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Abstract

In 1988, Eric B. Baum showed that two-layers neural networks with threshold ac-
tivation function can perfectly memorize the binary labels of n points in general
position in Rd using only pn/dq neurons. We observe that with ReLU networks,
using four times as many neurons one can fit arbitrary real labels. Moreover, for
approximate memorization up to error ε, the neural tangent kernel can also memo-
rize with only O

(
n
d · log(1/ε)

)
neurons (assuming that the data is well dispersed

too). We show however that these constructions give rise to networks where the
magnitude of the neurons’ weights are far from optimal. In contrast we propose a
new training procedure for ReLU networks, based on complex (as opposed to real)
recombination of the neurons, for which we show approximate memorization with
both O

(
n
d ·

log(1/ε)
ε

)
neurons, as well as nearly-optimal size of the weights.

1 Introduction

We study two-layers neural networks in Rd with k neurons and non-linearity ψ : R→ R. These are
functions of the form:

x 7→
k∑
`=1

a`ψ(w` · x+ b`) , (1)

with a`, b` ∈ R and w` ∈ Rd for any ` ∈ [k]. We are mostly concerned with the Rectified
Linear Unit non-linearity, namely ReLU(t) = max(0, t), in which case wlog one can restrict the
recombination weights (a`) to be in {−1, 1} (this holds more generally for positively homogeneous
non-linearities). We denote by Fk(ψ) the set of functions of the form (1). Under mild conditions
on ψ (namely that it is not a polynomial), such neural networks are universal, in the sense that for k
large enough they can approximate any continuous function [Cybenko, 1989, Leshno et al., 1993].

In this paper we are interested in approximating a target function on a finite data set. This is also
called the memorization problem. Specifically, fix a data set (xi, yi)i∈[n] ∈ (Rd × R)n and an
approximation error ε > 0. We denote y = (y1, . . . , yn), and for a function f : Rd → R we write
f = (f(x1), . . . , f(xn)). The main question concerning the memorization capabilities of Fk(ψ) is
as follows: How large should be k so that there exists f ∈ Fk(ψ) such that ‖f − y‖2 ≤ ε‖y‖2
(where ‖ · ‖ denotes the Euclidean norm)? A simple consequence of universality of neural networks
is that k ≥ n is sufficient (see Proposition 2). In fact (as was already observed by Baum [1988]
for threshold ψ and binary labels, see Proposition 3) much more compact representations can be
achieved by leveraging the high-dimensionality of the data. Namely we prove that for ψ = ReLU
and a data set in general position (i.e., any hyperplane contains at most d points), one only needs
k ≥ 4 · pnd q to memorize the data perfectly, see Proposition 4. The size k ≈ n/d is clearly optimal,
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by a simple parameter counting argument. We call the construction given in Proposition 4 a Baum
network, and as we shall see it is of a certain combinatorial flavor. In addition we also prove that such
memorization can in fact essentially be achieved in a kernel regime (with a bit more assumptions
on the data): we prove in Theorem 2 that for k = Ω

(
n
d log(1/ε)

)
one can obtain approximate

memorization with the Neural Tangent Kernel [Jacot et al., 2018], and we call the corresponding
construction the NTK network. Specifically, the kernel we consider is,

E [∇wψ(w · x) · ∇wψ(w · y)] = E [(x · y)ψ′(w · x)ψ′(w · y)] ,

where ∇w is the gradient with respect to the w variable and the expectation is taken over a random
initialization of w.

Measuring regularity via total weight. One is often interested in fitting the data using functions
which satisfy certain regularity properties. The main notion of regularity in which we are interested
is the total weight, defined as follows: For a function f : Rd → R of the form (1), we define

W(f) :=

k∑
`=1

|a`|
√
‖w`‖2 + b2` .

This definition is widely used in the literature, see Section 2 for a discussion and references. No-
tably, it was shown in Bartlett [1998] that this measure of complexity is better associated with the
network’s generalization ability compared to the size of the network. We will be interested in con-
structions which have both a small number of neurons and a small total weight.

Our main contribution: The complex network. As we will see below, both the Baum network
and the NTK networks have sub-optimal total weight. The main technical contribution of our paper
is a third type of construction, which we call the harmonic network, that under the same assumptions
on the data as for the NTK network, has both near-optimal memorization size and near-optimal total
weight:

Theorem 1 (Informal). Suppose that n ≤ poly(d). Let x1, .., xN ∈ Sd−1 such that

|xi · xj | = Õ

(
1√
d

)
.

For every ε > 0 and every choice of labels (yi)
n
i=1 such that |yi| = O(1) for all i, there exist

k = Õ
(
n
dε

)
and f ∈ Fk(ψ) such that

1

n

n∑
i=1

min
((
yi − f(xi)

)2
, 1
)
≤ ε

and such that W(f) = Õ (
√
n).

We show below in Proposition 1 that for random data one necessarily has W(f) = Ω̃ (
√
n), thus

proving that the harmonic network has near-optimal total weight. Moreover we also argue in the
corresponding sections that the Baum and NTK networks have total weight at least n

√
n on random

data, thus being far from optimal.

An iterative construction. Both the NTK network and the harmonic network will be built by
iteratively adding up small numbers of neurons. This procedure, akin to boosting, is justified by the
following lemma. It shows that to build a large memorizing network it suffices to be able to build a
small network f whose scalar product with the data f · y is comparable to its variance ‖f‖2:

Lemma 1 Fix (xi)
n
i=1. Suppose that there are m ∈ N and α, β > 0 such that the following holds:

For any choice of (yi)
n
i=1, there exists f ∈ Fm(ψ) with y · f ≥ α‖y‖2 and ‖f‖2 ≤ β‖y‖2. Then

for all ε > 0, there exists g ∈ Fmk(ψ) such that

‖g − y‖2 ≤ ε‖y‖2

with
k ≤ β

α2
log(1/ε).

Moreover, if the above holds with W(f) ≤ ω, then W(g) ≤ ω
α log(1/ε).
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Proof. Denote η = α
β and r1 = y. Then, there exists f1 ∈ Fm(ψ), such that

‖ηf1 − r1‖2 = ‖r1‖2 − 2ηy · f1 + η2‖f1‖2 ≤ ‖r1‖2
(

1− 2
α2

β
+
α2

β

)
≤ ‖r1‖2

(
1− α2

β

)
= ‖y‖2

(
1− α2

β

)
The result is obtained by iterating the above inequality with ri = y − η

∑i−1
j=1 fj taken as the

residuals. By induction, if we set g = η
∑k
j=1 fj , we get

‖g − y‖ = ‖ηfk − rk‖ ≤ ‖rk‖2
(

1− α2

β

)
= ‖y‖2

(
1− α2

β

)k
.

�

In both the NTK and harmonic constructions, the function f will have the largest possible correlation
with the data set attainable for a network of constant size. However, the harmonic network will have
the extra advantage that the function f will be composed of a single neuron whose weight is the
smallest one attainable. Thus, the harmonic network will enjoy both the smallest possible number
of neurons and smallest possible total weight (up to logarithmic factors). Note however that the
dependency on ε is worse for the harmonic network, which is technically due to a constant order
term in the variance which we do not know how to remove.

We conclude the introduction by showing that a total weight of Ω(
√
n) is necessary for approximate

memorization. Just like for the upper bound, it turns out that it is sufficient to consider how well can
one correlate a single neuron. Namely the proof boils down to showing that a single neuron cannot
correlate well with random data sets.

Proposition 1 There exists a data set (xi, yi)i∈[n] ∈ (Sd−1×{−1, 1})n such that for every function
f of the form (1) with ψ L-Lipschitz and which satisfies ‖f − y‖2 ≤ 1

2‖y‖
2, it holds that W(f) ≥

√
n

8L .

Proof. We have
1

2
‖y‖2 ≥ ‖f − y‖2 ≥ ‖y‖2 − 2f · y⇒ f · y ≥ 1

4
‖y‖2 ,

that is
k∑
`=1

n∑
i=1

yia`ψ(w` · xi − b`) ≥
n

4
,

which implies:

max
w,b

n∑
i=1

yi
ψ(w · xi − b)√
‖w‖2 + b2

≥ n

4W(f)
.

Now let us assume that yi are ±1 uniformly at random (i.e., Rademacher random variables), and
thus by Talagrand’s contraction lemma for the Rademacher complexity (see [Lemma 26.9, Shalev-
Shwartz and Ben-David [2014]]) we have:

Emax
w,b

n∑
i=1

yi
ψ(w · xi − b)√
‖w‖2 + b2

≤ L · Emax
w,b

n∑
i=1

yi
w · xi − b√
‖w‖2 + b2

≤ L · E

√√√√∥∥∥∥∥
n∑
i=1

yixi

∥∥∥∥∥
2

+ n ≤ 2L
√
n ,

and thus W(f) ≥
√
n

8L . �
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2 Related works

Exact memorization. The observation that n neurons are sufficient for memorization with essen-
tially arbitrary non-linearity was already made in [Bach, 2017] (using Carathéodory’s theorem), and
before that a slightly weaker bound with n+1 neurons was already observed in [Bengio et al., 2006]
(or more recently 2n+ d in [Zhang et al., 2017]). The contribution of Proposition 2 is to show that
this statement of exactly n neurons follows in fact from elementary linear algebra.

As already mentioned above, Baum [1988] proved that for threshold non-linearity and binary labels
one can obtain a much better bound of n/d neurons for memorization, as long as the data is in general
position. This was generalized to the ReLU non-linearity (but still binary labels) in Yun et al. [2019]
(we note that this paper also considers some questions around memorization capabilities of deeper
networks). Our modest contribution here is to generalize this to arbitrary real labels, see Proposition
4.

Gradient-based memorization. A different line of works on memorization studies whether it can
be achieved via gradient-based optimization on various neural network architectures. The litera-
ture here is very large, but early results with minimal assumptions include Li and Liang [2018],
Soltanolkotabi et al. [2018] which were notably generalized in [Allen-Zhu et al., 2019, Du et al.,
2019]. Crucially these works leverage very large overparametrization, i.e., the number of neurons
is a large polynomial in the number of data points. For a critique of this large overparametrization
regime see [Chizat et al., 2019, Ghorbani et al., 2019, Yehudai and Shamir, 2019], and for a dif-
ferent approach based on a certain scaling limit of stochastic gradient descent for sufficiently over-
parametrized networks see [Chizat and Bach, 2018, Mei et al., 2018]. More recently the amount
of overparametrization needed was improved to a small polynomial dependency in n and d in
[Kawaguchi and Huang, 2019, Oymak and Soltanolkotabi, 2019, Song and Yang, 2019]. In the
random features regime, Bresler and Nagaraj [2020] have also considered an iterative construction
procedure for memorization. This is somewhat different than our approach, in which the iterative
procedure updates the wj’s, and a much smaller number of neurons is needed as a result. Finally,
very recently Amit Daniely [Daniely, 2019, 2020] showed that gradient descent already works in the
optimal regime of k = Õ(n/d), at least for random data (and random labels). This result is closely
related to our analysis of the NTK network in Section 4. Minor distinctions are that we allow for
arbitrary labels, and we take a “boosting approach” were neurons are added one by one (although
we do not believe that this is an essential difference).

Total weight complexity. It is well-known since Bartlett [1998] that the total weight of a two-
layers neural network is a finer measure of complexity than the number of neurons to control its
generalization (see Neyshabur et al. [2015] and Arora et al. [2019] for more recent discussions on
this, as well as Bartlett et al. [2017] for other notions of norms for deeper networks). Of course
the bound W = Õ(

√
n) proved here leads to vacuous generalization performance, as is necessary

since the Harmonic network can memorize completely random data (for which no generalization is
possible). It would be interesting to see if the weight of the Harmonic network can be smaller for
more structured data, particularly given the context raised by the work [Zhang et al., 2017] (where it
was observed that SGD on deep networks will memorize arbitrary data, hence the question of where
does the seeming generalization capabilities of those networks come from). We note the recent work
[Ji and Telgarsky, 2020] which proves for example that polylogarithmic size network is possible for
memorization under a certain margin condition. Finally we also note that the effect in function space
of bounding W has been recently studied in Ongie et al. [2020], Savarese et al. [2019].

Complex weights. It is quite natural to consider neural networks with complex weights. Indeed, as
was already observed by Barron [Barron, 1993], the Fourier transform f(x) =

∫
f̂(ω) exp(iω ·x)dω

exactly gives a representation of f as a two-layers neural network with the non-linearity ψ(t) =
exp(it). More recently, it was noted in Andoni et al. [2014] that randomly perturbing a neuron
with complex weights is potentially more beneficial than doing a mere real perturbation. We make
a similar observation in Section 5 for the construction of the Harmonic network, where we show
that complex perturbations allow to deal particularly easily with higher order terms in some key
Taylor expansion. Moreover we also note that Andoni et al. [2014] considers non-linearity built
from Hermite polynomials, which shall be a key step for us too in the construction of the Harmonic
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network (the use of Hermite polynomials in the context of learning theory goes back to [Kalai et al.,
2008]).

While orthogonal to our considerations here, we also note the work of Fefferman [Fefferman, 1994],
where he used the analytical continuation of a (real) neural network to prove a certain uniqueness
property (essentially that two networks with the same output must have the same weights up to some
obvious symmetries and obvious counter-examples).

3 Elementary results on memorization

In this section we give a few examples of elementary conditions on k, ψ and the data set so that
one can find f ∈ Fk(ψ) with f = y (i.e., exact memorization). We prove three results: (i) k ≥ n
suffices for any non-polynomial ψ, (ii) k ≥ n

d + 3 with ψ(t) = 1{t ≥ 0} suffices for binary labels
with data in general position (this is exactly Baum [1988]’s result), and (iii) k ≥ 4 · pnd q with
ψ = ReLU suffices for data in general position and arbitrary labels.

We start with the basic linear algebraic observation that having a number of neurons larger than the
size of the data set is always sufficient for perfect memorization:

Proposition 2 Assuming that ψ is not a polynomial, there exists f ∈ Fn(ψ) such that f = y.

Proof. Note that the set of functions of the form (1) (with arbitrary k) corresponds to the vector space
V spanned by the functions ψw,b : x 7→ ψ(w · x + b). Consider the linear operator Ψ : V → Rn
that corresponds to the evaluation on the data points (xi) (i.e., Ψ(f) = (f(xi))i∈[n]). Since ψ is not
a polynomial, the image of Ψ is Im(Ψ) = Rn. Moreover Im(Ψ) is spanned by the set of vectors
Ψ(ψw,b) for w ∈ Rd, b ∈ R. Now, since dim(Im(Ψ)) = n, one can extract a subset of n such
vectors with the same span, that is there exists w1, b1, . . . , wn, bn such that

span(Ψ(ψw1,b1), . . . ,Ψ(ψwn,bn)) = Rn ,

which concludes the proof. �

In [Baum, 1988] it is observed that one can dramatically reduce the number of neurons for high-
dimensional data:

Proposition 3 Fix ψ(t) = 1{t ≥ 0}. Let (xi)i∈[n] be in general position in Rd (i.e., any hyperplane
contains at most d points), and assume binary labels, i.e., yi ∈ {0, 1}. Then there exists f ∈
Fn

d +3(ψ) such that f = y.

Proof. Baum [1988] builds a network iteratively as follows. Pick d points with label 1, say
x1, . . . , xd, and let H = {x : u · x = b} be a hyperplane containing those points and no other
points in the data, i.e., xi 6∈ H for any i > d. With two neurons (i.e., f ∈ F2(ψ)) one can build the
indicator of a small neighborhood of H , namely f(x) = ψ(u · x − (b − τ)) − ψ(u · x − (b + τ))
with τ small enough, so that f(xi) = 1 for i ≤ d and f(xi) = 0 for i > d. Assuming that the label
1 is the minority (which is without loss of generality up to one additional neuron), one thus needs at
most 2p n2dq neurons to perfectly memorize the data. �

We now extend Proposition 3 to the ReLU non-linearity and arbitrary real labels. To do so we
introduce the derivative neuron of ψ defined by:

fδ,u,v,b : x 7→ ψ((u+ δv) · x− b)− ψ(u · x− b)
δ

, (2)

with δ ∈ R and u, v ∈ Rd. As δ tends to 0, this function is equal to

fu,v,b(x) = ψ′(u · x− b)v · x (3)

for any x such that ψ is differentiable at u · x − b. In fact, for the ReLU one has for any x such
that u · x 6= b that fδ,u,v,b(x) = fu,v,b(x) for δ small enough (this is because the ReLU is piecewise
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linear). We will always take δ small enough and u such that fδ,u,v,b(xi) = fu,v,b(xi) for any i ∈ [n],
for example by taking

δ =
1

2
min
i∈[n]

|u · xi − b|
|v · xi|

. (4)

Thus, as far as memorization is concerned, we can assume that fu,v,b ∈ F2(ReLU). With this
observation it is now trivial to prove the following extension of Baum’s result:

Proposition 4 Let (xi)i∈[n] be in general position in Rd (i.e., any hyperplane contains at most d
points). Then there exists f ∈ F4·pn

d q(ReLU) such that f = y.

Proof. Pick an arbitrary set of d points, say (xi)i≤d, and let H = {x : u · x = b} be a hyperplane
containing those points and no other points in the data, i.e., xi 6∈ H for any i > d. With four neurons
one can build the function f = fu,v,b−τ − fu,v,b+τ with τ small enough so that f(xi) = xi · v for
i ≤ d and f(xi) = 0 for i > d. It only remains to pick v such that v · xi = yi for any i ≤ d, which
we can do since the matrix given by (xi)i≤d is full rank (by the general position assumption). �

4 The NTK network

The constructions in Section 3 are based on a very careful set of weights that depend on the entire
dataset. Here we show that essentially the same results can be obtained in the neural tangent kernel
regime. That is, we take pair of neurons as given in (2) (which corresponds in fact to (3) since we
will take δ to be small, we will also restrict to b = 0), and crucially we will also have that the “main
weight” u will be chosen at random from a standard Gaussian, and only the “small perturbation”
v will be chosen as a function of the dataset. The guarantee we obtain is slightly weaker than in
Proposition 4: we have a log(1/ε) overhead in the number of neurons, and moreover we also need
to assume that the data is “well-spread”. Specifically we consider the following notion of “generic
data”:

Definition 1 We say that (xi)i∈[n] are (γ, ω)-generic (with γ ∈ ( 1
2n , 1) and ω > 0) if ‖xi‖ ≥ 1 for

all i ∈ [n], 1
n

∑n
i=1 xix

>
i � ω

d · Id, and |xi · xj | ≤ γ · ‖xi‖ · ‖xj‖ for all i 6= j.

In the following we fix such a (γ, ω)-generic data set. Note that i.i.d. points on the sphere are(
O

(√
log(n)
d

)
, O(1)

)
-generic. We now formulate our main theorem concerning the NTK net-

work.

Theorem 2 There exists f ∈ Fk(ReLU), produced in the NTK regime (see Theorem 3 below for
more details) with E[‖f − y‖2] ≤ ε‖y‖2 (the expectation is over the random initialization of the
“main weights”) provided that

k · d ≥ 20ω · n log(1/ε) · log(2n)

log(1/γ)
. (5)

In light of Lemma 1, it will be enough to produce a width-2 network, f ∈ F2(ReLU), whose
correlation with the data set is large.

Theorem 3 There exists f ∈ F2(ReLU) with

y · f ≥ 1

10
·

√
log(1/γ)

log(2n)
· ‖y‖2 , (6)

and
‖f‖2 ≤ ω · n

d
‖y‖2 . (7)

In fact, one can take the construction (2) with:

u ∼ N (0, Id), v =
∑

i:u·xi≥0

yixi, δ =
1

2

mini∈[n] |u · xi|
|v · xi|

. (8)

which produces f ∈ F2(ReLU) such that (6) holds in expectation and (7) holds almost surely.
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To deduce Theorem 2 from Theorem 3, apply Lemma 1 with α = 1
10 ·

√
log(1/γ)
log(2n) and β = ω·n

d . See
supplementary material for the proof of Theorem 3.

For u ∈ Rd, set
fu(x) = ψ′(u · x)v · x, (9)

where v is defined as in (8). Observe that as long as u · xi 6= 0,∀i ∈ [n], a small enough choice of δ
ensures the existence of f ∈ F2(ReLU) such that f = fu.

To prove Theorem 3, it therefore remains to show that fu satisfies (6) and (7) with positive
probability as u ∼ N (0, Id). This will be carried out in two steps: First we show that the correlation
y · f for a derivative neuron has a particularly nice form as a function of u, see Lemma 2. Then, in
Lemma 3 we derive a lower bound for the expectation of the correlation under u ∼ N (0, Id). Taken
together these lemmas complete the proof of Theorem 3.

Lemma 2 Fix u ∈ Rd, the function fu defined in (9) satisfies
∑n
i=1 yifu(xi) =

∥∥∥∑i:u·xi≥0 yixi

∥∥∥2,

and furthermore
∑n
i=1 fu(xi)

2 ≤ ω·n
d ·

∑n
i=1 yif(xi).

Proof. We may write
n∑
i=1

fu(x)yi =

n∑
i=1

ψ′(u · xi)yixi · v .

To maximize this quantity we take v =
∑n
i=1 ψ

′(u · xi)yixi so that the correlation is exactly equal
to ‖v‖2 = ‖

∑n
i=1 ψ

′(u · xi)yixi‖
2 (note also that ψ′(t) = 1{t ≥ 0} for the ReLU). Moreover we

also have (recall that for ReLU, |ψ′(t)| ≤ 1)
n∑
i=1

fu(xi)
2 =

n∑
i=1

(ψ′(xi · u))2(xi · v)2 ≤ λmax

(
n∑
i=1

xix
>
i

)
· ‖v‖2 . (10)

�

Lemma 3 One has:

Eu∼N (0,In)

∥∥∥∥∥∥
∑

i: u·xi≥0

yixi

∥∥∥∥∥∥
2

≥ 1

10
·

√
log(1/γ)

log(2n)
·
n∑
i=1

y2i ‖xi‖2 .

Proof. First note that E
∥∥∥∑i: u·xi≥0 yixi

∥∥∥2 = y>Hy , where

Hi,j = E[xi · xj1{u · xi ≥ 0}1{u · xj ≥ 0}] =
2

π
xi · xj

(
1

4
+ arcsin

(
xi
‖xi‖

· xj
‖xj‖

))
.

Let us denote V the matrix with entries Vi,j = xi

‖xi‖ ·
xj

‖xj‖ and D the diagonal matrix with entries

‖xi‖. Note that V � 0 and thus we have (recall also that arcsin(t) =
∑∞
i=0

(2i)!
(2ii!)2 ·

t2i+1

2i+1 ):

D−1HD−1 � 2

π

∞∑
i=0

(2i)!

(2ii!)2
· V
◦2(i+1)

2i+ 1
.

Now observe that for any i, by the Schur product theorem one has V ◦i � 0. Moreover V ◦i is
equal to 1 on the diagonal, and off-diagonal it is smaller than γi, and thus for i ≥ log(2n)

log(1/γ) one has
V ◦i � 1

2 In. The conclusion now follows by an easy calculation. �

5 The complex network

We now wish to improve upon the NTK construction, by creating a network with similar memoriza-
tion properties and which has almost no excess total weight.
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5.1 Correlation of a perturbed neuron with random sign

Towards understanding our construction, let us first revisit the task of correlating a single neuron
with the data, namely we want to maximize over w the ratio between |

∑n
i=1 yiψ(w · xi)| and√∑n

i=1 ψ(w · xi)2. Note that depending on whether the sign of the correlation is positive or
negative, one would eventually take either neuron x 7→ ψ(w · x) or x 7→ −ψ(w · x). Let us first
revisit the NTK calculation from the previous section, emphasizing that one can take a random sign
for the recombination weight a.

The key NTK-like observation is that a single neuron perturbed around the parameter w0 and with
random sign can be interpreted as a linear model over a feature mapping that depends on w. More
precisely (note that the random sign cancels the 0th order term in the Taylor expansion):

Ea∼{−δ,δ} a−1ψ
(
(w + av) · x

)
= Φw(x) · v +O(δ) , where Φw(x) = ψ′(w · x)x . (11)

In particular the correlation to the data of such a single random neuron is equal in expectation to∑
i yiΦw(xi) · v + O(δ), and thus it is natural to take the perturbation vector v to be equal to

v0 = η
∑
i yiΦw(xi) (where η will be optimized to balance with the variance term), and we now

find that:

Ea∼{−δ,δ}
n∑
i=1

yia
−1ψ((w+av0) ·xi) =

∥∥∥∥∥η∑
i

yiΦw(xi)

∥∥∥∥∥
2

+O(δ) = ηy>H(w)y+O(δ) , (12)

where H(w) is the Gram matrix of the feature embedding, namely

H(w)i,j = Φw(xi) · Φw(xj).

Note that for ψ = ReLU , one has in fact that the term O(δ) in (11) disappears for δ small is
enough, and thus the correlation to the data is simply ηy>H(w)y in that case.

As we did with the NTK network, we now also take the base parameter w at random from a standard
Gaussian. As we just saw, understanding the expected correlation then reduces to lower bound
(spectrally) the Gram matrix H defined by Hi,j = Ew∼N (0,Id)[ψ

′(w · xi)ψ′(w · xj)xi · xj ]. This
was exactly the content of Lemma 3 for ψ = ReLU.

5.2 Eliminating the higher derivatives with a complex trick

The main issue of the strategy described above is that it requires to take δ small, which in turn
may significantly increase the total weights of the resulting network. Our next idea is based on
the following observation: Taking a random sign in (11) eliminates all the even order term in the
Taylor expansion since Ea∼{−1,1}[a−1am] = 0 for any even m (while it is = 1 for any odd m).
However, taking a complex a, would rid us of all terms except the first order term. Namely, one has
Ea∈C:|a|=1[a−1am] = 0 for any m 6= 1. This suggests that it might make sense to consider neurons
of the form

x 7→ Re
(
a−1ψ

(
(w + av) · x

))
,

where a is a complex number of unit norm.

The challenge is now to give sense to ψ(z) for a complex z, so that the rest of the argument remains
unchanged. This gives rise to two caveats:

• There is no holomorphic extension of the ReLU function.
• The holomorphic extension of the activation function, even if exists, is a function of two

(real) variables. The expression ψ
(
(w + av) · x

)
when a /∈ R is not a valid neuron to be

used in our construction since we’re only allowed to use the original activation function as
our non-linearity.

To overcome these caveats, the construction will be carried out in two steps, where in the first step
we use polynomial activation functions, and in the second step, we replace these by the original
activation function. It turns out that the calculation in Lemma 3 is particularly simple when the
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derivative of the activation function is a Hermite polynomial (see supplementary material for defini-
tions), which is in particular obviously well-defined on C and in fact holomorphic.

The first step of our proof in the supplementary material will be to obtain a result analogous to
Theorem 1 where the ReLU is replaced by a Hermite activation. Given such a result, the second step
towards Theorem 1 is to replace the polynomial attained by the above lemma by a ReLU. This will
be achieved by:

• Observing that any polynomial in two variables p(x, y) can be written as a linear combi-
nation of polynomials which only depend on one direction, hence polynomials of the form
q(ax+ by).

• Using the fact that any nice enough function of one variable can be written as a mixture of
ReLUs, due to the fact that the second derivative of the ReLU is a Dirac function (this was
observed before, see e.g., [Lemma A.4, Ji et al. [2020]]).

• The above implies that one can write the function (x, y) 7→ ϕ(x + iy), where ϕ is the
Hermite activation, as the expectation of ReLUs such that the variance at points close to
the origin is not too large.

These steps will be carried out in the supplementary material.

Broader impact. This work does not present any foreseeable societal consequence.
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