure in NDP induces a smooth
vector field in trajectory space. In contrast, a vanilla
policy has to reason individually in different parts.

Consider an embodied agent tasked with throwing
a ball into a bin. Not only does the agent need to
decide where and when to release the ball, but also
reason about the whole trajectory that it should take
such that the ball is imparted with the correct mo-
mentum to reach the bin. This form of reasoning
is necessary to perform many such everyday tasks.
Common methods in deep learning for robotics
tackle this problem either via imitation or reinforce-
ment. However, in most cases, the agent’s policy is
trained in raw action spaces like torque, joint angle,
or end-effector position, which forces the agent to
make decisions at each time step of the trajectory
instead of making decisions in the trajectory space
itself (see Figure 1). But then how do we reason
about trajectories as actions?

∗Correspondence to: sbahl2@cs.cmu.edu

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://shikharbahl.github.io/neural-dynamic-policies/
https://shikharbahl.github.io/neural-dynamic-policies/

Forward
Integrator

!!
!̇!

fθΦ !̈t

Neural Dynamic Policy

(g, wi)

rt+k , st+k

Environment

at

st at+1

at+k

Figure 2: Given an observation from the environment, st, our Neural Dynamic Policy generates parameters w
(weights of basis functions) and g (goal for the robot) for a forcing function f� . An open loop controller then
uses this function to output a set of actions for the robot to execute in the environment, collecting future states
and rewards to train the policy.

A good trajectory parameterization is one that is able to capture a large set of agent’s behaviors
or motions while being physically plausible. In fact, a similar question is also faced by physicists
while modeling physical phenomena in nature. Several systems in science, ranging from motion of
planets to pendulums, are described by differential equations of the form �y = m−1f(y; _y), where y
is the generalized coordinate, _y and �y are time derivatives, m is mass, and f is force. Can a similar
parameterization be used to describe the behavior of a robotic agent? Indeed, classical robotics has
leveraged this connection to represent task specific robot behaviors for many years. In particular,
dynamic movement primitives (DMP) [20–22, 37] have been one of the more prominent approaches
in this area. Despite their successes, DMPs have not been explored much beyond behavior cloning
paradigms. This is partly because these methods tend to be sensitive to parameter tuning and aren’t
as flexible or generalizable as current end-to-end deep network based approaches.

In this work, we propose to bridge this gap by embedding structure of dynamical systems2 into deep
neural network-based policies such that the agent can directly learn in the space of physically plausible
trajectory distributions (see Figure 1(b)). Our key insight is to reparameterize the action space
in a deep policy network with nonlinear differential equations corresponding to a dynamical
system and train it end-to-end over time in either reinforcement learning or imitation learning
setups. However, this is quite challenging to accomplish, since naively predicting a full arbitrary
dynamical system directly from the input, trades one hard problem for another. Instead, we want to
prescribe some structure such that the dynamical system itself manifests as a layer in the deep policy
that is both, amenable to take arbitrary previous layers as inputs, and is also fully differentiable to
allow for gradients to backpropagate.

We address these challenges through our approach, Neural Dynamic Policies (NDPs). Specifically,
NDPs allow embedding desired dynamical structure as a layer in deep networks. The parameters
of the dynamical system are then predicted as outputs of the preceding layers in the architecture
conditioned on the input. The ‘deep’ part of the policy then only needs to reason in the lower-
dimensional space of building a dynamical system that then lets the overall policy easily reason
in the space of trajectories. In this paper, we employ the aforementioned DMPs as the structure for
the dynamical system and show its differentiability, although they only serve as a design choice and
can possibly be swapped for a different differentiable dynamical structure, such as RMPs [35].

We evaluate NDPs in imitation as well as reinforcement learning setups. NDPs can utilize high-
dimensional inputs via demonstrations and learn from weak supervisory signals as well as rewards.
In both setups, NDPs exhibit better or comparable performance to state-of-the-art approaches.

2 Modeling Trajectories with Dynamical Systems

Consider a robotic arm exhibiting a certain behavior to accomplish some task. Given a choice of
coordinate system, such as either joint-angles or end-effector position, let the state of the robot
be y, velocity _y and acceleration �y. In mechanics, Euler-Lagrange equations are used to derive

2Dynamical systems here should not be confused with dynamics model of the agent. We incorporate
dynamical differential equations to represent robot’s behavioral trajectory and not physical transition dynamics.

2

the equations of motion as a general second order dynamical system that perfectly captures this
behavior [39, Chapter 6]. It is common in classical robotics to represent movement behaviors with
such a dynamical system. Speci�cally, we follow the second order differential equation structure
imposed by Dynamic Movement Primitives [22, 28, 37]. Given a desired goal stateg, the behavior is
represented as:

•y = � (� (g � y) � _y) + f (x); (1)

where�; � are global parameters that allow critical damping of the system and smooth convergence
to the goal state.f is a non-linear forcing function which captures the shape of trajectory and operates
overx which serves to replace time dependency across trajectories, giving us the ability to model
time invariant tasks, e.g., rhythmic motions.x evolves through the �rst-order linear system:

_x = � ax x (2)

The speci�cs off are usually design choices. We use a sum of weighted Gaussian radial basis
functions [22] shown below:

f (x; g) =
P

 i wiP
 i

x(g � y0); i = e(� h i (x � ci)2) (3)

wherei indexes overn which is the number of basis functions. Coef�cientsci = e
� i� x

n are the
horizontal shifts of each basis function, andhi = n

ci
are the width of each of each basis function. The

weights on each of the basis functionswi parameterize the forcing functionf . This set of nonlinear
differential equations induces a smooth trajectory distribution that acts as an attractor towards a
desired goal, see Figure 1(right). We now discuss how to combine this dynamical structure with deep
neural network based policies in an end-to-end differentiable manner.

3 Neural Dynamic Policies (NDPs)

We condense actions into a space of trajectories, parameterized by a dynamical system, while keeping
all the advantages of a deep learning based setup. We present a type of policy network, called Neural
Dynamic Policies (NDPs) that given an input,image or state, can produce parameters for an embedded
dynamical structure, which reasons in trajectory space but output raw actions to be executed. Let the
unstructured input to robot bes, (an image or any other sensory input), and the action executed by
the robot bea. We describe how we can incorporate a dynamical system as a differentiable layer in
the policy network, and how NDPs can be utilized to learn complex agent behaviors in both imitation
and reinforcement learning settings.

3.1 Neural Network Layer Parameterized by a Dynamical System

Throughout this paper, we employ the dynamical system described by the second order DMP
equation(1). There are two key parameters that de�ne what behavior will be described by the
dynamical system presented in Section 2: basis function weightsw = f w1; : : : ; wi ; : : : ; wn g and
goalg. NDPs employ a neural network� which takes an unstructured inputs3 and predicts the
parametersw; g of the dynamical system. These predictedw; g are then used to solve the second
order differential equation(1) to obtain system statesf y; _y; •yg. Depending on the difference between
the choice of robot's coordinate system fory and desired actiona, we may need an inverse controller

(:) to converty to a, i.e.,a =
(y; _y; •y). For instance, ify is in joint angle space anda is a torque,
then
(:) is the robot's inverse dynamics controller, and ify anda both are in joint angle space then

(:) is the identity function.

As summarized in Figure 2, neural dynamic policies are de�ned as� (ajs; �) ,

�
DE

�
�(s; �)

��

whereDE(w; g) ! f y; _y; •yg denotes solution of the differential equation(1). The forward pass of
� (ajs) involves solving the dynamical system and backpropagation requires it to be differentiable.
We now show how we differentiate through the dynamical system to train the parameters� of NDPs.

3robot's statey is not to be confused with environment observations which contains world as well as robot
state (and often velocity).s could be given by either an image or true state of the environment.

3

3.2 Training NDPs by Differentiating through the Dynamical System

To train NDPs, estimated policy gradients must �ow froma, through the parameters of the dynamical
systemw andg, to the network�(s; �). At any timet, given the previous state of robotyt � 1 and
velocity _yt � 1 the output of the DMP in Equation (1) is given by the acceleration

•yt = � (� (g � yt � 1) � _yt � 1 + f (x t ; g) (4)

Through Euler integration, we can �nd the next velocity and position after a small time intervaldt

_yt = _yt � 1 + •yt � 1dt; yt = yt � 1 + _yt � 1dt (5)

In practice, this integration is implemented inm discrete steps. To perform a forward pass, we unroll
the integrator form iterations starting from initial_y0, •y0. We can either apply all them intermediate
robot statesy as action on the robot using inverse controller
(:), or equally sub-sample them into
k 2 f 1; mg actions in between, wherek is NDP rollout length. This frequency of sampling could
allow robot operation at a much higher frequency (.5-5KHz) than the environment (usually 100Hz).
The sampling frequency need not be same at training and inference as discussed further in Section 3.5.

Now we can compute gradients of the trajectory from the DMP with respect tow andg using
Equations (3)-(5) as follows:

@f(x t ; g)
@wi

=
 iP
j j

(g � y0)x t ;
@f(x t ; g)

@g
=

 j wjP
j j

x t (6)

Using this, a recursive relationship follows between, (similarly to the one derived by Pahic et al.[26])
@yt
@wi

, @yt
@g and the preceding derivatives ofwi , g with respect toyt � 1, yt � 2, _yt � 1 and _yt � 2. Complete

derivation of equation (6) is given in appendix.

We now discuss how NDPs can be leveraged to train policies for imitation learning and reinforcement
learning setups.

3.3 Training NDPs for Imitation (Supervised) Learning

Training NDPs in imitation learning setup is rather straightforward. Given a sequence of input
f s; s0; : : : g, NDP's � (s; �) outputs a sequence of actionsa; a0: : :. In our experiments,s is the high
dimensional image input. Let the demonstrated action sequence be� target, we just take a loss between
the predicted sequence as follows:

L imitation =
X

s

jj � (s) � � target(s)jj2 (7)

The gradients of this loss are backpropagated as described in Section 3.2 to train the parameters� .

3.4 Training NDPs for Reinforcement Learning

Algorithm 1 Training NDPs for RL

Require: Policy � , k NDP rollout length,
 low-level
inverse controller
for 1; 2; ::: episodesdo

for t = 0 ; k; : : : ; until end of episodedo
w, g = �(st)
Robotyt , _yt from st (pos, vel)
for m = 1 ; :::; M (integration steps)do

Estimate_xm via (2) and updatexm

Estimate•yt + m , _yt + m , yt + m via (4), (5)
a =
(yt + m ; yt + m � 1)
Apply actiona to gets0

Store transition (s; a; s0; r)
end for
Compute Policy gradientr �

� � + � r � J
end for

end for

We now show how an NDP can be used as a
policy, � in the RL setting. As discussed in Sec-
tion 3.2, NDP samples k actions for the agent
to execute in the environment given input obser-
vations. One could use any underlying RL al-
gorithm to optimize the expected future returns.
In this paper, we use Proximal Policy Optimiza-
tion (PPO) [38] and treata independently when
computing the policy gradient for each step of
the NDP rollout and backprop via a reinforce
objective.

There are two choices for value function critic
V � (s): either predict a single common value
function for all the actions in thek-step rollout
or predict different critic values for each step in
the NDP rollout sequence. We found that the

4

(a) Throwing (b) Picking (c) Pushing (d) Faucet Open (e) Soccer (f) 50 Tasks

Figure 3:Environment snapshot for different tasks considered in experiments. (a,b) Throwing and picking tasks
are adapted from [17] on the Kinova Jaco arm. (c-f) Remaining tasks are adapted from [46]

Input Ours CNN DMP[26] Input Ours CNN DMP[26]

Figure 4:Imitation (supervised) learning results on held-out test images of digit writing task. Given an input
image (left), the output action is the end-effector position of a planar robot. All methods have the same neural
network architecture for fair comparison. We �nd that the trajectories predicted by NDPs (ours) are dynamically
smooth as well as more accurate than both baselines.

latter works better in practice. We call thismulti-
action critic architectureand predictk different
estimates of value usingk-heads on top of critic
network. Later, in the experiments we perform ablations over the choice ofk. To further create a
strong baseline comparison, as we discuss in Section 4, we also design and compare against a variant
of PPO that predicts multiple actions using our multi-action critic architecture.

Algorithm 1 provides a summary of our method for training NDPs with policy gradients. We only
show results of using NDPs with on-policy RL (PPO), however, NDPs can also be adapted similarly
to off-policy methods.

3.5 Inference in NDPs

In the case of inference, our method uses the NDP policy� once everyk environment steps,
hence requiresk-times fewer forward passes as actions applied to the robot. While reducing the
inference time in simulated tasks may not show much difference, in real world settings, where
large perception systems are usually involved, reducing inference time can help decrease overall
time costs. Additionally, deployed real world systems may not have the same computational power
as many systems used to train state-of-the-art RL methods on simulators, so inference costs end
up accumulating, thus a method that does inference ef�ciently can be bene�cial. Furthermore, as
discussed in Section 3.2, the rollout length of NDP can be more densely sampled at test-time than at
training allowing the robot to produce smooth and dynamically stable motions. Compared to about
100Hz frequency of the simulation, our method can make decisions an order of magnitude faster (at
about 0.5-5KHz) at inference.

4 Experimental Setup

Environments To test our method on dynamic environments, we took existing torque control based
environments for Picking and Throwing [17] and modi�ed them to enable joint angle control. The
robot is a 6-DoF Kinova Jaco Arm. In Throwing, the robot tosses a cube into a bin, and in Picking,
the robot picks up a cube and lifts it as high as possible. To test on quasi-static tasks, we use Pushing,
Soccer, Faucet-Opening from the Meta-World [46] task suite, as well as a setup that requires learning
all 50 tasks (MT50) jointly (see Figure 3). These Meta-World environments are all in end-effector
position control settings and based on a Sawyer Robot simulation in Mujoco [43]. In order to make
the tasks more realistic, all environments have some degree of randomization. Picking and Throwing
have random starting positions, while the rest have randomized goals.

Baselines We use PPO [38] (PPO) as the underlying optimization algorithm for NDPs and all the
other baselines compared in the reinforcement learning setup. The �rst baseline is the PPO algorithm
itself without the embedded dynamical structure. Further, as mentioned in the Section 3.2, NDP

5

is able to operate the robot at a much higher frequency than the world. Precisely, it's frequency
is k-times higher wherek is the NDP rollout length (described in Section 3.2). Even though the
robot moves at a higher frequency, the environment/world state is only observed at normal rate,
i.e., once everyk robot steps and the reward computation at the intermediatek steps only use stale
environment/world state from the �rst one of thek-steps. Hence, to create a stronger baseline that can
also operate at higher frequency, we create a “PPO-multi” baseline that predicts multiple actions and
also uses ourmulti-action criticarchitecture as described in Section 3.4. All methods are compared
in terms of performance measured against the environment sample states observed by the agent. In
addition, we also compare to Variable Impedance Control in End-Effector Space (VICES) [24] and
Dynamics-Aware Embeddings (Dyn-E) [45] . VICES learns to output parameters of a PD controller
or an Impedance controller directly. Dyn-E, on the other hand, using forward prediction based on
environment dynamics, learns a lower dimensional action embedding.

5 Evaluation Results: NDPs for Imitation and Reinforcement Learning

We validate our approach on Imitation Learning and RL tasks in order to ascertain how our NDP
compares to state-of-the-art methods. We investigate: a) Does dynamical structure in NDPs help
in learning from demonstrations in imitation learning setups?; b) How well do NDPs perform on
dynamic and quasi-static tasks in deep reinforcement learning setups compared to the baselines?; c)
How sensitive is the performance of NDPs to different hyper-parameter settings?

5.1 Imitation (Supervised) Learning

Method NN NDP (ours)

Throw 0.528� 0.262 0.642� 0.246
Pick 0.672� 0.074 0.408� 0.058
Push 0.002� 0.004 0.208� 0.049
Soccer 0.885� 0.016 0.890� 0.010
Faucet 0.532� 0.231 0.790� 0.059

Table 1:Imitation (supervised) learning results
(success rates between 0 and 1) on Mujoco [43]
environments. We see that NDP outperforms
the neural network baseline in many tasks.

To evaluate NDPs in imitation learning settings we train
an agent to perform various control tasks. We evalu-
ate NDPs on the Mujoco [43] environments discussed
in Section 4 (Throwing, Picking, Pushing, Soccer and
Faucet-Opening). Experts are trained using PPO [38]
and are subsequently used to collect trajectories. We
train an NDP via the behaviour cloning procedure de-
scribed in Section 3.3, on the collected expert data. We
compare against a neural network policy (using roughly
the same model capacity for both). Success rates in Ta-
ble 1 indicate that NDPs show superior performance on
a wide variety of control tasks.

In order to evaluate the ability of NDPs to handle complex visual data, we perform the task of learning
to write digits using a 2D end-effector. The goal is to train a planar robot to trace the digit given its
image as input. The output action is the robot's end-effector position, and supervision is obtained by
treating ground truth trajectories as demonstrations. We compare NDPs to a regular behavior cloning
policy parametrized by a CNN and the prior approach which maps image to DMP parameters [26]
(dubbed, CNN-DMP). CNN-DMP [26] trains a single DMP for the whole trajectory and requires
supervised demonstrations, which is in contrast to NDPs can generate multiple DMPs across time
and can be used in RL setup as well. However, for a fair comparison, we compare both methods
apples-to-apples with single DMP for whole trajectory, i.e.,k = 300.

Method Train Test (held-out)

CNN 10.42� 5.26 10.59� 4.63
CNN-DMP [26] 9.44� 4.59 8.46� 8.45

NDP (ours) 0.70� 0.36 0.74� 0.34

Table 2: Imitation learning on digit writing task.
We report the mean loss across 10 digit classes. The
input is the image of the digit to be written and
action output is the end-effector position of robot.
Our method signi�cantly outperforms the baseline.

Qualitative examples are in Figure 4 and quantita-
tive results in Table 2 report the mean loss between
output trajectory and ground truth. NDP outper-
forms both CNN and CNN-DMP [26] drastically.
Our method also produces much higher quality and
smoother reconstructions as shown in Figure 4. Re-
sults show that our method can ef�ciently capture
dynamic motions in a supervised setting, while learn-
ing from visual data.

6

(a) Throwing (b) Picking (c) Pushing

(d) Faucet Open (e) Soccer (f) Joint 50 MetaWorld Tasks

Figure 5:Evaluation of reinforcement learning setup for continuous control tasks. Y axis is success rate and X
axis is number of environment samples. We compare to PPO [38], a multi-action version of PPO, VICES [24]
and DYN-E [45]. The dynamic rollout for NDP & PPO-multi isk = 5 .

5.2 Reinforcement Learning

In contrast to imitation learning where the rollout length of NDP is high (k = 300), we setk = 5 in
RL because the reward becomes too sparse ifk is very large. We compare the success rate of our
method with that of the baseline methods PPO, a version of PPO which outputs multiple actions
(k = 5), VICES and DYN-E.

As shown in In Figure 5, our method NDP sees gains in both ef�ciency and performance in most
tasks. In Soccer, PPO reaches a higher �nal performance, but our method shows twice the ef�ciency
at small loss in performance. The �nal task of training jointly across 50 Meta-World tasks is too hard
for all methods. Nevertheless, our NDP attains slightly higher absolute performance than baseline
but doesn't show ef�ciency gains over baselines.

PPO-multi, a multi-action algorithm based on our proposed multi-action critic setup tends to perform
well in some case (Faucet Opening, Pushing etc) but is inconsistent in its performance across all
tasks and fails completely at times, (Picking etc.). Our method also outperforms prior state-of-the-art
methods that re-paremeterize action spaces, namely, VICES [24] and Dyn-E [45]. VICES is only
slightly successful in tasks like throwing, since a PD controller can ef�ciently solve the task, but suffer
in more complex settings due to a large action space dimensionality (as it predicts multiple quantities
per degree of freedom). Dyn-E, on the other hand, performs well on tasks such as Pushing, or Soccer,
which have simpler dynamics and contacts, but fails to scale to more complex environments.

Through these experiments, we show the diversity and versatility of NDP, as it has a strong perfor-
mance across different types of control tasks. NDP outperforms baselines in both dynamic (throwing)
and static tasks (pushing) while being able to learn in a more data ef�cient manner. It is able to reason
in a space of physically meaningful trajectories, but it does not lose the advantages and �exibility of
other policy setups have.

5.2.1 Ablations for NDPs in Reinforcement Learning Setup

We aim to understand how design choices affect the RL performance of NDP. We run comparisons on
the pushing task, varying the number of basis functionsN (in the setf 2; 6; 10; 15; 20g), DMP rollout
lengths (in setf 3; 5; 7; 10; 15g), number of integration steps (in setf 15; 25; 35; 45g), as well as
different basis functions: Gaussian RBF (standard), de�ned in Equation(3), a liner map (x) = x,
a multiquadric map: (x) =

p
1 + (�x)2, a inverse quadric map (x) = 1

1+(�x)2 , and an inverse

multiquadric map: (x) = 1p
1+(�x)2

.

7

