
Appendix
We first describe the details of environments used in the paper, and next list the hyperparameters used
to train all the agents. All environments use the MuJoCo 2.0 simulator.

A Environment Details

A.1 Ant Task

The Ant environment is equivalent to the standard gym Ant-v3 environment except that the gear
ratio is reduced from (�120, 120) to (�30, 30). The use of this lower gear ratio is consistent with
prior work [14]. The observation space is the environment qpos and qvel. The rewards are a weighted
combination of three terms: (1) a negative reward of the distance from the center, (2) a positive
reward for reaching a threshold from the center and (3). The equation used is for (1) and (2) is given
below:

r(d) = e�d2/2 + num goals completed

where d is the `� 2 norm of the distance from the origin. A negative reward (�300) is also given to
the agent for flipping over. If the reset policy terminates the episode in this manner then the forward
policy is not executed. If however, the forward policy terminates the episode, the forward policy
receives the flip cost and the reset policy includes the negation of this cost in its reward as described
in Sec. 4.2. Each agent is given a time horizon of Treset = T = 200. In this ant task, the game was
run for 7000 episodes.

A.2 Ant-Waypoints Task

The aim of this task is to navigate between a set of pre-defined waypoints. The waypoints defined are
[(0, 5), (5, 5), (5, 0)]. The reward structure is the same as the constructed ant environment described
in section A.1, conditioned on the current waypoint.

The lower level controller was constructed from the reset and forward skills learned from the
adversarial game. The (x, y) position of the state were re-normalized so that the ant appeared to be
at the origin. The higher level controller was trained using an implementation of Double DQN [46]
using the 2-D coordinates of the Ant as the state.

A.3 Ant-MediumMaze Task

We use the base environment from D4RL using a single goal4 [19]. The reward is the `� 2 distance
to the target position. The target position is the top right corner and the bottom position is the bottom
left corner. Each episode is of a length 30 where each step represents a single skill.

A.4 ManipulateFreeObject Task

The object is a 6 DoF three pronged object that is 15cm in diameter placed in a workspace that is 30
cm ⇥ 30 cm box. We follow the goal configuration of Zhu et al. [53], using (x, y, ✓) = (0, 0,�⇡

2 ),
and use the same 15 initial configurations used for evaluation. Experiments were performed using
a state representation that comprised of the object (x, y) position, and sin and cos encoding of its
orientation, the claw’s pose, and the last action taken.

B Additional Experiments

4https://github.com/rail-berkeley/d4rl

13

https://github.com/rail-berkeley/d4rl


B.1 Understanding the effects of resets and state representation choice on downstream
performance

Here, we provide an analysis of the effects of resets and state representation choice on downstream
task performance. We vary the condition under which the policy is learned (i.e., reset or reset-free)
and the state representation (full state versus (x, y)-prior). In general, we find that only with the
availability of the (x, y)-prior and resets are prior methods able to make progress (Fig. 8 and Fig. 9).
The different relative performance of the same actions representation on different downstream tasks
also suggests that learning a single action representation may not always be ideal. This suggests
future work that combines downstream adaptation, or mixing in primative actions to allow for more
granular control.

Figure 7: A visualization of skills learned when varying the state representation ((x, y)-prior or full
state) and initial state distribution (reset-free or with resets). We find that with resets, prior method
are able to produce diverse skills comparable to LSR. In the reset-free setting however, using either
state representation we are able to produce superior skills when compared to prior work.

Figure 8: A evaluation of the skills learned when varying the state representation ((x, y)-prior or
full state) and initial state distribution (reset-free or with resets) on the Ant-MediumMaze task. We
normalize the return of plot in terms of the best performing algorithm. We find that with the (x, y)-
prior is necessary to allow prior methods to perform comparably to LSR. In the reset-free learning
setting using full-state however, only LSR approach is able to successfully traverse the maze.

Figure 9: A evaluation of the skills learned when varying the state representation ((x, y)-prior or full
state) and initial state distribution (reset-free or with resets) on the Ant-Waypoints task. We normal-
ize the return of plot in terms of the best performing algorithm. Similar to the Ant-MediumMaze task,
we find that prior methods can only make progress on the task when resets or additional information
in the form of the (x, y)-prior is available.

14



B.2 Effect of varying the number of skills on downstream performance

Figure 10: A plot showing the effect of varying the number of skills on the Ant-Waypoints tasks.
We find that increasing the number of skills improves performance (16, yellow curve), the value
used in our experiments (10, purple curve) is far from the best, and many other values attain similar
performance. The number of skills used in our experiments were chosen to be roughly around the
order of previous work [14].

C Algorithm Details

The adversarial game comprises of a reset policy and a forward policy as described in the paper. The
forward policy receives rewards as given by the environment at every step. The reset policy receives
rewards from DIAYN at every step and a game reward at the last step. This game reward is the sum
of the rewards received by the forward policy when played from the final state of the reset policy
trajectory. Each agent is given a fixed number of steps at each turn. Environment termination was
handled for individually for both agents as follows. If the reset policy terminates, the forward policy
does not take any steps in the environment and is not given any reward. If forward policy terminates,
the reset policy is given rewards based on the forward policy as normal.

In the following sections, curly brackets indicate that a parameter was searched over.

C.1 DClaw Environment Parameters

The experiments conducted on the DClaw-ManipulateFreeObject domain was conducted using
the following parameters. The grid search parameters for DIAYN were identical to those used in our
method except where � = 0.

Hyperparameters Value
Actor-critic architecture FC(256, 256)
RND architecture FC(256, 256, 512)
Classifier architecture FC(256, 256)

Optimizer Adam
Learning rate {3e-3, 3e-4}
Classifier steps per iteration 5

� 0.99

� {0.1, 0.5}
rskill scale 0.1
target update 0.005

Batch size 256
Classifier batch size 128

We follow [54] and provide 200 goal images for all experiments which are used to learn a VICE [18]
based reward function. We similarly omit the � log ⇡(s|a). We also follow Burda et al. [7] and
normalize the prediction errors. In our implementation of LSR, we found used a dimensionality of z
of 2, implemented as a separate network as opposed to one network. The reset controller [13] and
R3L baseline [54] follow the hyperparameters above. The reset controller’s results were averaged
over the 3 positions suggested by Zhu et al. [54].

15



C.2 Ant Environment Parameters

The experiments conducted on the Ant domain were conducted using the following parameters. The
grid search parameters for DIAYN were identical to those used in our method except where � = 0.

Hyperparameters Value
Actor-critic architecture FC(256, 256)
Classifier architecture FC(256, 256)

Optimizer Adam
Learning rate {1e-3, 2e-4}
Training steps per agent {200, 200}

� 0.99
Episode Length 1000

� 0.5
Number of skills 10
rskill scale {0.01, 10}, chose 2
target update 0.005

Batch size 256
Classifier batch size 256

C.3 Hierarchical Controller Parameters

The hierarchical controller is a Double-DQN [46] network that takes as input the st and outputs a
Q-function over the skills Q(st, z).

Hyperparameters Value
Architecture FC(128)

Exploration fraction 0.3
Final epsilon j 0.0

Learning rate ↵ 0.0001
Reward Scale {0.1, 0.3}

Batch size 256

Maximum horizon (T) 30
Total epochs 500

Replay Buffer size {1000, 10,000}

Critic update frequency {5, 10}
Critic updates per epoch {100, 200}

An episode step corresponds to a 150 length rollout by the lower level controller in the environment.

16



C.4 DADS

To allow for fair comparison, we run DADS without an (x, y) prior. We additionally discretize the
continuous skill space into a space of 10 discrete skills to allow for us to use the same meta-controller
architecture. We used the open source implementation of DADS [40] 5 with the following parameters:

Skill parameters
Number of skills 10
Skill type Discrete

Dynamics parameters
train steps 8
learning rate 3e-4
batch size 256

Path length 200

Agent parameters
Architecture FC(512)
Learning rate 3e-4
Entropy 0.1
Train steps 64
Batch size 256
� 0.99

5https://github.com/google-research/dads

17

https://github.com/google-research/dads

