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Abstract
Reinforcement learning with sparse rewards is challenging because an agent can
rarely obtain non-zero rewards and hence, gradient-based optimization of param-
eterized policies can be incremental and slow. Recent work demonstrated that
using a memory buffer of previous successful trajectories can result in more ef-
fective policies. However, existing methods may overly exploit past successful
experiences, which can encourage the agent to adopt sub-optimal and myopic
behaviors. In this work, instead of focusing on good experiences with limited
diversity, we propose to learn a trajectory-conditioned policy to follow and expand
diverse past trajectories from a memory buffer. Our method allows the agent to
reach diverse regions in the state space and improve upon the past trajectories to
reach new states. We empirically show that our approach significantly outperforms
count-based exploration methods (parametric approach) and self-imitation learning
(parametric approach with non-parametric memory) on various complex tasks with
local optima. In particular, without using expert demonstrations or resetting to
arbitrary states, we achieve the state-of-the-art scores under five billion number of
frames, on challenging Atari games such as Montezuma’s Revenge and Pitfall.

1 Introduction
Deep reinforcement learning (DRL) algorithms with parameterized policy and value function have
achieved remarkable success in various complex domains [32, 49, 48]. However, tasks that require
reasoning over long horizons with sparse rewards remain exceedingly challenging for the parametric
approaches. In these tasks, a positive reward could only be received after a long sequence of appro-
priate actions. The gradient-based updates of parameters are incremental and slow and have a global
impact on all parameters, which may cause catastrophic forgetting and performance degradation.
Many parametric approaches rely on recent samples and do not explore the state space systematically.
They might forget the positive-reward trajectories unless the good trajectories are frequently collected.

Recently, non-parametric memory from past experiences is employed in DRL algorithms to improve
policy learning and sample efficiency. Prioritized experience replay [45] proposes to learn from past
experiences by prioritizing them based on temporal-difference error. Episodic reinforcement learning
[43, 22, 28], self-imitation learning [36, 19], and memory-augmented policy optimization [27] build
a memory to store past good experience and thus can rapidly latch onto past successful policies when
encountering with states similar to past experiences. However, the exploitation of good experiences
within limited directions might hurt performance in some cases. For example on Montezuma’s
Revenge (Fig. 1), if the agent exploits the past good trajectories around the yellow path, it would
receive the small positive rewards quickly but it loses the chance to achieve a higher score in the long
term. Therefore, in order to find the optimal path (red), it is better to consider past experiences in
diverse directions, instead of focusing only on the good trajectories which lead to myopic behaviors.
Inspired by recent work on memory-augmented generative models [21, 9], we note that generating a
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Figure 1: Left: The map of the first level in Montezuma’s Revenge. We simplify the agent’s paths and enlarge
some objects to illustrate typical exploration challenges. The agent also needs to tackle control challenges (e.g.,
jumping between platforms, avoiding collision with moving enemies and electric fields, etc.), but they are not
highlighted here. After getting two keys, the agent can easily expense the keys to open doors in the middle
via the yellow path and achieve small incremental rewards, but as each key can only be used once, the agent
is unlikely to open doors at the bottom floor to clear the level. The previous SOTA fails to open the last two
doors. Ours visits the left-most room at the bottom floor, gets many diamonds, and goes to the next level. Right:
Comparison to CoEX [13] (previous SOTA) with high-level state embedding. In a challenging setting with
random initial delay, without using expert demonstrations or resetting to arbitrary state, ours explores more
rooms and achieves a significantly higher score.

new sequence by editing prototypes in external memory is easier than generating one from scratch. In
an RL setting, we aim to generate new trajectories visiting novel states by editing or augmenting the
trajectories stored in the memory from past experiences. We propose a novel trajectory-conditioned
policy where a full sequence of states is given as the condition. Then a sequence-to-sequence model
with an attention mechanism learns to ‘translate’ the demonstration trajectory to a sequence of actions
and generate a new trajectory in the environment with stochasticity. The single policy could take
diverse trajectories as the condition, imitate the demonstrations to reach diverse regions in the state
space, and allow for flexibility in the action choices to discover novel states.

Our main contributions are summarized as follows. (1) We propose a novel architecture for a
trajectory-conditioned policy that can flexibly imitate diverse demonstration trajectories. (2) We show
the importance of exploiting diverse past experiences in the memory to indirectly drive exploration,
by comparing with existing approaches on various sparse-reward RL tasks with stochasticity in the
environments. (3) We achieve a performance superior to the state-of-the-art under 5 billion number of
frames, on hard-exploration Atari games of Montezuma’s Revenge and Pitfall, without using expert
demonstrations or resetting to arbitrary states. We also demonstrate the effectiveness of our method
on other benchmarks.

2 Method
2.1 Background and Notation for DTSIL
In the standard RL setting, at each time step t, an agent observes a state st, selects an action at ∈ A,
and receives a reward rt when transitioning to a next state st+1 ∈ S , where S and A is a set of states
and actions respectively. The goal is to find a policy πθ(a|s) parameterized by θ that maximizes
the expected return Eπθ

[
∑T
t=0 γ

trt], where γ ∈ (0, 1] is a discount factor. In our work, instead of
directly maximizing expected return, we propose a novel way to find best demonstrations g∗ with
(near-)optimal return and train the policy πθ(·|g) to imitate any trajectory g in the buffer, including g∗.
We assume a state st includes the observation ot (e.g., raw pixel image) and a high-level abstract state
embedding et (e.g., the agent’s location in the abstract space). The embedding et may be available as
a part of st (e.g., the physical features in the robotics domain) or may be learnable from o≤t (e.g.,
[13, 54] could localize the agent in Atari games, as discussed in Sec. 5). A trajectory-conditioned
policy πθ(at|e≤t, ot, g) (which can be viewed as a goal-conditioned policy and denoted as πθ(·|g))
takes a sequence of state embeddings g = {eg1, eg2, · · · , eg|g|} as input for a demonstration, where |g| is
the length of the trajectory g. A sequence of the agent’s past state embeddings e≤t = {e1, e2, · · · , et}
is provided to determine which part of the demonstration has been followed by the agent. Together
with the current observation ot, it helps to determine the correct action at to imitate the demonstration.
Our goal is to find a set of optimal state embedding sequence(s) g∗ and the policy π∗θ(·|g) to maximize
the return: g∗, θ∗ , arg maxg,θ Eπθ(·|g)[

∑T
t=0 γ

trt]. We approximately solve this joint optimization
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Figure 2: Left: Overview of DTSIL. (a) We maintain a trajectory buffer. (b) For each episode, we sample a state
from the buffer, (c) imitate the demonstration leading to the sampled state, obtain a new trajectory, (d) update the
memory with the new trajectory and gradually expand the buffer. We repeat this process until training goes to
the end. Right: Architecture of the trajectory-conditioned policy (see details in Sec. 2.3).

problem via the sampling-based search for g∗ over the space of g realizable by the (trajectory-
conditioned) policy πθ and gradient-based local search for θ∗. For robustness, we may want to find
multiple trajectories with high returns and a trajectory-conditioned policy executing them. We name
our method as Diverse Trajectory-conditioned Self-Imitation Learning (DTSIL).

2.2 Overview of DTSIL
Organizing Trajectory Buffer As shown in Fig. 2(a), we maintain a trajectory buffer D =
{(e(1), τ (1), n(1)), (e(2), τ (2), n(2)), · · · } of diverse past trajectories. τ (i) is the best trajectory ending
with a state with embedding e(i). n(i) is the number of times the cluster represented by the embedding
e(i) has been visited during training. To maintain a compact buffer, similar state embeddings within
the tolerance threshold δ are clustered together, and an existing entry is replaced if an improved
trajectory τ (i) ending with a near-identical state is found. In the buffer, we keep a single representative
state embedding for each cluster. If a state embedding et observed in the current episode is close
to a representative state embedding e(k), we increase visitation count n(k) of the k-th cluster. If
the sub-trajectory τ≤t of the current episode up to step t is better than τ (k), e(k) is replaced by et.
Pseudocode for organizing clusters is in the appendix.
Sampling States for Exploitation or Exploration In RL algorithms, the agent needs to exploit
what it already knows to maximize reward and explore new behaviors to find a potentially better
policy. For exploitation, we aim at reaching the states with the highest total rewards, which probably
means a good behavior of receiving high total rewards. For exploration, we would like to look around
the rarely visited states, which helps discover novel states with higher total rewards. With probability
1− p, in exploitation mode, we sample the states in the buffer with the highest cumulative rewards.
With probability p, in exploration mode, we sample each state e(i) with the probability proportional
to 1/

√
n(i), as inspired by count-based exploration [50, 7] and rank-based prioritization [45, 16].

To balance between exploration and exploitation, we decrease the hyper-parameter p of taking the
exploration mode. The pseudo-code algorithm of sampling the states is in the appendix.
Imitating Trajectory to State of Interest In stochastic environments, in order to reach diverse
states e(i) we sampled, the agent would need to learn a goal-conditioned policy [1, 34, 44, 40]. But it
is difficult to learn the goal-conditioned policy only with the final goal state because the goal state
might be far from the agent’s initial states and the agent might have few experiences reaching it.
Therefore, we provide the agent with the full trajectory leading to the goal state. So the agent benefits
from richer intermediate information and denser rewards. We call this trajectory-conditioned policy
πθ(·|g) where g = {eg1, eg2, · · · , eg|g|}, and introduce how to train the policy in detail in Sec. 2.3.
Updating Buffer with New Trajectory With trajectory-conditioned policy, the agent takes actions
to imitate the sampled demonstration trajectory. As shown in Fig. 2(c), because there could be
stochasticity in the environment and our method does not require the agent to exactly follow the
demonstration step by step, the agent’s new trajectory could be different from the demonstration and
thus visit novel states. In a new trajectory E = {(o0, e0, a0, r0), · · · , (oT , eT , aT , rT )}, if et is nearly
identical to a state embedding e(k) in the buffer and the partial episode τ≤t is better than (i.e. higher
return or shorter trajectory) the stored trajectory τ (k), we replace the existing entry (e(k), τ (k), n(k))
by (et, τ≤t, n(k) + 1). If et is not sufficiently similar to any state embedding in the buffer, a new
entry (et, τ≤t, 1) is pushed into the buffer, as shown in Fig. 2(d). Therefore we gradually increase
the diversity of trajectories in the buffer. The detailed algorithm is described in the supplementary
material.
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2.3 Learning Trajectory-Conditioned Policy
Policy Architecture For imitation learning with diverse demonstrations, we design a trajectory-
conditioned policy πθ(at|e≤t, ot, g) that should flexibly imitate any given trajectory g. Inspired by
neural machine translation methods [51, 6], one can view the demonstration as the source sequence
and view the incomplete trajectory of the agent’s state representations as the target sequence. We apply
a recurrent neural network (RNN) and an attention mechanism Bahdanau et al. [6] to the sequence
data to predict actions that would make the agent follow the demonstration. As illustrated in Fig. 2,
RNN computes the hidden features hgi for each state embedding egi (0 ≤ i ≤ |g|) in the demonstration
and derives the hidden features ht for the agent’s state representation et. Then the attention weight
αt is computed by comparing the current agent’s hidden features ht with the demonstration’s hidden
features hgi (0 ≤ i ≤ |g|). The attention readout ct is computed as an attention-weighted summation
of the demonstration’s hidden features to capture the relevant information in the demonstration and to
predict the action at. Training is performed by combining RL and supervised objectives as follows.

Reinforcement Learning Objective Given a demonstration trajectory g = {eg0, eg1, · · · , eg|g|}, we
provide rewards for imitating g and train the policy to maximize rewards. For each episode, we
record u to denote the index of state in the given demonstration that is lastly visited by the agent. At
the beginning of an episode, the index u of the lastly visited state embedding in the demonstration
is initialized as u = −1, which means no state in the demonstration has been visited. At each step
t, if the agent’s new state st+1 has an embedding et+1 and it is the similar enough to any of the
next ∆t state embeddings starting from the last visited state embedding egu in the demonstration (i.e.,
‖et+1 − egu′‖ < δ where u < u′ ≤ u + ∆t), then the index of the last visited state embedding in
the demonstration is updated as u ← u′ and the agent receives environment reward and positive
imitation reward rDTSIL

t = f(rt) + rim, where f(·) is a monotonically increasing function (e.g.,
clipping [32]) and rim is the imitation reward with a value of 0.1 in our experiments. Otherwise, the
reward rDTSIL

t is 0 (see appendix for an illustration example). This encourages the agent to visit states
in the demonstration in a soft-order so that it can edit or augment the demonstration when executing
a new trajectory. The demonstration plays a role to guide the agent to the region of interest in the
state embedding space. After visiting the last (non-terminal) state in the demonstration, the agent
performs random exploration (because rDTSIL

t = 0) around and beyond the last state until the episode
terminates, to push the frontier of exploration. With rDTSIL

t , the trajectory-conditioned policy πθ can
be trained with a policy gradient algorithm [52]:

LRL = Eπθ
[− log πθ(at|e≤t, ot, g)Ât], (1)

where Ât =

n−1∑
d=0

γdrDTSIL
t+d + γnVθ(e≤t+n, ot+n, g)− Vθ(e≤t, ot, g)

where Eπθ
indicates the empirical average over a finite batch of on-policy samples and n denotes

the number of rollout steps taken in each iteration. We use Proximal Policy Optimization [48] as an
actor-critic policy gradient algorithm for our experiments.

Supervised Learning Objective To improve trajectory-conditioned imitation learning and to better
leverage the past trajectories, we propose a supervised learning objective. We leverage the actions
in demonstrations, similarly to behavior cloning, to help RL for imitation of diverse trajectories.
We sample a trajectory τ = {(o0, e0, a0, r0), (o1, e1, a1, r1) · · · } ∈ D, formulate the demonstration
g = {e0, e1, · · · , e|g|} and assume the agent’s incomplete trajectory is the partial trajectory g≤t =
e≤t = {e0, e1, · · · , et} for any 1 ≤ t ≤ |g|. Then at is the ‘correct’ action at step t for the agent to
imitate the demonstration. Our supervised learning objective is to maximize the log probability of
taking such actions:

LSL = − log πθ(at|e≤t, ot, g), where g = {e0, e1, · · · , e|g|}. (2)

2.4 Extensions of DTSIL for Improved Robustness and Generalization
DTSIL can be easily extended for more challenging scenarios. Without hand-crafted high-level
state embeddings, we can combine DTSIL with state representation learning approaches (Sec. 5.1).
In highly stochastic environments, we modify DTSIL to construct and select proper demonstra-
tions (Sec. 5.2). In addition, DTSIL can be extended with hierarchical reinforcement learning for
generalization over multiple tasks (Sec. 5.3). See individual sections for more details.
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3 Related Work
Imitation Learning The goal of imitation learning is to train a policy to mimic a given demon-
stration. Many previous works achieve good results on hard-exploration Atari games by imitating
human demonstrations [23, 41]. Aytar et al. [3] learn embeddings from a variety of demonstration
videos and proposes the one-shot imitation learning reward, which inspires the design of rewards
in our method. All these successful attempts rely on the availability of human demonstrations. In
contrast, our method treats the agent’s past trajectories as demonstrations.
Memory Based RL An external memory buffer enables the storage and usage of past experiences
to improve RL algorithms. Episodic reinforcement learning methods [43, 22, 28] typically store and
update a look-up table to memorize the best episodic experiences and retrieve the episodic memory
in the agent’s decision-making process. Oh et al. [36] and Gangwani et al. [19] train a parameterized
policy to imitate only the high-reward trajectories with the SIL or GAIL objective. Unlike the
previous work focusing on high-reward trajectories, we store the past trajectories ending with diverse
states in the buffer, because trajectories with low reward in the short term might lead to high reward
in the long term. Badia et al. [5] train a range of directed exploratory policies based on episodic
memory. Gangwani et al. [19] propose to learn multiple diverse policies in a SIL framework but
their exploration can be limited by the number of policies learned simultaneously and the exploration
performance of every single policy, as shown in the supplementary material.
Learning Diverse Policies Previous works [20, 17, 42] seek a diversity of policies by maximizing
state coverage, the entropy of mixture skill policies, or the entropy of goal state distribution. Zhang
et al. [56] learns a variety of policies, each performing novel action sequences, where the novelty
is measured by a learned autoencoder. However, these methods focus more on tasks with relatively
simple state space and dense rewards while DTSIL shows experimental results performing well on
long-horizon, sparse-reward environments with a rich observation space like Atari games.
Exploration Many exploration methods [46, 2, 12, 50] in RL tend to award a bonus to encourage an
agent to visit novel states. Recently this idea was scaled up to large state spaces [53, 7, 38, 11, 39, 10].
Intrinsic curiosity uses the prediction error or pseudo count as intrinsic reward signals to incentivize
visiting novel states. We propose that instead of directly taking a quantification of novelty as an
intrinsic reward, one can encourage exploration by rewarding the agent when it successfully imitates
demonstrations that would lead to novel states. Ecoffet et al. [16] also shows the benefit of exploration
by returning to promising states. Our method can be viewed in general as an extension of [16], though
we do not need to rely on the assumption that the environment is resettable to arbitrary states.
Similar to previous off-policy methods, we use experience replay to enhance exploration. Many
off-policy methods [25, 36, 1] tend to discard old experiences with low rewards and hence may
prematurely converge to sub-optimal behaviors, but DTSIL using these diverse experiences has a
better chance of finding higher rewards in the long term. Contemporaneous works [5, 4] as off-policy
methods also achieved strong results on Atari games. NGU [5] constructs an episodic memory-based
intrinsic reward using k-nearest neighbors over the agent’s recent experience to train the directed
exploratory policies. Agent57 [4] parameterizes a family of policies ranging from very exploratory
to purely exploitative and proposes an adaptive mechanism to choose which policy to prioritize
throughout the training process. While these methods require a large number of interactions, ours
perform competitively well on the hard-exploration Atari games with less than one-tenth of samples.
Model-based reinforcement learning [24, 47, 26] generally improves the efficiency of policy learning.
However, in the long-horizon, sparse-reward tasks, it is rare to collect precious transitions with
non-zero rewards and thus it is difficult to learn a model correctly predicting the dynamics of getting
positive rewards. We instead perform efficient policy learning in the hard-exploration tasks because
of efficient exploration with the trajectory-conditioned policy.

4 Experiments
In the experiments, we aim to answer the following questions: (1) How well does the trajectory-
conditioned policy imitate the diverse demonstration trajectories? (2) Does the imitation of the
past diverse experience enable the agent to further explore more diverse directions and guide the
exploration to find the trajectory with a near-optimal total reward? (3) Is our method helpful for
avoiding myopic behaviors and converging to near-optimal solutions?

We compare our method with the following baselines: (1) PPO [48]; (2) PPO+EXP: PPO with reward
f(rt) + λ/

√
N(et), where λ/

√
N(et) is the count-based exploration bonus, N(e) is the number of

times the cluster which the state representation e belongs to was visited during training and λ is the
hyper-parameter controlling the weight of exploration term; (3) PPO+SIL: PPO with Self-Imitation
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Figure 3: (a) The map of Apple-Gold domain. (b) Average reward of recent 40 episodes. The curves in dark
colors are average over 5 curves in light colors. (c) Comparison of trajectories. (d) Attention in the learned
trajectory-conditioned policy. The x-axis and y-axis correspond to the state (e.g. agent’s location) in the source
sequence (demonstration) and the generated sequence (agent’s new trajectory), respectively. Each cell shows the
weight αij of the j-th source state for the i-th target state.

Learning [36]; (4) DTRA (“Diverse Trajectory-conditioned Repeat Actions”): we keep a buffer
of diverse trajectories and sample the demonstrations as DTSIL, but we simply repeat the action
sequence in the demonstration trajectory and then perform random exploration until the episode
terminates. More details about the implementation can be found in the appendix.

4.1 Apple-Gold Domain
The Apple-Gold domain (Fig. 3a) is a grid-world environment with misleading rewards that can lead
the agent to local optima. At the start of each episode, the agent is placed randomly in the left bottom
part of the maze. An observation consists of the agent’s location (xt, yt) and binary variables showing
whether the agent has gotten the apples or the gold. A state is represented as the agent’s location and
the cumulative positive reward indicating the collected objects, i.e. et = (xt, yt,

∑t
i=1 max(ri, 0)).

In Fig. 3b, PPO+EXP achieves the average reward of 4. PPO+EXP agent can explore the environment
and occasionally gather the gold to achieve the best episode reward around 8.5. However, it rarely
encounters this optimal reward. Thus, this parametric approach might forget the good experience
and fails to replicate the best past trajectory to achieve the optimal total reward. Fig. 3b shows that
PPO+SIL agent is stuck with the sub-optimal policy of collecting the two apples with a total reward of
2 on average. Fig. 3c visualizes how the trajectories in the memory buffer evolve during the learning
process. Obviously, PPO+SIL agent quickly exploits good experiences of collecting the apples and
the buffer is filled with the trajectories in the nearby region. Therefore, the agent only adopts the
myopic behavior and fails on this task. In the environment with the random initial location of the
agent, repeating the previous action sequences is not sufficient to reach the goal states. The DTRA
agent has a difficulty in exploring the environment and achieving good performance.

Unlike the baseline methods, DTSIL is able to obtain the near-optimal total reward of 8.5. Fig. 3c
verifies that DTSIL can generate new trajectories visiting novel states, gradually expand the explored
region in the environment, and discover the optimal behavior. A visualization of attention weight
in Fig. 3d investigates which states in the demonstration are considered more important when
generating the new trajectory. Even though the agent’s random initial location is different from the
demonstration, we can see a soft-alignment between the source sequence and the target sequence.
The agent tends to pay more attention to states which are several steps away from its current state in
the demonstration. Therefore, it is guided by these future states to determine the proper actions to
imitate the demonstration.

4.2 Atari Games
We evaluate our method on the hard-exploration games in the Arcade Learning Environment [8, 30].
The environment setting is the same as [13]. There is a sticky action [30] resulting in stochasticity
in the dynamics. The observation is a frame of raw pixel images, and the state representation
et = (roomt, xt, yt,

∑t
i=1 max(ri, 0)) consists of the agent’s ground truth location (obtained from
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Method DTSIL+EXP PPO+EXP SmartHash NGU* Abstract-HRL IDF A2C+SIL PPO+CoEX RND NGU Agent57

#Frames 3.2B 3.2B 4B 35B 2B 0.1B 0.2B 2B 16B 35B 100B

Montezuma 22,616 12,338 6,600 15,000 11,000 2,505 2,500 11,618 10,070 10,400 9,352
Pitfall 12,446 0 - - 10,000 - - - -3 8,400 18,756

Venture 2,011 1,817 - - - 416 0 1,916 1,859 1,700 2,623

Table 1: Comparison with the state-of-the-art results. The top-2 scores for each game are in bold.Abstract-HRL
[29] and NGU* (i.e., NGU with hand-crafted controllable states) [5] assume more high-level state information,
including the agent’s location, inventory, etc. DTSIL, PPO+EXP [13], and SmartHash [53] only make use of
agent’s location information from RAM. IDF [10], A2C+SIL [36], PPO+CoEX [13], RND [11], NGU [5] and
Agent57 [4] (a contemporaneous work) do not use RAM information. The score is averaged over multiple runs,
gathered from each paper, except PPO+EXP from our implementation.
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Figure 4: Learning curves of the average episode reward and the best episode reward found on Montezuma’s
Revenge and Pitfall, averaged over 3 runs. More statistics are reported in the appendix.

RAM) and the accumulated positive environment reward, which implicitly indicates the objects the
agent has collected. It is worth noting that even with the ground-truth location of the agent, on the
two infamously difficult games Montezuma’s Revenge and Pitfall, it is highly non-trivial to explore
efficiently and avoid local optima without relying on expert demonstrations or being able to reset to
arbitrary states. Many complicated elements such as moving entities, traps, and the agent’s inventory
should be considered in decision-making process. Empirically, as summarized in Tab. 1, the previous
SOTA baselines using the agent’s ground truth location information even fail to achieve high scores.

Using the state representation et, we introduce a variant ‘DTSIL+EXP’ that adds a count-based
exploration bonus r+t = 1/

√
N(et) to rDTSIL

t for faster exploration.1 DTSIL discovers novel states
mostly by random exploration after the agent finishes imitating the demonstration. The pseudo-count
bonus brings improvement over random exploration by explicitly encouraging the agent to visit novel
states with less count. For a fair comparison, we also include count-based exploration bonus in
DTRA. However, with stochasticity in the dynamics, it cannot avoid the dangerous obstacles and
fails to reach the goal by just repeating the stored action sequence. Therefore, the performance of
DTRA+EXP (Fig. 4) is poor compared to other methods.

On Venture (Tab. 1), it is relatively easy to explore and gather positive environment rewards. DTSIL
performs only slightly better than the baselines. On Montezuma’s Revenge (Fig. 4), in the early
stage, the average episode reward of DTSIL+EXP is worse than PPO+EXP because our policy is
trained to imitate diverse demonstrations rather than directly maximize the environment reward.
Contrary to PPO+EXP, DTSIL is not eager to follow the myopic path (Fig. 1).2 As training continues,
DTSIL+EXP successfully discovers trajectories to pass the first level with a total reward more than
20,000. As we sample the best trajectories in the buffer as demonstrations, the average episode reward
increases to surpass 20,000 in Fig. 4. On Pitfall, positive rewards are much sparser and most of the
actions yield small negative rewards (time step penalty) that would discourage getting a high total
reward in the long term. However, DTSIL+EXP stores trajectories with negative rewards, encourages
the agent to visit these novel regions, discovers good paths with positive rewards and eventually
attains an average episode reward over 0. In Fig. 4, different performances under different random
seeds are due to huge positive rewards in some states on Montezuma’s Revenge and Pitfall. Once the
agent luckily finds these states in some runs, DTSIL can exploit them and perform much better than
other runs.

1The existing exploration methods listed in Table 1 take advantage of count-based exploration bonus
(e.g., SmartHash, Abstract-HRL and PPO+CoEX). Therefore, a combination of DTSIL and the count-based
exploration bonus does not introduce unfair advantages over other baselines.

2Demo videos of the learned policies for both PPO+EXP and DTSIL+EXP are available at https://sites.
google.com/view/diverse-sil. In comparison to DTSIL+EXP, we can see the PPO+EXP agent does not
explore enough to make best use of the tools (e.g. sword, key) collected in the game.
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Figure 5: (a) Indoor scene for navigation task. (b) A panoramic view from a specific viewpoint. (c) Learning
curves of average reward on navigation task. (d) Bin picking. (e) Learning curves of average reward on
manipulation task. (f) Learning curves of best reward on manipulation task.

4.3 Continuous Control Tasks
When the initial condition is highly random, previous works imitating expert demonstrations (e.g.
[3]) would also struggle. We slightly modify DTSIL to handle the highly random initial states: in
each episode, from buffer D, we sample the demonstration trajectory with a start state similar to the
current episode. The detailed algorithm is described in the supplementary material.
Navigation We focus on a more realistic environment, a distant visual navigation task designed
on Gibson dataset [55]. To make the task more challenging, the agent is randomly placed in the
environment (red rectangle in Fig. 5a), a positive reward 10 is given only when it reaches a fixed
target location (green point in Fig. 5a) which is significantly further away. The agent receives no
information about the target (such as the target location or image) in advance. The observation is a
first-person view RGB image and the state embedding is the agent’s location and orientation (which is
usually available in robotics navigation tasks) and the cumulative reward. This experiment setting is
similar to the navigation task with a static goal defined in [31]. Apart from the baseline PPO+EXP, we
also compare with Nav A3C+D1D2L [31], which uses the agent’s location and RGB and depth image.
This method performs well in navigation tasks on DeepMind Lab where apples with small positive
rewards are randomly scattered to encourage exploration, but on our indoor navigation task, it fails to
discover the distant goal without the exploration bonus. Fig. 5c shows that Nav A3C+D1D2L can
never reach the target. PPO+EXP, as a parametric approach, is sample-inefficient and fails to quickly
exploit the previous successful experiences. However, DTSIL agent can successfully explore to find
the target and gradually imitate the best trajectories of reward 10 to replicate the good behavior.
Manipulation Bin picking is one of the hardest tasks in Surreal Robotics Suite [18]. Fig. 5d shows
the bin picking task with a single object, where the goal is to pick up the cereal and place it into
the left bottom bin. With carefully designed dense rewards (i.e. positive rewards at each step when
the robot arm moving near the object, touching it, lifting it, hovering it over the correct bin, or
successfully placing it), the PPO agent can pick up, move and drop the object [18]. We instead
consider a more challenging scenario with sparse rewards. The reward is 0.5 at the single step of
picking up the object, -0.5 if the object is dropped in the wrong place, 1 at each step when the object
keeps in the correct bin. The observation is the physical state of the robot arm and the object. The
state embedding consists of the position of the object and gripper, a variable about whether the gripper
is open, and cumulative environment reward. Each episode terminates at 1000 steps. In Fig. 5f,
PPO+EXP agent never discovers a successful trajectory with episode reward over 0, because the
agent has difficulty in lifting the cereal and easily drops it by mistake. In contrast, DTSIL imitates the
trajectories lifting the object, explores to move the cereal over the bins, finds trajectories successfully
placing the object, exploits the high-rewarding trajectories, and obtains a higher average reward than
the baseline (Fig. 5e).

4.4 Other Domains: Deep Sea and Mujoco Maze
In the supplementary material, we present additional details of the experimental results and also the
experiments on other interesting domains. On Deep Sea [37], we show that the advantage of DTSIL
becomes more obvious when the state space becomes larger and rewards become sparser. On Mujoco
Maze [15, 33], we show that DTSIL helps avoid sub-optimal behavior in continuous action space.

5 Discussions: Robustness and Generalization of DTSIL
5.1 Robustness of DTSIL with Learned State Representations
Learning a good state representation is an important open question and extremely challenging
especially for long-horizon, sparse-reward environments, but it is not the main focus of this work.
However, we find that DTSIL can be combined with existing approaches of state representation
learning if the high-level state embedding is not available. When the quality of the learned state

8



0M 240M 480M 720M 960M 1200M
Steps

0

10000

20000

30000

40000

Av
er

ag
e 

Re
wa

rd

Montezuma's Revenge
DTSIL+EXP

(a) (b)

0M 8M 16M 24M 32M 40M
Steps

0

2

4

6

8

Av
er

ag
e 

Re
wa

rd

PPO+EXP
DTSIL

(c)

0M 8M 16M 24M 32M 40M
Steps

0

1

2

3

4

Av
er

ag
e 

Re
wa

rd

PPO+EXP
DTSIL

(d)
Figure 6: (a) Experiment with learned state representation. (b) Two samples of the random maze structure in
Apple-Gold domain. (c) Learning curves of average episode reward on the training set of mazes in Apple-Gold
domain. (d) Average episode reward on the test set of mazes for generalization experiment.

representation is not satisfactory (e.g., on Montezuma’s Revenge, [13] fails to differentiate the dark
rooms at the last floor), the trajectory-conditioned policy might be negatively influenced by the
inaccuracy in egi or ei. Thus, we modify DTSIL to handle this difficulty by feeding sequences of
observations (instead of sequences of learned state embeddings) into the trajectory-conditioned policy.
The learned state embeddings are merely used to cluster states when counting state visitation or
determining whether to provide imitation reward rim. Then DTSIL becomes more robust to possible
errors in the learned embeddings. With the learned state representation from [13], on Montezuma’s
Revenge, DTSIL+EXP reaches the second level of the maze with a reward >20,000 (Fig 6a).

5.2 Robustness of DTSIL in Stochastic Environments
In the single-task RL problem, a Markov Decision Process (MDP) is defined by a state set S, an
action set A, an initial state distribution p(s0), a state transition dynamics model p(st+1|st, at), a
reward function r(st, at) and a discount factor γ. So the environment stochasticity falls into three
categories: stochasticity in the initial state distribution, stochasticity in the transition function, and
stochasticity in the reward function. For sparse-reward, long-horizon tasks, if the precious reward
signals are unstable, the problem would be extremely difficult to solve. Thus, in this paper, we mainly
focus on the other two categories of stochasticity. In Sec. 4.2 & 4.3, we show the efficiency and
robustness of DTSIL in the environment with sticky action (i.e. stochasticity in p(st+1|st, at)) or
highly random initial states (i.e. stochasticity in p(s0)).

5.3 Generalization Ability of DTSIL
While many previous works about exploration focus on the single-task RL problem with a single
MDP [53, 13, 16], we step further to extend DTSIL for the multiple MDPs, where every single task
is in a stochastic environment with local optima. For example, in the Apple-Gold domain, we design
12 different structures of the maze as a training set (Fig. 6b). In each episode, the structure of maze is
randomly sampled and the location of agent and gold is randomized in a small region. If the structure
in the demonstration is different from the current episode, DTSIL agent might fail to recover the state
of interest by roughly following the demonstration. Thus, using the buffer of diverse trajectories, we
alternatively learn a hierarchical policy, which can behave with higher flexibility in the random mazes
to reach the sampled states. We design the rewards so that the high-level policy is encouraged to
propose the appropriate sub-goals (i.e., agent’s locations) sequentially to maximize the environment
reward and goal-achieving bonus (i.e. positive reward when the low-level policy successfully reaches
the long-term goal sampled from the buffer). The low-level policy learns to visit sub-goals given the
current observation (i.e. RGB image of the maze). The diverse trajectories in the buffer are also used
with a supervised learning objective to improve policy learning. Fig. 6c shows that the hierarchical
policy outperforms PPO+EXP during training. When evaluated on 6 unseen mazes in the test set,
it can generalize the good behavior to some unseen environments (Fig. 6d). More details of the
algorithm and experiments are in the supplementary material. Solving multi-task RL is a challenging
open problem [35, 14, 44]. Here we verified this variant of DTSIL is promising and the high-level
idea of DTSIL to leverage and augment diverse past trajectories can help exploration in this scenario.
We leave the study of improving DTSIL furthermore as future work.

6 Conclusion
This paper proposes to learn diverse policies by imitating diverse trajectory-level demonstrations
through count-based exploration over these trajectories. Imitation of diverse past trajectories can
guide the agent to rarely visited states and encourages further exploration of novel states. We show
that in a variety of stochastic environments with local optima, our method significantly improves
count-based exploration method and self-imitation learning. It avoids prematurely converging to a
myopic solution and learns a near-optimal behavior to achieve a high total reward.
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Broader Impact

DTSIL is likely to be useful in real-world RL applications, such as robotics-related tasks. Compared
with previous exploration methods, DTSIL shows obvious advantages when the task requires rea-
soning over long-horizon and the feedback from environment is sparse. We believe RL researchers
and practitioners can benefit from DTSIL to solve RL application problems requiring efficient explo-
ration. Especially, DTSIL helps avoid the cost of collecting human demonstration and the manual
engineering burden of designing complicated reward functions. Also, as we discussed in Sec. 5,
when deployed for more problems in the future, DTSIL has a good potential to perform robustly and
avoid local optima in various stochastic environments when combined with other state representation
learning approaches.

DTSIL in its current form is applied to robotics tasks in the simulated environments. And it likely
contributes to real robots in solving hard-exploration tasks in the future. Advanced techniques in
robotics make it possible to eliminate repetitive, time-consuming, or dangerous tasks for human
workers and might bring positive societal impacts. For example, the advancement in household robots
will help reduce the cost for home care and benefit people with disability or older adults who needs
personalized care for a long time. However, it might cause negative consequences such as large-scale
job disruptions at the same time. Thus, proper public policy is required to reduce the social friction.

On the other hand, RL method without much reward shaping runs the risk of taking a step that is
harmful for the environments. This generic issue faced by most RL methods is also applicable to
DTSIL. To mitigate this issue, given any specific domain, one simple solution is to apply a constraint
on the state space that we are interested to reach during exploration. DTSIL is complementary to
the mechanisms to restrict the state space or action space. More principled way to ensure safety
during exploration is a future work. In addition to AI safety, another common concern for most RL
algorithms is the memory and computational cost. In the supplementary material we discuss how to
control the size of the memory for DTSIL and report the cost. Empirically DTSIL provides ideas for
solving various hard-exploration tasks with a reasonable computation cost.
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