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Supplementary Materials Roadmap

In Section |1} we overview notation, formally define our generative model, give miscellaneous
technical tools, and review the basics on classical learning of structured distributions and on Haar
wavelets. In Section 2] we define the semidefinite program that we use to compute skewness. In
Section [3] we give our algorithm LEARNWITHFILTER and prove our main result, Theorem [I.T}
restated here for convenience:

Theorem 1.1. Let p be a distribution over [n| which is n-approximated by an s-part piecewise
polynomial with degree at most d. There is an algorithm which runs in time polynomial in all
parameters and estimates (i, to within O (77 + w4+ ﬁ Vlog1/ e) in total variation after drawing N

e-corrupted batches, each of size k, where N = O ((s2d?/e?) - log® (n)) is the number of batches.

In Section[d] we describe our empirical evaluations of LEARNWITHFILTER on synthetic data. In
Appendices and|C] we complete the proofs of some deferred technical statements relating to
deterministic regularity conditions and metric entropy bounds.

1 Technical Preliminaries

1.1 Notation

* Given p € [0, 1], let Bin(k, p) denote the normalized binomial distribution, which takes values in
{0,1/k,--- ,1} rather than {0,1,--- , k}.

* Let A" C R™ be the simplex of nonnegative vectors whose coordinates sum to 1. Any p € A"
naturally corresponds to a probability distribution over [n].

* Let 1,, € R" denote the all-ones vector. We omit the subscript when the context is clear.

* Given matrix M € R"*™, let | M||max denote the maximum absolute value of any entry in M, let
||M]1,1 denote the absolute sum of its entries, and let || M || » denote its Frobenius norm.

* Given p € A™, let Mul (1) denote the distribution over A™ given by sampling a frequency vector
from the multinomial distribution arising from % draws from the distribution over [n] specified by
1, and dividing by k.

* Given samples X1, -+, Xn ~ Muli(y) and U C [N], define w(U) : [N] — [0,1/N] to be
the set of weights which assigns 1/N to all points in U and 0 to all other points. Also define
its normalization @(U) £ w(U)/||wl|1. Let W, denote the set of weights w : [N] — [0,1/N]
which are convex combinations of such weights for |[U| > (1 — ¢)N. Given w, define p(w) =
ZN Wi X;, and define ;(U) £ p(w(U)), that is, the empirical mean of the samples indexed

i=1 Twll
by U.
* Given samples X1, -+ , Xy ~ Mul (), weights w, and v, ...,vny € A", define the matrices
N | N
Alw, {vi}) =Y wi(Xi —v)®* and B({w}) = — E X — )%,
ICHEDICEE (RS DR INC S
When vy = - -+ = vy = v, denote these matrices by A(w, ) and B(v) and note that
1
B(v) = z (diag(v) — v®?) . (1)

Also define M (w,{v;})) = A(w,{v;}) — B({v;}) and M (w,v) = A(w,v) — B(v). We will
also denote M (w, p(w)) by M (w) and M (w(U)) by My.

To get intuition for these definitions, note that any bitstring v € {0, 1}" corresponding to S C
[n] induces a normalized binomial distribution Y £ Bin(n, {(u,v)) € [0,1], and any sample

X; ~ Muly, (1) induces a corresponding sample (X;, v) from Y. Then (vo ", My;) is the difference
between the empirical variance of Y and the variance of the binomial distribution Bin(n, (u(U), v)).
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1.2 The Generative Model

Throughout the rest of the paper, let e,w > 0, n,k, N € N/, and let 11 be some probability distribution
over [n].

Definition 1.1. We say Y1, ..., Yy is an e-corrupted w-diverse set of N batches of size k from p if
they are generated via the following process:

« Foreveryi € [(1—€)N),Y; = (Y;',...,Y}) is a set of k iid draws from pu;, where ji; € A"
is some probability distribution over [n] for which dry(p, p;) < w.

* A computationally unbounded adversary inspects Yi, .., 57(176) ~ and adds eN arbitrarily

chosen tuples 57(1,6)]\;“, e Yy € [n]k and returns the entire collection of tuples in any
arbitrary order as Y1, ..., YN.

Let Si;, Sp C [N] denote the indices of the uncorrupted (good) and corrupted (bad) batches.

It turns out that we might as well treat each Y; as an unordered tuple. That is, for any Y;, define
X; € A" to be the vector of frequencies whose a-th entry is + Z?Zl 1[Y/ = a] forall a € [n]. Then

for each, i € S, X; is an independent draw from Muly (u; ). Henceforth, we will work solely in this
frequency vector perspective.

1.3 Elementary Facts

In this section we collect miscellaneous elementary facts that will be useful in subsequent sections.

Fact 1.2. For X1,---,X,, € R", weights w : [m] = R>o, v € R", u € R", and ¥ € R™*"
symmetric,

S wi (Xi = )®2,8) = 3w (X — p(w)®2,5) + flwlls - ((uw) = )2, 5) . (@)

In particular, by taking ¥ = vv " for anyv € R,

Do wil Xy = ) =Y wi (X = p(w),v)? + [fwlly - (alw) = pv)?.
That is, the function v — ZZ w;(X; — v,v)? is minimized over v € R"™ by v = p(w).
Proof. Without loss of generality we may assume ||w||; = 1. Using the fact that (u®? %) —
(v®2, %) = (u — v) 'S (u + v) for symmetric 3, we see that

(X = 12 = (Xi = p(w)®2,8) = (p(w) — 1) "S2X; = p = p(w)).
Because > w; X; = p(w), we see that

> wilp(w) — 1) TE@X; — p - p(w)) = (w(w) — @), T,

from which (2) follows. The remaining parts of the claim follow trivially. O

Fact 1.3. Forany 0 < € <1, let weights w : [N] — [0,1/N] satisfy 3_;cyywi = 1 — O(e). If v’
is the set of weights defined by w = w; fori € Sg and w, = 0 otherwise, and if |Sc| > (1 — €)N,
then we have that ||p(w) — p(w')|l1 < O(e).

Proof. We may write

Jaw) = el < ZwZX||1+(| - w,”)@ww

1
<00+ (o - ;) 2wl <060

where the first step follows by definition of x(-) and by triangle 1nequa11ty, the second step follows by
the fact that [ S| < €N, and the third step follows by the fact that |[|wl|; — [|w’|[1| = |32 w;| <,
while || > w; X;||1 < 1 as the samples X; lie in A™.

i€SE
i€Sq
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It will be useful to have a basic bound on the Frobenius norm of M (w, v).

Lemma 1.4. Forany v € A™ and any weights w for which > w; = 1, we have that | M (w, v)||r <
3.

Proof. For any sample X € A", we have that
(X=X =v)T|r <X —v|3<2
and
1 1 )
IBOIe < 2 lvlle + LIIVI3 < 2/k,

from which the lemma follows by triangle inequality and the assumption that > w; = 1. [

1.4 Ag Norms and VC Complexity

In this section we review basics about learning distributions which are close to piecewise polynomial.

Definition 1.5 (A x norms, see e.g. [DLOI]). For positive integers K < n, define Ak to be the set
of all unions of at most K disjoint intervals over [n|, where an interval is any subset of [n] of the
form{a,a+1,--- b —1,b}. The Ak distance between two distributions v over [n] is

o —vla, = Joax | (S) — u(S)]-

Equivalently, say that v € {£1}" has 2K sign changes if there are exactly 2K indices i € [n — 1]
Sfor which vi 11 # v;. Then if Vi, denotes the set of all such v, we have

vl = *1 (1 — )
14 = max V,v).
Ax 2 vEVH, ’

Note that

I llay < - flas < - <l e = - Hlzve
Definition 1.6. We say that a distribution u over [n] is (1, s)-piecewise degree-d if there is a
partition of [n] into t disjoint intervals {[a;, b;) }1<i<t, together with univariate degree-d polynomials
1, , 7 and a distribution ' on [n), such that dpy(p, u') < n and such that for all i € [t],
w(x) =ri(x) forall z € [n]in [a;, b;].

A proof of the following lemma, a consequence of [ADLS17], can be found in [[CLM19].

Lemma 1.7 (Lemma 5.1 in [CLMI9), follows by [ADLST7I). Let K = s(d + 1). If u is (1, 5)-
piecewise degree-d and || — fi|| o, < C, then there is an algorithm which, given the vector fi, outputs
a distribution p* for which dry(u, p*) < 2¢ + 41 in time poly (s, d, 1/n).

Henceforth, we will focus solely on the problem of learning in .A; norm, where

2 2s(d+1). (3)

1.5 Haar Wavelets

We briefly recall the definition of Haar wavelets, further details and examples of which can be found
in [CLM19].

Definition 1.8. Let m be a positive integer and let n = 2™ . The Haar wavelet basis is an orthonormal
basis over R™ consisting of the father wavelet 1y, 0 = n~'/2 - 1, the mother wavelet 1,0 =
n~2. (1, ,1,=1,---,—1) (where (1, - ,1,=1,---,—1) contains n/2 I’s and n/2 -1’s), and
forevery i, j forwhich1l <i <mand0 < j <2, the wavelet 1; j whose 2™ ™" - 5 +1,..- 2Mm7".
§+27""" = th coordinates are 2~ =)/2 and whose 2™ j4+ (27T 4 1), 2T 4 2M g
coordinates are —2~("=9/2 and whose remaining coordinates are 0.

Additionally, we will use the following notation when referring to Haar wavelets:

e Let H,, denote the n x n matrix whose rows consist of the vectors of the Haar wavelet basis
for R™. When the context is clear, we will omit the subscript and refer to this matrix as H.
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* For v € [n], if the v-th element of the Haar wavelet basis for R™ is some 1; ;, then define
the weight h(*) £ 2=(m=1)/2,

* For any index i € {Ofather, Omothers 1, < -+ ,m — 1}, let T; C [n] denote the set of indices v for
which the v-th Haar wavelet is of the form 1); ; for some j.

* Given any p > 1, define the Haar-weighted LP norm || - ||p;n on R™ by [|[w|lpn = [|w' ||y
where for every a € [n], w!, £ h(®w,. Likewise, given any norm || - || on R™*™, define the
Haar-weighted *-norm || - || .., on R™*™ by | M||,., = ||M’||.., where for every a,b € [n],

M, 2 h(@nh®M, ;.

The key observation is that any v € {£1}" with at most ¢ sign changes, where £ is given by (3),
has an (¢logn + 1)-sparse representation in the Haar wavelet basis. We will use the following
fundamental fact about Haar wavelets, part of which appears as Lemma 6.3 in [CLM19].

Lemma 1.9. Let v € {+1}"™ have at most ¢ sign changes. Then Hv has at most £logn + 1 nonzero
entries, and furthermore ||Hv||oo;n < 1. In particular, Hv||§;h, |Hv||1;n < Llogn + 1.

Proof. We first show that Hv has at most £logn + 1 nonzero entries. For any ; ; with nonzero
entries at indices [a, b] C [n] and such that ¢ # Ogmer, if v has no sign change in the interval [a, b],
then (¢; ;,v) = 0. For every index v € [n] at which v has a sign change, there are at most m = logn
choices of 7, j for which 1); ; has a nonzero entry at index v, from which the claim follows by a union
bound over all ¢ choices of v, together with the fact that (1,0, v) may be nonzero.

Now for each (i, j) for which (; j, v) # 0, note that

)

9= (m=0)/2 | (4 - v)| < 2-(m=D/2 (2—<m—vz>/2 . Qm—i) 1

as claimed. The bounds on || Hv|

L:h, [[Hv[3,), follow immediately. O

2 SDP for Finding the Direction of Largest Variance

Recall that in [JO19], the authors consider the binary optimization problem max, ¢ 9,1}~ |UTMU’U|.

We would like to approximate the optimization problem max, ey v Myv|. Motivated by [CLMI9]
and Lemma([I.9] we consider the following convex relaxation:

Definition 2.1. Let ¢ be given by (3). Let K denote the (convex) set of all matrices ¥ € R™*™ for
which

L [|Z]lmax < 1.

2. |HEH |l11.m < llogn + 1.
3. |HSHT|3, < Clogn + 1.
4. |HEH " |maxn < 1.

5 2 =0.

Let || - ||x denote the associated norm given by |M||x = sups.cx |[(M, X)|. By abuse of notation,

for vectors v € R™ we will also use ||v||x to denote ||vv™ H,lc/Q.

Because K has an efficient separation oracle, one can compute || - || in polynomial time.

Remark 2.2. Note that, besides not being a sum-of-squares program like the one considered in
[CLM1I9], this relaxation is also slightly different because of Constraints[3|and[] As we will see in
Section[B] these additional constraints will be crucial for getting refined sample complexity bounds.

Note that Lemma|T.9)immediately implies that K is a relaxation of V;:
Corollary 2.3 (Corollary of Lemma . vl € K foranyv € V.

Note also that Constraint [1] in Definition [2.1] ensures that || - || is weaker than || - [|; and more
generally that:
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2w§<—(1—

Fact 2.4. Forany a,b € R" and ¥ € K, a” - X - b < ||a||y - ||bll1. In particular, for any v € R™,
ol < vl

As a consequence, we conclude the following useful fact about stability of the B(-) matrix.

Corollary 2.5. Forany p, 1/ € A", |B(p) — B(i')|lx < 2l — 1|1

Proof. Take any & € K. By symmetry, it is enough to show that (B(p) — B(p'), X) < 2|l — /|1
By Constraint[1} we have that (1 — 4/, diag(2)) < || — #'||1. On the other hand, note that

pIS = S = (= ) T2 ) < =l el <20 = s

where the second step follows from Fact[2.4] The corollary now follows. O

Note that if the solution to the convex program argmaxy, (M, ¥) were actually integral, that is,
some rank-1 matrix vo ! for v € V7, it would correspond to the direction v in which the samples
in U have the largest discrepancy between the empirical variance and the variance predicted by the
empirical mean. Then v would correspond to a subset of the domain [s] on which one could filter
out bad points as in [JO19]]. In the sequel, we will show that this kind of analysis applies even if the
solution to argmaxs,c i (My, ) is not integral.

3 Filtering Algorithm and Analysis

In this section we prove our main theorem, stated formally below:

Theorem 3.1. Let j1 be an (1), s)-piecewise degree-d distribution over [n]. Then for any 0 < € < 1/2
smaller than some absolute constant, and any 0 < 0 < 1, there is a poly(n,k,1/e,1/8)-time
algorithm LEARNWITHFILTER which, given

N = O (log(1/8)(s%d?/¢*) log®(n))
e-corrupted, w-diverse batches of size k from p, outputs an estimate [i such that || — pll1 <

0] (77 4w+ e'l\(;g»kl/s) with probability at least 1 — & over the samples.

In Section[3.1] we first describe and prove guarantees for a basic but important subroutine, 1 DFILTER,
of our algorithm. In Section[3.2] we describe our learning algorithm, LEARNWITHFILTER, in full. In
Section [3.3] we define the deterministic conditions that the dataset must satisfy for LEARNWITHFIL-
TER to succeed, deferring the proof that these deterministic conditions hold with high probability
(Lemma[3.6) to Appendix[A] In Section[3.4] we prove a key geometric lemma (Lemma[3.7). Finally,
in Section [3.5] we complete the proof of correctness of LEARNWITHFILTER.

3.1 Univariate Filter

In this section, we define and analyze a simple deterministic subroutine 1 DFILTER which takes as
input a set of weights w and a set of scores on the batches X, - -- , X, and outputs a new set of
weights w’ such that, if the weighted average of the scores among the bad batches exceeds that of the
scores among the good batches, then w’ places even less weight relatively on the bad batches than
does w. This subroutine is given in Algorithm[I|below.

Algorithm 1: 1 DFILTER(T, w)

Input: Scores 7 : [N] — R, weights w : [N] — R>g
Output: New weights w’ with even less mass on bad points than good points (see Lemma

1 Tmax < maXi:.w; >0 Ti

: )wq; forall i € [N]

T
Tmax

3 Output w’
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Lemma 3.2. Let 7 : [N] — R be a set of scores, and let w : [N] — R>( be a weight. Given a
partition [N] = S¢ U Sp for which
Z w;iT; < Z WiT;,

i€Sa €SB

then the output w' of 1DFILTER (7, w) satisfies (a) w} < w; for all i € [N], (b) the support of w' is
a strict subset of the support of w, and (¢) Y wi — Wi <Y g, Wi — Wi

1€Sa 2

Proof. (a) and (b) are immediate. For (c¢), note that

Zwi—wgz ! ZTiwi< ! ani:Zwi—w;,

T, T,
i€Sq max ;ecSa max ;csg i€Sp

from which the lemma follows. O

We note that this kind of downweighting scheme and its analysis are not new, see e.g. Lemma 4.5
from [[CSV17] or Lemma 17 from [SCV18§]].

3.2 Algorithm Specification

We can now describe our algorithm LEARNWITHFILTER. At a high level, we maintain weights
w : [N] — Rxg for each of the batches. In every iteration, we compute ¥ € X maximizing
(M (w), S)]. If (M (w), )] < O (£ log 1/€), then output p(w). Otherwise, update the weights as
follows: for every batch X;, compute the score 7; given by

T2 <(XZ — p(w))®?, Z> , 4)

and set the weights to be the output of 1 DFILTER(7, w). The pseudocode for LEARNWITHFILTER is
given in Algorithm [2] below.

Algorithm 2: LEARNWITHFILTER({ X }ic[n], €)

Input: Frequency vectors X, - -- , Xy coming from an e-corrupted, w-diverse set of batches
from p, where p is (7, s)-piecewise, degree d

Output: /i such that || — pf; < O <n +w+ EVI\(;%UG> , provided uncorrupted samples
e-good
w < w([N])
while || M (w)||x > Q(w + 1 log1/¢) do
¥ < argmaxyy, ¢ [(M (w), X)|
Compute scores 7 : [IN] — R>¢ according to ().
w <—1DFILTER(T, w)

Using the algorithm of [ADLS17]| (see Lemma|1.7)), output the s-piecewise, degree-d distribution
w minimizing ||u(w) — 1| s(a+1) (up to additive error 7).

3.3 Deterministic Condition

Definition 3.3 (e-goodness). Take a set of points U C [N], and let {u;}icu be a collection of
distributions over [n). For any W C U, define iy = Wll S iew Hi- Denote i 2 7.

We say U is e-good if it satisfies that for all W C U for which |W| = e|U

>

(I) (Concentration of mean)

ln(U) = Fille < O (Mljg%il/j and ||n(W) = i |lc < O (\/bjgil/j



201 (Il) (Concentration of covariance)

elogl/e 10g1/6>

M) fesdicwlie < 0SB and AV, Gnsdiew i < 0 (%

202

203 (Ill) (Concentration of variance proxy)

IB(a(U)) = B{pi}iev)lx < OW? [k + ¢/k)

204

205 (IV) (Heterogeneity has negligible effect, see Lemma[3.4))

sup {1Z(Mi—M)T'E'(Xi—Mz‘)} <0 <w~€10g1/6>-

ek |U|i€U VEk
206
1 T log1/e
su — i — -2 (X — g <Olw-—1.
sup { i i;y(u S (X p )} ( 7

207

208 We first remark that we only need extremely mild concentration in Condition[(TIT)] but it turns out
200 this suffices in the one place where we use it (see Lemma[3.9).

210 Additionally, note that we can completely ignore Condition[(IV)]when w = 0. The following makes
211 clear why it is useful when w > 0.

212 Lemma 3.4. For e-good U, all W C U of size e|U

2
IMMUMO—MMW&MMK§0<w+“&%Uj

,and all Y € K,

5

213

[

[A(R(W), i) = A(p(W), {mHllx < O (“ + ngl/e> '

214

5 Proof. ForS=Uor S =W andany X € I,
(3, A(i(S), 1) — A(A(S), {ni}))
= 57 (K =) = (X = 1))

2

e

ics
1
= EZ(Ui_ﬁ)T'Z'(ZXi_Mi_E)
ics
2 1
= EZ(M—E)T'E'(Xi—ﬂi)Jr@Z«Mi—ﬁ)@Q»m- ()
ies ics

216 The first (resp. second) part of the lemma follows by taking S = U (resp. .S = W) and invoking
217 the first (resp. second) part of Condition [IV)]of e-goodness to upper bound the first term in (3, and
218 Fact[2.4]and the fact that ||p; — fi]| < w for all i to upper bound the second term in (3). O

219 Corollary 3.5. If U is e-good and Ji = ﬁ > icu i then
2
log1
lmwwmm—qumm§o<w+“fg/j.

220

221 Proof. This follows immediately from Lemma [3.4]and the first part of Condition [(ID)]of e-goodness.
222 O
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In Appendix [A] we will show that for N sufficiently large, the set S¢; of uncorrupted batches will
satisfy the above deterministic condition.

Lemma 3.6 (Regularity of good samples). IfU is a set of Q (log(1/8)(¢2/€?) - log®(n)) independent
samples from Muly,(j11), ..., Muly,(j7|), then U is e-good with probability at least 1 — 6.

3.4 Key Geometric Lemma

The key property of e-good sets is the following geometric lemma bounding the accuracy of an
estimate p(w) given by weights w in terms of || M (w)||x.

Lemma 3.7 (Spectral signatures). If Sg is e-good and |Si| > (1 — €)N, then for any w € W,,

€ €
lpe(w) =l < O < logl/e+e€-w+ \/e (||M(w)||1c +w? 4+ —log 1/6)) .
VEk k
It turns out the proof ingredients for Lemma[3.7] will also be useful in our analysis of LEARNWITH-

FILTER later, so we will now prove this lemma in full.

Proof. Take any X € K. Recalling that ¥ is psd by ConstralntE]m Definition [2.1] we will sometimes
write it as 3 = [, [vv ' |, where the distribution over v is defined accordlng to the eigendecomposition

of ¥. We wish to bound E,, [(u(w) — p1,v)?]. By splitting w; = 1/N — §; for i € S¢;, we have that

<M j{:7uz i T M,
<|‘5]€|( (Sa) — > PR + Y wilX; - ),

i€Sa i€ESB
= <|S]$|(M(5G) _u),v> — Y S(X =)+ Y wil Xy — p(w), v) + (plw) — B v) Y ws
= Pyl icSs

We may rewrite this as

(1 -y wi) (0)-11.0) = { 5 () o)~ 3 dlximont 3wl o),

i€Sp i€Sq i€Sp
Note further that
Z 0i(Xi —,v) = Z 05 (Xs — ps, v) + Z di{p
i€Sa i€Sq i€Sa

S0 in particular,

i(l—Zw) E[(n(w) -0 ] <O+ O +O+® (©6)
i€Sp
where )
2
®= ‘i%' Ig[(u(sc)—ﬁ,vﬂ (Z 0i(Xi — pi v )
i€Sa

@élg (Z 6i(ui—u,v>> @élg <Z wi<Xi_,u(w)’U>>

i€Sa i€SB
For (1), note that

®§ 6210gl/€>

) — sl < 0 (12



243 by the first part of Condition [(D)] of e-goodness of S¢ and the fact that [S¢|/N > 1 — €.
244 For (2), by Cauchy-Schwarz we have that

o[z )

< Z i ( [va]>
i€Sa
= (A0, {n}), %)

<O ( log 1/6) (7

245 where the last step follows by Lemma [3.8] below.

> 4005

i€Sa

246 For (3), again by Cauchy-Schwarz,

®< <Z 5i> 'E [Z 5i<uiu,v>2]

i€Sa i€Sa
e > Gillmi — plk
i€Sg
< 2. 2
<€ -max [l — plly
< 62 . (.d2

247 where the penultimate step follows by Fact[2.4]

248 Finally, we will relate (4) to || M (w)||x. Let w’ be the set of weights given by w;, = w; fori € Sg
249 and w; = 0 for ¢ € S¢. By another application of Cauchy-Schwarz,

@ < (Z ’LU1> IE: [Z wi<Xi —/,L(U}),U>2‘|

i€Sp 1€SE

‘ (E S wilX, >] B[S wiX Mw)wf])
) — A ) ®
< e (A(w, p(w)) — AW, u(w)), %) ©)
< e{Alwn() = oy Buw).2) +0 e+ 5 “log1/c) (10)
= (). 5) 4 e Bu(w) ~ oy Bulw),£) +0 (e + flogl/e)
1

< €el[M(w)lx + €l B(u(w)) —

ngB(M(w/))HK +0 <e Wt s p log 1/e ) (11)

250 where (8] follows by the definition of A(w, v), (@) follows by Fact - (]EP follows by Lemma3.9]
251 below. Lastly, by triangle inequality, we may upper bound || B (u )k by

1B (u(w)) = B(p(w")) [ +O(€) - || B(u(w')llx < §IIM(w)—u(w')lh +0(e/k) < O(e/k), (12)

252 where the first inequality follows by Corollary[2.5] and the bound on ||x(w) — p(w')||1 in the last
253 step follows from Fact[T.3] The lemma then follows from (6), (7), (IT), and (12) O

254 Next, we show in Lemma [3.8| that small subsets of the good samples cannot contribute too much to
255 the total energy. Lemma [3.9] which bounds the norm of M (w) for any set of weights w which is
256 close to the uniform set of weights over S, will follow as a consequence.
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Lemma 3.8. Forany 0 < € < 1/2, if U is e-good, and 6 : U — [0,1/|U|] is a set of weights
satisfying » ;i; 0; < €, then we have the following bounds:

1. LG, ()l < O(% log /¢
2 1 2 ier 6i( X — i)l < O(ﬁ\/logil/e)

3 A Bk <O (e w? + %)

4. Xiev 6i(Xi —m)llx < O(Fz\/logl/e+e-w).

Proof. For the first part, we may assume without loss of generality that ), _;; d; = €. But then we
may write § as € Ey [@(W)] for some distribution over subsets W C U of size €|U|. By Jensen’s
inequality and the second part of Condition [(ID)] of e-goodness of U, we conclude that

A {us}) < e~ E[IA@W), ()] < O (3 log1/e)

giving the first part of the lemma.
For the second part, for any ¥ € K of the form ¥ = E[vv '],

(= (g se-m) )=z (o)
(Z0) (oo )

< AG. () < O ( log 1/¢ )

where the second step follows by Cauchy-Schwarz, the fourth step follows by the first part of the
lemma. As this holds for all ¥ € IC, we get the second part of the lemma.

This also implies the fourth part of the lemma because

1D 86X = mlle < 1D 68X — pallic + 11D 6ils — Bl

€U eU €U
go( Tog1/ )+ 5:lls — Tl

SO(\;E logl/e—|—e-w),

where the second step follows by the above together with Fact[2.4]and triangle inequality.

Finally, for the third part of the lemma, upon regarding the weights ¢ as € Ry [@(W)] as before and
applying Jensen’s to the second part of Lemma[3.4] we get that

2
4G, 7) — A, {piP)le < €O <w ¥ Vljﬁ) <0 (e SELY,

The third part of the lemma then follows by the first part, together with triangle inequality. O

Lemma 3.9. If S¢ is e-good, and w : Sg — [0, 1] satisfies |[w — w(Sg)|1 < eand } ;g wi =1,

then | M (w)||x < O(w? 4+ £log1/e).

Proof. Define 6; = 1/|Sg| — w; for all i € S and take any ¥ € K.

By Fact[I.2]and the assumption that [|wl|; = 1,

(A(w, p(w)), ) = (A(w, 7), B) — ||lu(w) - All- (13)
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For the second term on the right-hand side of (T3), note that we can write

pw) — = Z w;(X; — 1)

i€Sa
= Z (1/]Sq| — 0:)(X; — 1)
i€Sa
= (u(Sa) =) — Y _ 6:(X; — i)
i€Sa
= (1(Se) = 1) = > 6:(Xs — i) = Y Silmi — ),
i€Sa i€5.

where the first step follows by the fact that ), sg Wi = 1. So by triangle inequality,

ln(w) = Blx < llp(Sa) = Hlle + 11 Y 6:(X: = m)x <O (\} logl/e+e- W) (14)
i€Sa k

where the second step follows by the first part of Condition [(T)]in the definition of e-goodness for S¢,
together with the second part of Lemma3.8]

Next, we bound the first term on the right-hand side of (I3). We have
[{(A(w, 1), 2)| < [(A(d(Se), 1), Z)| + [(A(6, ), 2)|
< [(A(@(S6), ). 5) + O (L log /e + ¢ w?)

elogl/e)

< B, 2]+ 0 (w2 + %

k

where the second step follows by the third part of Lemma [3.8] the third step follows by Corollary [3.5]
and the fourth step follows by Condition of e-goodness.

Additionally, by Corollary 2.3} we can bound
3 3
[{B(p(w)), %) = (B(i(S6)), B)| < L llu(w) = alSe)llh < o lw —@(Se)ls < O(e/k). (16)

<B(i(Sg)),T)| + O <w2 + Elogl/e) , (15)

By (T5) and (T6) we conclude that (A(w, i), X) < (B(p(w)), X) + O(£ log 1/€), so this together
with (13) and (I4) yields the desired bound. O

3.5 Analyzing the Filter With Spectral Signatures

We now use Lemma[3.7]to show that under the deterministic condition that the uncorrupted points
are e-good, LEARNWITHFILTER satisfies the guarantees of Theorem 3.1}

The main step is to show that as long as we remain in the main loop of LEARNWITHFILTER, and we
have so far thrown out more bad weight than good weight, we are guaranteed to throw out more bad
weight than good weight in the next iteration of the main loop:

Lemma 3.10. Ler w and w' be the weights at the start and end of a single iteration of the main loop

of LEARNWITHFILTER. There is an absolute constant C' > 0 such that if || M (w)||x > C - £log1/e

1 ) 1 _ . ) !
and EiESG ¥ Wi < ZieSB ~ — Wi, then ZiESG w; —w; < ZiESB Wi — W

Proof. Suppose the scores 71, - - - , T in this iteration are sorted in decreasing order, and let 7" denote
the smallest index for which 27 () Wi > 2¢. As FILTER does not modify w; for ¢ > T', we just need

to show that ) _, Sen[r) Wi — w; <Y ics, A[T] Wi — w}, and by Lemmait is enough to show that

Z Wit < Z W;Ti. (17

1€SaN[T] 1€SpN[T]

First note that because each weight is at most €, we may assume that  _, e Wi < 3e. We begin by
upper bounding the left-hand side of (7).

11



0o Lemma3.dLl Y, o pwimi <O (£logl/e+e-w? + €| M(w)| ).

304 Proof. Let w” be the weights given by w} for i € Sg N [T] and wy = 0 otherwise. Then
305 > g, npr] WiTi is equal to

Yo wim= ) w ((Xi - p(w)®*, %)

1€[N] 1E[N]

= > w {(X; — p(w”)®2, ) + [w” ||y - {(w(w”) — p(w)®2,T)  (18)

i€E[N]

> wi {(Xi = u(w")®2,2) + 0(e) - [ln(w") — p(w)|% (19)

i€[N]

S Wl (X = 1)®2,3) + 0(e) - [|u(w”) — p(w)| (20)

1€[N]
€
<O (e w? + Tlogl/e) +0(0) - (") — p(w)

306 where (I8) and (20) both follow from Fact [I.2] (I9) follows from the earlier assumption that
307 D e Wi < 3¢ and the definition of || - [|xc, and the last step follows by the third part of Lemma

IN

IN

308 Now note that
[a(w”) = p(w)|x < lu(w”) =Tl + uw) -zl

<0 (Vljg/ +w> + ) -l

<0<V$%k+w+¢%mﬂ

€
w)|lc +w? + klogl/e)) ,

0o where the second step follows by the fourth part of Lemma[3.8|and the third step holds by Lemma@
310 The desired bound follows.

311 One consequence of this is that outside of the tails, the scores among good samples are small.

s12 Corollary 3.12. Foralli>T, 7; < O(log1/e+ €| M(w)|x + w?).

313 Proof. Note that
S w-Nu- ¥ wrze- Yuse
i€SaN[T] i€[T] 1€SpN|[T] 1€SE
314 so the claim follows from Lemma[3.11) and averaging. O

315 Next, we show that the deviation of the total scores of the good points from their expectation is
ste  negligible.

317 Lemma3.13. > . o wim — (B(p(w)), %) <O (flogl/e+e€-w? +e-[|[M(w)|x).

sts  Proof. Let w' be the weights given by w} = w; for i € S¢ and w; = 0 otherwise. Then by Fact|1.2}

S wiri = 3 wil(X — (@)%, 5) + ull - () — (@), 5)
i€Sa i€Sa

< = (B, %) + 0 (Flog1/e) ) + llutw) — pw)E

B Zie Sa wy

12
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where in the second step we used Factﬂlzg and in the third step we used Lemma[3.9)and the definition
of || - ||x. To bound the ||u(w )|l term, note that

pe(w) = p(w’)llxc < Hu(w) — Al + [lp(w’) = 7l

s;mw—mm+o<““%L“+ew>

i
go(”f§*+ew+¢4Mﬂwm+w+;mukﬁ,

where the second step follows by the fourth part of Lemma [3:8] and the third step follows by
Lemma [3.7] Finally, by Corollary 2.5 we have that

3
(B(u(w"), %) < (B(u(w)), E) + L llp(w) = pw)ll < (Bu(w)), E) + O(e/k),
where the last step follows by Fact[I.3] This completes the proof of the claim. O

We are now ready to complete the proof of Lemma[3.10] In light of Lemma[3.11} we wish to lower
bound the right-hand side of (T7).

Claim 3.14. If C > 0 in the lower bound | M (w)||x > C(f log1/e + w?) is sufficiently large, then
(M (w), 3*) must be positive.

Proof. Let w' denote the weights given by w; = w; for i € S¢ and w] = 0 otherwise. We have

M(w) =Y wi(X; — p(w))®* = B(u(w))

1€[N]

= 3 WXy - p(w)® - Blu(w))

i€Sa

= > wi(X — p(w)®? - B(p(w))

i€Sa

= M(w') + B(u(w')) — B(u(w)) 21

where the third step follows by Fact[T.2] Furthermore,

1B(u(w')) = B(pu(w))llx < = (') = p(w)lly < O(e/k) (22)

by Corollary [2.5and Fact[I.3] Lastly, we must bound || M (w’)| k. Letting &’ denote the normalized
version of w’, we have that

[M (W)l < [IM@@")|[c + [[M (w') = M(@")||x
< [[M (@) + A — w7l
<o( log1/6+w> (23)

where the penultimate step follows by Fact 2|and the definition of the matrix M (-), and the last step
follows by Lemma [3.9]and the third part of Lemma@

We conclude by 21)), (22), and (23) that

rznel%<M() ) > O( logl/e—i-w) (24)

so we simply need to take C larger than the constant implicit in the right-hand side of (24) to ensure
that (M (w), X*) > 0. O
By Claim[3.14]and the definition of the scores,

Z w;Ti — (B(p(w)), ¥*)

i€[N]

I
=
Y
=
=

13
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This, together with Lemma 3.13} yields ;5 w;i > C'[[M(w)||x for some C" < C which we
can take to be arbitrarily large. We want to show that this same sum, over only Sg N [T], enjoys
essentially the same bound. Indeed,

Yoo wnm =MW — Y wi

1€SpN[T] 1€Sp\[T]
, 1
> C'||M(w)||x — (Z w> 0 (k log1/e +w? + e||M(w);<>
i€Sp
> C - [M(w)|k,

for some arbitrarily large absolute constant C', where the second step follows by Corollary [3.12} and
the last by the assumption that || M (w)||x > C - (£ log 1/€ + w?). On the other hand, by this same
assumption and by Lemma[3.11]

> win <0 (Flogl/e+e-w? +EMW)lc) < C- M (w)|x,
iESGﬁ[T]

where C can be taken to be smaller than C. This proves and thus Lemma O
We can now combine Lemma [3.7)and Lemma[3.10]to get a proof of Theorem [3.1]

Proof of Theorem[3.1} Let [i be the output of LEARNWITHFILTER. By Lemmal(I.7] it suffices to
show that i satisfies || — pll 4, ., < O(w+ 7 V108 1/e€), or equivalently that for all v € Vp,

where £ £ 2s(d 4 1), we have that (1 — )®2 voT)1/2 < O(w + ~=V/log1/e). By Corollary
it is enough to show that ||i — p|lx < O(w + 77V log 1/€). By Lemmatogether with the

termination condition of the main loop of LEARNWITHFILTER, we just need to show that the
algorithm terminates (in polynomial time) and that w € Wo o).

But by induction and Lemma[3.10] every iteration of the loop removes more mass from the bad points
than from the good points. Furthermore, by Lemma([3.2} the support of w goes down by at least one
every time 1 DFILTER is run, so the loops terminates after at most IV iterations, each of which can be
implemented in polynomial time. At the end, at most an € fraction of the total mass on S has been
removed, so the final weights w satisfy w € W, as desired. O

4 Numerical Experiments

In this section we report on empirical evaluations of our algorithm on synthetic data. We compared
our algorithm LEARNWITHFILTER, the naive estimator which simply takes the empirical mean of all
samples, the “oracle” algorithm which computes the empirical mean of the uncorrupted samples, and
the threshold of €/+/k which our theorems show that LEARNWITHFILTER achieves, up to constant
factors (in Figures and these are labeled “filter”, “naive”, “oracle”, and €/ NG respectively). Note
that by definition, the oracle dominates the algorithms considered in [CLM19] and [JO19] for the
unstructured case, as those algorithms search for a subset of the data and output the empirical mean
of that subset. But as Theorem [3.1] predicts, LEARNWITHFILTER should actually outperform the
oracle in settings where the underlying distribution p is structured and there are too few samples for
the empirical mean of the uncorrupted points to concentrate sufficiently. In these experiments, we
confirm this empirically.

4.1 Experimental Design

Our experiments fall under two types: (A) those on learning an arbitrary distribution in Ay,
norm and B) those on learning a structured distribution in total variation distance. The purpose
of experiments of type (A) will be to convey that LEARNWITHFILTER can be used to learn from
untrusted batches in A;/, norm even for distributions which are not necessarily structured. The
purpose of experiments of type (B) will be to demonstrate that LEARNWITHFILTER can outperform
the oracle for structured distributions.

14
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Figure 1: Arbitrary Distributions:

Throughout, w = 0 and ¢ = 10. While our algorithm can also be implemented for larger ¢ (as the
size of the SDP we solve does not depend on ), we choose ¢ = 5 because it is small enough that
the sample complexity savings of our algorithm are very pronounced, yet large enough that for the
domain sizes n we work with, enumerating over V;* would be prohibitively expensive, justifying the
need to use an SDP.

For experiments of type (A), we chose the true underlying distribution ;2 by sampling uniformly from
[0, 1]™ and normalizing, and for experiments of type B), we chose 1 by sampling a uniformly random
piecewise constant function with £ = 5 pieces.

Given p and a prescribed parameter 9, the distribution from which the corrupted batches were drawn
was taken to be Muly(v), where v was constructed to satisfy drv (i, v) = 0 by adding 2776 to the

smallest entries of ;1 and subtracting % from the largest. Sometimes this does not give a probability
distribution, in which case we resample p. When k, €, N are clear from context and we say that N
e-corrupted batches are drawn from the distribution specified by (u, /), we mean that | (1 — €)N |
samples are drawn from Muly (1) and N — | (1 — ¢)N | from Muly (v).

As noted in [JO19], choosing § too high makes it too easy to detect the corruptions in the data, while
choosing d too low means the naive estimator will already perform quite well. In light of this and
the fact that the above process for generating v only ensures that dyy (i, v) = d, whereas || — v|| 4,
might be much smaller, we chose ¢ for our experiments as follows. For experiments of type (A),
we took 6 = 0.5 to ensure that the typical A/, distance between the empirical mean and the truth
was still sufficiently large that the the naive estimator was not competitive. For experiments of type
B) where we measure error in terms of total variation distance, we could afford to choose § slightly
smaller, namely 6 = 0.3.

We first describe the experiments of type (A). We examined the effect of varying one of the following
four parameters at a time: domain size n, batch size k, corruption fraction ¢, and total number of
batches N. Each of the following four experiments was repeated for a total of ten trials.
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Figure 2: Structured Distributions:

i/fjj to ensure |//€?|

samples from Muly, (). We chose such large & to ensure the gap between empirical mean
and our algorithm was very noticable. In each trial and for each n € [4, 8, 16, 32, 64, 128],
we randomly generated (u, /) via the above procedure, drew N e-corrupted samples from
distribution specified by (i, v). Note that while N is independent of n, the performance of
our algorithm is comparable to that of the oracleﬂ

0/e?

(b) Varying batch size k: We fixed e = 04, n = 64, and N = l—eJ' In each trial,

we randomly generated (u,v) via the above procedure, and then for each value of
k € [1,50,100, 250,500,750, 1000] we drew N samples from the distribution specified
by (u,v). Note that while our algorithm’s error and the oracle’s error decay with k, the
empirical mean’s error remains fixed.

(c) Varying corruption fraction e: We fixed ¢* = 0.4, n = 64, k = 1000, and N = |£/€*?|. In

each trial, we randomly generated (1, V) via the above procedure and drew N samples from
Mul(k, ). Then for each e € [0.0,0.1,0.2,0.3, 0.4], we augmented this with an additional

| ¥ samples from Mul(k, /). Note that while our algorithm’s error remains close to €* /v/k,

the empirical mean’s error increases linearly in €.

(d) Varying number of batches N: We fixed ¢ = 0.4, n = 128, and £k = 500. In

each trial, we randomly generated (u,v) via the above procedure, and then for each
p €1[0.5,0.75,1,1.25,1.5], we drew N = [ p- £/€?| samples from the distribution specified
by (u, ). Note that even with such a small number of samples, our algorithm can compete
with the oracle. Also note that our error bottoms out at ¢/+/k while the oracle’s error goes
beneath this threshold.

For type (B), we ran the exact same set of four experiments but over structured u, with the key
difference that after generating an estimate with LEARNWITHFILTER, we post-processed it by

'The naive estimator’s error is decreasing in n for an unrelated reason: as n increases, the above procedure for
sampling (1, ) appears to skew towards y for which the resulting perturbation v is close in Ay 5.
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rounding to a piecewise constant function via a simple dynamic program. We then compare the error
of this piecewise constant estimator in fotal variation distance to that of the empirical mean of the
whole dataset, and the empirical mean of the uncorrupted points.

As is evident from Figure [2] our algorithm outperforms even the oracle, as predicted by Theorem 3.1}

4.2 TImplementation Details

The experiments were conducted on a MacBook Pro with 2.6 GHz Dual-Core Intel Core i5 processor
and 8 GB of RAM. The experiments of type (A) respectively took 110m36.499s, 73m19.477s,
50m54.655s, and 536m39.212s to run. The experiments of type (B) respectively took 64m28.346s,
52m7.859s, 39m36.754s, and 362m50.742s to run. The discrepancy in runtimes between (A) and (B)
can be explained by the fact that a number of unrelated processes were also running at the time of
the former. The experiment of varying the number of batches N was the most expensive because
we chose domain size n = 128 to accentuate the gap between our algorithm and the oracle. The
abovementioned runtimes imply that over a domain of size 128, LEARNWITHFILTER takes roughly
7-10 minutes.

For the implementation, we used the SCS solver in CVXPY for our semidefinite programs. In order
to achieve reasonable runtimes, we needed to set the feasibility tolerance to 1e — 2, and as a result
the SDP solver would occasionally output matrices 3 which are moderately far from /C; in particular,
one mode of failure that arose was that 3 might be non-PSD and give rise to negative scores in
LEARNWITHFILTER. We chose to address this mode of failure heuristically by terminating the
algorithm whenever this happened and simply outputting the estimate for y at that point in time. Of
the 480 total trials that were run across all experiments, this happened 53 times. Another heuristic
that we used was to terminate the algorithm as soon as || ||« stopped increasing during a run of
LEARNWITHFILTER; this was primarily to have a stopping criterion that avoids the need to tune
constant factors. As demonstrated by Figures [1| and [2} these heuristic decisions ultimately had
negligible effect on the performance of our algorithm.
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A Concentration

In this section we prove Lemma 3.6} restated here for convenience:

Lemma 3.6 (Regularity of good samples). IfU is a set of 2 (log(1/6)(¢2/€?) - log® (n)) independent
samples from Muly,(j11), ..., Muly,(j7|), then U is e-good with probability at least 1 — 4.
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471 A.1 Technical Ingredients

472 The key technical fact we use to get sample complexity that depend quadratically on / is:

473 Lemma A.1. Forevery0 < n < 1, there exists anet N' C R™*™ of size O(n02log? n/n)*loe n+1)*
474 of matrices such that for every ¥ € K, there exists some ¥ = Y Y% for X% € N such that the
415 following holds: 1) | —X||p <n,2) Y, a, <1,and 3) |X}||max < O(1).

476 Note that this is a strengthening of a special case of Lemma 6.9 from [[CLM19]]. We defer the proof
477 of Lemma(A.T|to Appendix[B]

478 For e-goodness to hold, it will be crucial to establish the following sub-exponential tail bounds for the
479 empirical covariance of a set of samples X1, -, Xy ~ Mulg(u), as well as for || — u||%, where i
480 is the empirical mean of those samples.

a8t Lemma A.2. Let £ > 0 and let N C R™™"™ be any finite set for which ||X||lmax < O(1) for all

a2 X €N Let piy, ..., un, i € A" satisfy i = + Ef\il wi. Then for X; ~ Muly(u;) fori € [N],

1 2 2 Nkt
Pr — X — 1 — E X — u; DY >tV e N| <2|N]e (—Q( )),
N ;( p)® = B X )] | exp T
483 where the probability is over the samples X1, --- , Xn.

s84 Lemma A3. Let £ > 0 and let N C R™ ™ be any finite set for which ||X||max < O(1) for all
485 ¥ € N. For X; ~ Muly(p;) fori € [N], p = 4 Zf\il X, and i & % Zf\;l i,

Pe[[{(i - )%, %) ~ B [((a -0 )] > 1v B e ] < 2fenp (-0 (S51))

486 Wwhere the probability is over the samples X1, --- , Xn.

487 Lemma Ad. Let £ > 0 and let N C R™ ™ be any finite set for which ||X||max < O(1) for all
88 X € N. Let pi, ..., un, 1t € A" satisfy || — f|l1 < w foralli € [N]. For X; ~ Muly(u;) for
a9 i€ [N],

1
Pr{ |~ > (i —7) 2 — )| > w-t VD € N| < 2N exp (-0 (kNF)) ,
i=1
490 where the probability is over the samples X1, --- , Xn.

a9t Note that if AV consisted solely of matrices of the form vv " for v € {41}", these lemmas would
492 follow straightforwardly from standard binomial tail bounds. Instead, we only have entrywise bounds
a9 for the matrices in A and will therefore need to compute moment estimates from scratch in order to
404 prove Lemmas[A.2]and [A.3] We defer the details of this to Appendix [C|

495 Lastly, we will need the following elementary consequence of Stirling’s formula:
496 Fact A.5. Forany m > 1, log (6’;’”) <2m-elogl/e.
457 A2 Proof of Lemma[3.6]

498 We are now ready to prove that the four conditions for e-goodness hold for a set U of independent
499 draws from Muly,(p21), ..., Mulg (p)17|) respectively, of size

U] = (log(1/6)(£2/€2) - log*(n)) . (25)

500 Proof of Lemma[3.6] As || - ||k is defined as a supremum over X, we will reduce controlling the
so1  infinitely many directions in K to controlling a finite net of such directions by invoking Lemma [A.T]
so2  Specifically, recall that for any ¥ € K, by Lemma there is some ¥ = >, 0, X7 such that
53 X5 € Nand |2 —X||p <.
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(Condition By Lemma with probability at least 1 — 2|N| exp (—Q( Jf’j’i é: )) , we have that
forall X € IC,
() =12, 5) < {(uU) - D28 + [u(V) ~ 7l - |2 D

u@”—ﬁﬂ®ai>+2n

N

1 & .
< N ;E (X — ,ui)®2,2y>} + ;OLV ~t+2n
< O(1/MU)) +t + 20, 26)

where the first step follows by Cauchy-Schwarz and triangle inequality, the second step follows by
the trivial bound ||(U) — p4]|3 < 2 and the bound on || — 3| guaranteed by Lemma the
fourth step holds with the claimed probability by Lemma[A.3|and the fact that ||<% || max < O(1)
for all v by the guarantees of Lemma and the last step follows by the bound on »_ a, by the
guarantees of Lemmal[AT] as well as the moment bound in Lemma|[C.2]applied to r = 1.

If |U| satisfies (23) and n, ¢ = O(% log 1/e), the first part of Conditionholds.

For the second part, by the steps leading to (26), a union bound over the (!\lljfll) subsets W and
Fact[A3] with probability at least

2|U 2k212
1-2 2|U| - elog1/e) - —Ql ————
exp(2iU] - clog 1/ - W] o (2 (T ))

B e|lUI2k2¢2
we have that ||u(W) — iy |2 < O <ﬁ) +t+ 2 for all . Note that 2log 1/e < O <1|+!‘U|]:t

provided t = Q (%), so if |U]| satisfies (23) and n = O(%), the second part of Condition
holds.

(Condition |(IT)) For the first part, let M 2 M (@ (U), { i }icv). By Lemma with probability at
least 1 — 2|N|exp (—Q ('U‘k2t2>), we have that for all ¥ € K,

1+kt

(M, %) < (M, %) + M|z | - Zr
< (M, %) + 3
<> o (M,S3) + 3n

SZay't+317
174

<t+3p 27)

by Lemma and the bound on ||X — X||p guaranteed by LemmalA. 1| the fourth step holds with
the claimed probability by Lemma|A.2|and the fact that ||Z% ||max < O(1) for all v by the guarantees
i

where the first step follows by Cauchy-Schwarz and triangle inequaliti, and the second step follows
.1] and the last step follows by the bound on ) «,, by the guarantees of Lemma

of Lemma
If |U| satisfies 23), n = O (£ log1/e), t = O (£ log1/€), the first part of Condition [(ID{holds.

For the second part, first note that it is slightly different from the first part because we do not subtract
out B(Ji), the reason being that || B(fZ)||x < O(1/k) = o(%), so this term is negligible. By the

steps leading to (27), a union bound over the (elll{]“) subsets W, and Fact with probability at least

€|U|k>t?
1—-2 2 log 1 . - ——
Wlexp(aeltiog1/e)exp (-0 (TE ) )

19



527

528

530

531

532
533

534

535

536
537
538

539

540

541

542
543
544

545

we have that | M (@w(W), {p: }iew )|l < t+3n for all W. Note that 2log 1/e < O (1+kt) provided
t=0Q (log L/ 6) so if |U] satisfies (23) and n = O <%), the second part of Condmonholds.
(Condition |(III))) First note that

B({ui}) — B(p) = |U|Z (diag(p; — 1) — (u¥? —1®?%)) = \U|Z U2 — 7®?)

ieU €U

Also note that

< w7 2

€U

- 7%?) Z - )%, %) < max |u; — 7l < w?,
|U| €U !

where in the last step we used Fact So |B({ui}) — B(m)||x < w?/k.

It remains to bound || B(1(U)) — B(fi)||x- As we only need to show extremely mild concentration

here, we will not make an effort to obtain tight bounds. Note that by (]D,

(5, BGIU)) ~ BB < 1 |diag(A(U) ~ 1), )] + 1

(WP =) @8)

(diag(A(U) — ), 5) < 3 e, (diag(a(U) — ), 55) + IS — Sl - | 4(0) — 7l

<3 o, (4(U) - 7, diag(S)) + O(n). 29)

Note that for any v, (i(U) — @, diag(X})) = ﬁ Siew Z¢ for ZY¥ & (X; — p;,diag(3;). These
are independent, mean-zero, O(1)-bounded random variables, so by Hoeffding’s, for any fixed v we
have that |(2(U) — 1, diag(X}))| < t with probability at least 1 — 2 exp(—$(|U|t?)). If we union
bound over NV, then by taking 7, t = O(e), and |U]| satisfying 23), (29) will be at most O(e).

We also have that

(@(0)** = 1%, %)| = [{(aU) - m)**, %) - 25" 2(a(U) - 7]

2
<0 <”°kg1/€> +2la S EU) - 7). (30)

where the second step follows by the first part of this lemma. For the other term, we have
EE(U) — ) <Y auin S(AU) = 5) + 1Z = e - Bl - 12(0) - 7l
<N a,n T (aU) — 1) + O(n). 31)
Forany v, i' X% ((U) — 1) = ﬁ >iey WY for WY £ 1'% (X; — ;). These are independent,
mean-zero, O(1)-bounded random variables, so by Hoeffding’s, for any fixed v, we have that

"2 (a(U) — )| < t with probability at least 1 — 2 exp(—Q(|U|t?)). If we union bound over N,
then by taking 7, ¢ = O(e) and |U]| satisfying (23] again, (31)) and thus (30) will be at most O(e).

By (28), we thus conclude that || B(1(U)) — B(i)||x < O(¢/k) as claimed.
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s4s (Condition (IV) By LemmalA 4 with probability at least 1 — 2|\| exp (= (k[U]t?)), we have
547  that for all ,

zEU
POy X, — w;
m%} |w§” e s = Tl - 1 = il
_Zau- Z o (Xi — ) +2w-n
|U|’L€U
SZal,-t—i-%J-n
fw-t+2w-n (32)

sas  where the first step follows by triangle inequalitﬁnd Cauchy-Schwarz, the second step follows by

sa9  the bound on ||X — || guaranteed by LemmalA.1|and the assumption that ||z; — 7|2 < w, and the
s50 third step holds with the claimed probability by Lemma[A.4]and the fact that ||} || max < O(1) for all
551 v by Lemma 1} and the last step follows by the bound on Y «,, by the guarantees of Lemma

ss2 If |U] satisfies 23) and 1), ¢ = O ( Vlogl/e) , the first part of Condition |(IV)| holds.

vk

s53  For the second part, by the steps leading to (32), a union bound over I, and Fact[A.3] with probability
554 at least

1 — 2|V exp(2¢|U|log 1/€) - exp (— (ek|U[t?)) ,
555 we have that ﬁ Siew (i — ) TE(X; — pi) S w -t + 2w - nforall W,

ss6 Note that 2log1/e < O(kt?) provided t = ( v lffElk), so if |U| satisfies 23) and n =

557 O ( Y 1?/%1/ 6) , the second part of Condition [(IV)(holds. O

sss. B Netting Over KC

sso  In this section we prove Lemma[A] restated here for convenience:

se0  Lemma A.l. Forevery0 < 1 < 1, there exists anet N' C R™*™ of size O(n3¢2 log® n/n)(¢ o8 n+1)?
s61  of matrices such that for every ¥ € K, there exists some ¥ = ) X% for ¥, € N such that the
se2  following holds: 1) | —X|lp <n,2) >, a, <1, and 3) |} ||max < O(1).

563 As alluded to in Remark 2.2 and Appendix [A] we will use the extra Constraints 3] and ] in the
s64 definition of /C to tighten the proof of Lemma 6.9 from [[CLM19]| to obtain Lemma above.

s65 The following well-known trick will be useful.

ses Lemma B.1 (“Shelling”). Ifv € R™ satisfies ||v||z < C and ||v||; = C-V/k, then there exist k-sparse
s67  vectors v[1], ..., v[m/k| with disjoint supports for which 1) v = zm/k [i], 2) Zm/k [lvfi]l]2 < 2C,
o and 3) S [olilloe < ol + e

seo  Proof. Assume without loss of generality that C' = 1. Letting By C [m] be the indices of the k largest
570  entries of v in absolute value, By those of the next & largest, etc., we can write [m] = By L---UB,, /.
srn Fori € [m/k], deﬁne v[i] € R™ to be the restriction of v to the coordinates indexed by B;. For any i
sz and j € B;, |v;| < 4||v[i — 1]||1. This immediately implies that

m/k m/k
lev llloo < lvlloo + lev Il

573 yielding 3) above. Likewise, it 1mphes that

1, ..
olill3 = > vy <k oz - lloli = 11T = Lllofi — 1113

jEB;
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So [[o[i]]l2 < [|o[i — 1]]l1/+/k and thus

[olill2 < llo[]ll2 + —=llv[x <2,
giving 2) above. O

By rescaling the entries of v in Lemma [B.I] we immediately get the following extension to Haar-
weighted norms:

Corollary B.2. Ifv € R™ satisfies ||v]j2.n < C and ||[v|1.n = C - Vk, then there exist k-sparse
Vectors vy, ..., U, /i, With disjoint supports for which 1) v = Z;ilk V4, 2) Z;i/lk lvill2:n < 2C, and
3) S olillloon < Elollun + lo]loosn

We remark that whereas in [CLM19], shelling was applied to the unweighted L;, Ly norms, and the
only Lo information used about v € V}* was that ||v||3 = n, in the sequel we will shell under the
Haar-weighted norms and use the refined bounds on the Haar-weighted norms given by Constraints 3]
and@from Definition This will be crucial to getting a net of size exponential in ¢ rather than
just poly(#).

We now complete the proof of Lemmal[A.T]

Proof of Lemma[Ad] Lets = {logn+1,andlet m = logn. Let A be an O (L3 )-net in Frobenius

n-s2

. . . 2 .
norm for all s2-sparse n X n matrices of unit Frobenius norm. Because S* ~! has an O (n”S2 )—net in
. 2 .
Ly norm of size O(n - s2/n)*", by a union bound we have that

2

V< () - Ot s2n)” = 0210 f)”

Take any . € K and consider L £ HX.H ". By Constraints lin Definition 2.1}
ILlm < 8% L, <s®, and  |Lfmaxe < 1. (33)

We can use the first two of these and apply Corollary to the n?-dimensional vector L to conclude
that L = 3 L7 for some matrices {L’}; of sparsity at most s> and for which 3~ |L7 || p;n < 257

and Zj ”Lj”maX;h < SL?HL” 1,1;h + ||Lj||maX;h'

By definition of the Haar-weighted Frobenius norm, |[L7 || < n - |[|[L7||F,,, so

> Ll < 0 )

j
For each L7, there is some (L')7 € A such that for L £ |L7|| - (L')7,

IV ~L)r < 0 () V]| (34)

We conclude that if we define L £ > L7, then |L — L|z <.

Now let N = H'N-Y(H ). As¥ = H'L(H™")" and H~! is an isometry, if we define
Y& HULI(H YT and ¥ £ > 37, then we likewise get that ||X — 3|| < 7, and clearly
Y7 e PN for every j, concluding the proof of part 1) of the lemma.

For each 37, define ‘
Q; £ HLJHmaX;h/Q (35)

and define ©J £ %7 /a; so that 3 = Do O 2. Note that by part 3) of Corollaryand (33),
1 ,
Zaj D) Z 1L [ max;h
J J

11
5872”1—"”1,1;}1 + ||LHmax;h < 1
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s02  where in the last step we used the fact that ||L||; 1.n < 52 and ||L[o, 7]||max:n < 1. This concludes
603 the proof of part 2) of the lemma.

s04  Finally, we need to bound || || max. Note first that for any matrix J supported only on a submatrix
605 consisting of entries of L from the rows ¢ (resp. columns j) for which ¢ € T, (resp. j € T%), we have

606 that (o472
HH_IJ(H_I)THmax = 2_(m_a)/2 : 2_("L_T)/2 : ”JHmax = 27“']”max
n

s07 because the Haar wavelets {1, ;}; (resp. {1, ;};) have disjoint supports and L, norm 2~ (m=7)/2
s08  (resp. 2~ (™~7)/2)_ For general J, by decomposing J into such submatrices, call them J [0, 7], we get
609 by triangle inequality that

1 T 2(o4m)/2
||H7 J(H7 ) Hmax S 7HJ[O’7 T]Hmax S ||J||max- (36)
n
s10 By applying this to J = 27, we get
197 e < (L7 ) T s+ 1 (17 = 17) ()T )

< L fmax + L7 = L [limax

< I flmax + L7 = L7

< J J

< I fmax + O (5 ) I

< HLmeax : (1 +0 (77/“))
S 2 : ||Lj||maxa

611 where the first inequality is triangle inequality, the second inequality follows by (36), the third
12 inequality follows from monotonicity of L,, norms, the fourth inequality follows from (34), and the
13 fifth inequality follows from the fact that L7 is s? sparse.

614 Recalling (33) and the definition of ©2"", we conclude that ||£777 || max < O(1) as claimed. [

sis C Sub-Exponential Tail Bounds From Section [A]

16 In this section, we provide proofs for Lemmas and[A 4] restated here for convenience.
617 Lemma A.2. Let £ > 0 and let N' C R™™" be any finite set for which ||3||max < O(1) for all
s1s X €N Let piy, ..., un, L € A" satisfy i = + vazl ;. Then for X; ~ Muly(u;) fori € [N],

1 & 92 92 NE22
Pr — Xi — i - E X —u; U >tVE e N| < 2|N]ex (—Q()),
¥ ;( w*- k- [(X — 11)®?] N exp ey
619 where the probability is over the samples X1, --- , Xn.

620 Lemma A.3. Ler & > 0 and let N' C R™™"™ be any finite set for which ||3||max < O(1) for all
621 X €N. For X; ~ Muly(p;) fori € [N, i 2 £ SN X; andn 2 LN | s,

Pe (G- )% %) — B [((a -0 )] > 1v B ] <2fenp (0 (S51))

622 where the probability is over the samples X1,--- , XnN.

62a Lemma A4. Let £ > 0 and let N C R™™"™ be any finite set for which ||X||lmax < O(1) for all
624 X € N. Let py,...,un, 0 € A" satisfy ||p; — pll1 < wforalli € [N]. For X; ~ Muly(1;) for
625 1€ [N],

N
1
Pr | D (ui =) S(Xs — )| > w-t¥ S € N| < 2Wexp (-0 (kNE2)),
i=1
626 Wwhere the probability is over the samples X1, - , Xn.
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We remark that if we restricted our attention to test matrices of the form ¥ = vv " forv € {1},
these lemmas would follow straightforwardly from Bernstein’s and the sub-Gaussianity of binomial
distributions.

We will need the following well-known combinatorial fact, a proof of which we include for complete-
ness in Section[CT]

Fact C.1. For any m,r € 7Z, there are at most O(m)" - ! tuples (i1, ..., i2,) € [m] for which every
element of [m] occurs an even (possibly zero) number of times.

Central to the proofs of Lemmas [A.2]and [A.3]is the following sub-exponential moment bound. We
remark that this moment bound would be an immediate consequence of McDiarmid’s if ¥ not only
satisfied || || max but was also psd, but because the matrices arising from shelling need not be psd, it
turns out to be unavoidable that we must prove this moment bound from scratch.

In this section, given € A™, let D,, denote the distribution over standard basis vectors {e;} of R™
where for any ¢ € [n], e; has probability mass equal to the i-th entry of .

Lemma C.2. Let ¥ € R™*™ have entries bounded in absolute value by O(1), and for j11, ..., pim, i €
A" let & L 2'7:'1 wi- If Y1,...,Y,, are independent draws from D,,, respectively, and fi 2

m

LN Y, then foreveryr > 1, B {((ﬂ —) (1 — /A))l'} < Q(m)~" -7l

Proof. Without loss of generality, suppose X has entries bounded in absolute value by 1. For
i,i’ € [m], define Z; ;s £ (Y; — ;) " 2(Yir — pir). Note that because ||Y; — p;||1 < 2 with probability
1 for all ¢ € [m], and the entries of 3 are bounded in absolute value by 1, | Z; ;| < 4 with probability
1 forall 4,i’ € [m]. We can write E [((2 — 72) "S(i — )] as

T

1 1 .
E Ziir = — E Zi; i | - (37)
m2r Z m2 Z ]1;[1 I

i, €[m] (41,47)5--5 (i 47.)

Now that if there exists some index ¢ € [m] which occurs an odd number of times among

1,44, .oy ip, 0., then by the fact that the tensor E [(YZ — ui)@m} is identically zero for odd a, we have

that [H§:1 Zi”;} . So the nonzero summands on the right-hand side of correspond to indices

{(45,%)} je() which must satisfy that every index appearing among i1, i}, ..., ir, i;. appears an even
number of times. By Fact|C.1] there are O(m)" - r! such tuples.

Finally, by the fact that |Z;;/| < 4 with probability 1 for all ¢,i € [M], each monomial
E {H;Zl Zij)i/} is upper bounded by 4”. We conclude that E [((i — ) "S(2 — 71))"] < -

J = por

O(m)" - r! - 47, from which the claim follows. O

Similarly, a crucial ingredient to the proof of Lemma[A.4]is the following moment bound.

Lemma C.3. Let ¥ € R"™ ™ have entries bounded in absolute value by O(1), and suppose
U1y ooy oy B €A™ satisfy ||pi — pml|i < w for all i € [m]. Then for every r € Z,
E (&0 (i — ) "S(Y; — wi))'] is 0 if r is odd and at most O(rw?/m)"/? otherwise.

Proof. 1t is clear that the r-th moment is zero when r is odd. Henceforth, write r as 2r. Without
loss of generality, suppose X has entries bounded in absolute value by 1. For i € [m], define
Z; = (i — 1) "2(Y; — p;). Note that because ||Y; — p;||1 < 2 with probability 1 for all i € [m],
and the entries of ¥ are bounded in absolute value by 1, |Z;| < 2w with probability 1 for all i € [m].

. m _ 2r
We can write E [(% St (i = 1) TR — ) ] as

T

1 1 2r

i€[m] T1yenenyion

As in the proof of Lemma the only nonzero summands correspond to tuples (i1, ..., i2,) such
that every element of [m] appears an even (possibly zero) number of times. By Fact|C.1] there are at
most O(m)" - r! such tuples, from which we can complete the proof.
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Lemmas [A.2]and [A3] will now follow as consequences of Lemma [C.2]and the following standard tail
bound for random variables with sub-exponential moments:

Fact C4. Let 71, ..., Z,, be random variables for which there exists a constant v > 0 such that
E[Z]] < $v" - 7! for all integers v > 1 and i € [m)]. Then

Pr[;izi—]E[Z]

Similarly, Lemma [A-4] will follow as a consequence of Lemma[C.3|and the following standard tail
bound for random variables with sub-Gaussian moments:

>t <207 (H),

Fact C.5. Let Z1, ..., Z,, be random variables for which there exists a constant v > 0 such that
E[Z]] < (r - v?)"/2 for all integers v > 1 and i € [m)]. Then

m

%ZZZ‘ - E[Z]

i=1

Pr

>t < 26_9("”2/”2).

Proof of Lemma[A.2] This follows by taking m = k in Lemma[C.2]and m = N in Fact[C.4]and
noting that for any 3 € NV, || S| max < O(1) by LemmalA.1] O

Proof of Lemma[A3] This follows by taking m = kN in Lemma[C.2]and m = 1 in Fact|C.4]and
noting that for any ¥ € N, ||X|lmax < O(1) by Lemmal[A.1 O

Proof of Lemma[A4} This follows by taking m = k in Lemma[C.3]and m = N in Fact and
noting that for any ¥ € N, ||X||max < O(1) by Lemmal[A.1 O

C.1 Proof of Fact[C.|
Proof. To count the number N* of such tuples (i1, ..., i2,), for every 1 < s < r let N denote the

number of tuples 8 € {2,4...,2r}* for which }_;_, 8; = 2r. By balls-and-bins, N, = (”ffl) <

(?;%)T Now note that to enumerate N*, we can 1) choose the number 1 < s < min(m, r) of unique

indices among {7}, 2) choose a subset S of [m] of size s, 3) choose one of the N, tuples 3, and 4)

choose one of the ( 5 QT 8 ) ways of assigning index S; to 3; indices in {7;}, S5 to > indices, etc.

For convenience, let 7’ = min(m, ). We get an upper bound of

min(m,r)
m 2r
N* < - N -
o ; (5) (617"'558)
m® (3es\"
— | — ] -(2s)!
s! ( 2r ) (25)

m" 3er’\"
< el . Yl
S ( or ) @)

-r-(3e/2)" - (2r)!

=m" -7 (3e/2)" - (”) -

r
S O(m)r : Tla

min(m,r)

(]

where in the second step we used basic bounds on binomial and multinomial coefficients together
with the above bound on Ny, in the third step we used the fact that the summands are increasing in s,
and in the fourth step we used this fact along with the fact that ' < r by definition. O
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