
A Proof of Equivalence of (8) and (9)

We state (8) and (9) again. Let the vectors r1, . . . , rk 2 Rn be fixed on the simplex. Then, (8) is
stated as follows:

max
vi2Rn, kvik2=1 8i2[n]

nX

i=1

nX

j=1

Aijv
T
i vj +

nX

i=1

v
T
i

kX

l=1

ĥ
(l)
i rl. (8)

Let H 2 Rn⇥k such that Hij = ĥ
(j)
i . Define the block matrix C 2 R(k+n)⇥(k+n) such that:

C =


0 1

2 ·HT

1
2 ·H A

�
.

Then, (9) is stated as follows:

max
Y⌫0

Y · C (9)

subject to Yii = 1 8i 2 [n+ k]

Yij = �
1

k � 1
8i 2 [k], i < j  k.

We will show that the optimal solutions to both these optimization problems are equal. Consider
any v1, . . . , vn 2 Rn in the feasible set of (8). Then, corresponding to these v1, . . . , vn, consider the
matrix Y 2 R(k+n)⇥(k+n) defined as follows:

Y =

2

66666664

r
T
1
...
r
T
k
v
T
1
...
vn

3

77777775

[r1 . . . rk v1 . . . vn] .

Clearly, Y ⌫ 0. Further, since r1, . . . , rk are on the simplex and v1, . . . , vn are in the feasible set of
(8), this matrix Y satisfies the constraints in (9). Thus, Y lies in the feasible set of (9). Also, because
of the way in which the block matrix C is defined, we can verify that:

Y · C =
nX

i=1

nX

j=1

Aijv
T
i vj +

nX

i=1

v
T
i

kX

l=1

ĥ
(l)
i rl.

Thus, for any v1, . . . , vn in the feasible set of (8), we have a corresponding Y in the feasible set of
(9) such that the criterion values match.

Now, consider any Y in the feasible set of (9). Since Y ⌫ 0, we can compute its Cholesky
decomposition as Y = U

T
U for some U 2 R(k+n)⇥(k+n). Denote the first k columns in U as

r
0
1, . . . , r

0
k and the last n columns of U as v01, . . . , v0n. Then, since Y satisfies the constraints in (9),

we have that kv0ik2 = 1 for all i 2 [n]. Also, we have that r
0T
i r

0
j = 1 if i = j and r

0T
i r

0
j = � 1

k�1

otherwise. Thus, the vectors r01, . . . , r0k correspond to the vertices of a simplex in Rn. Then, there
exists a rotation matrix R̄ 2 Rn⇥n such that R̄r

0
l = rl for all i 2 [k] and R̄

T
R̄ = I . Then, consider

the vectors vi = R̄v
0
i for i 2 [n]. Since rotation matrices preserve norm, we have that kvik2 = 1 for
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all i 2 [n]. Thus, v1, . . . , vn lie in the feasible set of (8). Also, we have that:

Y · C = U
T
U · C

=
nX

i=1

nX

j=1

Aijv
0T
i vj +

nX

i=1

v
0T
i

kX

l=1

ĥ
(l)
i r

0
l

=
nX

i=1

nX

j=1

Aijv
0T
i R̄

T
R̄vj +

nX

i=1

v
0T
i R̄

T
kX

l=1

ĥ
(l)
i R̄r

0
l (since R̄

T
R̄ = I)

=
nX

i=1

nX

j=1

Aij(R̄v
0
i)

T
R̄vj +

nX

i=1

(R̄v
0
i)

T
kX

l=1

ĥ
(l)
i rl (since R̄r

0
i = ri)

=
nX

i=1

nX

j=1

Aijv
T
i vj +

nX

i=1

v
T
i

kX

l=1

ĥ
(l)
i rl.

Thus, corresponding to any Y in the feasible set of (9), we have found vectors v1, . . . , vn in the
feasible set of (8) such that criterion values match.

Consequently, we have shown the range of criterion values in both optimization problems is the same,
and hence the optimization problems have equivalent optimal solutions.
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B Derivation of (11)

Let z1, . . . , zn 2 Rd such that d = m · k,m 2 Z, and let C = k
k�1

�
Id � 1

k (1k⇥k ⌦ Im)
�

where
1k⇥k is a matrix filled with 1s. Let C = S

T
S denote the Cholesky decomposition of C. Further, let

us segment each zi into k blocks such that zbi 2 Rm denotes the bth block. Then, we state (11) again:

max
zi2Rd 8i2[n]

nX

i=1

nX

j=1

Aijv
T
i vj +

nX

i=1

v
T
i

kX

l=1

ĥ
(l)
i rl

subject to zi � 0,

�����

kX

b=1

z
b
i

�����

2

2

= 1, vi = Szi 8i 2 [n]. (11)

First, we show that with the parameterization above, 1 � v
T
i vj � �1

k�1 , i.e. vi, vj satisfy the pairwise
constraints. Note that with the structure of C as defined, we have that

v
T
i vj = z

T
i S

T
Szj

= z
T
i Czj

=
k

k � 1

2

4zTi zj �
1

k

 
kX

b=1

z
b
i

!T  kX

b=1

z
b
j

!3

5 .

Now, since zi � 0 and since
���
Pk

b=1 z
b
i

���
2

2
= 1, we have that kzik2  1. Thus, by the Cauchy-

Schwartz inequality, we have that 0  z
T
i zj  1, and also that, 0 

⇣Pk
b=1 z

b
i

⌘T ⇣Pk
b=1 z

b
j

⌘
 1.

Thus, we have v
T
i vj � k

k�1

�
0� 1

k

�
= � 1

k�1 . Further, note that

kvik22 =
k

k � 1

0

@kzik22 �
1

k

�����

kX

b=1

z
b
i

�����

2

2

1

A

=
k

k � 1

✓
kzik22 �

1

k

◆
 1.

Thus, we have that vTi vj  kvik2kvjk2  1, establishing both bounds. Next, note that we can set the
appropriate z

b
i in each zi to e1 2 Rm (where e1 is the first basis vector), and set all the other zb

0

i to 0,
and this allows vi = Szi to be the required vector rl on the simplex corresponding to the optimal
solution to the discrete problem (7). Thus, we have that the optimal solution to (11) is at least as large
as f?

discrete.

Our goal then is to obtain candidates z1, . . . , zn, such that the objective is at least as large as f?
discrete.

Additionally, if we can further guarantee that kzik2 = 1 for all i, we are done.

Let us write the objective in (11) in terms of zi. This is

nX

i=1

nX

j=1

Aijz
T
i Czj +

nX

i=1

z
T
i S

T
kX

l=1

ĥ
(l)
i rl.

Let us consider the terms in the objective involving a particular zi. These are

z
T
i

0

@2
nX

j 6=i

AijCzj + S
T

kX

l=1

ĥ
(l)
i rl

1

A

| {z }
gi

.
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Note that for every index j within a block in gi, across the k blocks, there will definitely be at least
one positive entry. This is because

2
nX

j 6=i

AijCzj + S
T

kX

l=1

ĥ
(l)
i rl = 2

nX

j 6=i

AijCzj + S
T

kX

l=1

ĥ
(l)
i Sel

= 2
nX

j 6=i

AijCzj + C

kX

l=1

ĥ
(l)
i el

= C

0

@2
nX

j 6=i

Aijzj +
kX

l=1

ĥ
(l)
i el

1

A

| {z }
p

= Cp.

and because of the nature of the matrix C, the entries at a particular index j across the k blocks in
Cp will each be of the form x� avg(x). This fact will be useful later on.

We now consider updating each zi in a sequential manner as a block-coordinate update, just as in
the original mixing method. In the following, we drop the subscript i in zi and gi for convenience.
Concretely, we aim to solve the problem

min � g
T
z

subject to z � 0;

�����

kX

b=1

z
b

�����

2

2

= 1. (16)

Let us write the Lagrangian L(z,↵,�) for the above constrained optimization problem, for dual
variables ↵ � 0,�:

L(z,↵,�) = �gT z + �

2

0

@
�����

kX

b=1

z
b

�����

2

2

� 1

1

A� ↵T
z.

The KKT conditions are

Stationarity: g
b
i + ↵

b
i = �

kX

b=1

z
b
i 8b 2 [k], i 2 [m]

Complementary slackness: ↵
b
iz

b
i = 0 8b 2 [k], i 2 [m]

Primal feasibility: z
b
i � 0 8b 2 [k], i 2 [m]
�����

kX

b=1

z
b

�����

2

2

= 1

Dual feasibility: ↵
b
i � 0 8b 2 [k], i 2 [m].

Note that now, zbi refers to the i
th entry in the b

th block in z. Since the KKT conditions are always
sufficient, if we are able to construct z and ↵,� that satisfy all the conditions above, z and ↵,� would
be optimal primal and dual solutions to (16) respectively.

Towards this, let (·)+ denote the operation that thresholds the argument at 0, i.e.

(x)+ =

⇢
x if x � 0
0 otherwise.
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For any fixed index i 2 [m], let b(i) = argmaxb g
b
i (if there are multiple, pick any). Consider the

following assignment:

� =

vuut
mX

i=1

(gb(i)i )2+

z
b(i)
i =

(gb(i)i )+
�

, ↵
b(i)
i =

(
0 if gb(i)i > 0

�gb(i)i otherwise

z
b
i = 0, ↵

b
i = �gbi + �z

b(i)
i for b 6= b(i).

Note that � > 0, since we argued above that there will be at least one entry that will be positive
across the blocks. We will now verify that this assignment satisfies all the KKT conditions. First,
note that

Pk
b=1 z

b
i = z

b(i)
i . Consider stationarity: for b(i), if gb(i)i > 0,

g
b(i)
i + ↵

b(i)
i = g

b(i)
i = (gb(i)i )+ = �z

b(i)
i .

otherwise if gb(i)i  0, zb(i)i = 0 and so

g
b(i)
i + ↵

b(i)
i = g

b(i)
i � g

b(i)
i = 0 = �z

b(i)
i .

For b 6= b(i), by construction

g
b
i + ↵

b
i = �z

b(i)
i .

Next, we can observe that complementary slackness holds, since either one of zbi or ↵b
i is always 0.

Next, we verify primal feasibility. We can observe that zbi � 0 for all b. Further,
�����

kX

b=1

z
b

�����

2

2

=
mX

i=1

z
b(i)2
i =

1

�2

mX

i=1

(gb(i)i )2+ = 1.

Finally, we verify dual feasibility. For b(i), we have that

↵
b(i)
i =

(
0 if gb(i)i > 0

�gb(i)i otherwise.
.

Either way, ↵b(i)
i � 0. For b 6= b(i),

↵
b
i = �gbi + �z

b(i)
i = �gbi + (gb(i)i )+ � 0.

Thus, we observe that the constructed z and ↵,� satisfy all the KKT conditions. Hence, z (as
constructed as above) is the optimal solution to (16). Algorithm 3 precisely updates each zi based on
this constructed solution. The hope at the convergence of this routine is that we will have ended up
with a solution v1, . . . , vn such that f(v1, . . . , vn) > f

?
discrete. Empirically, we always observe that

this is the case. In fact, the solution at convergence is within 5% of the true optimal solution of (11)
itself. Thus, the approximation guarantees of Frieze et al. [10] go through for the rounded solution
on v1, . . . , vn at convergence, assuming that the entries in A are positive.
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C Proof of Theorem 1

We have that

E[Ẑ] = EXpv

h
E·|Xpv

[Ẑ]
i

= EXpv

2

4E·|Xpv

2

4
X

x2Xpv

exp(f(x)) +
1

R

X

x2X⌦

exp(f(x))

q

3

5

3

5

= EXpv

2

4
X

x2Xpv

exp(f(x)) +
1

R
E·|Xpv

"
X

x2X⌦

exp(f(x))

q

#3

5

= EXpv

2

4
X

x2Xpv

exp(f(x)) +
1

Rq

X

x2X⌦

E·|Xpv
[exp(f(x))]

3

5

= EXpv

2

4
X

x2Xpv

exp(f(x)) +
1

Rq

X

x2X⌦

X

y2{[k]n\Xpv}

q · exp(f(y))

3

5

= EXpv

2

4
X

x2Xpv

exp(f(x)) +
1

R

X

x2X⌦

X

y2{[k]n\Xpv}

exp(f(y))

3

5

= EXpv

2

4
X

x2Xpv

exp(f(x)) +
1

R
·R ·

X

y2{[k]n\Xpv}

exp(f(y))

3

5

= EXpv

2

4
X

x2Xpv

exp(f(x)) +
X

y2{[k]n\Xpv}

exp(f(y))

3

5

= EXpv

2

4
X

x2[k]n

exp(f(x))

3

5

= EXpv
[Z]

= Z.

Thus, the estimate Ẑ given by Algorithm 4 is unbiased.
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D Pseudocode for AIS

Our implementation of AIS has 3 main parameters: the number of temperatures in the annealing
chain (denoted K), the number of cycles of Gibbs sampling while transitioning from one temperature
to another (denoted num cycles), and the number of samples used (denoted num samples). First,
we define K + 1 coefficients 0 = �0 < �1 < · · · < �K = 1 . Then, given a general k-class MRF
problem instance as defined in Sections 3, 4, let

f(x) =
nX

i=1

nX

j=1

Aij �̂(xi, xj) +
nX

i=1

kX

l=1

ĥ
(l)
i �̂(xi, l).

Further, define functions fk as follows:

fk(x) =

✓
1

kn

◆1��k

(exp(f(x)))�k
.

Also, let p0 denote the uniform distribution on the discrete hypercube [k]n. The complete pseudocode
for our implementation of AIS is then provided below:

Algorithm 5 Annealed Importance Sampling
1: procedure GIBBSSAMPLING(x,�k, num cycles)
2: Let p(x) / (exp(f(x)))�k

3: for cycle = 1, 2 . . . , num cycles do

4: for i = 1, 2, . . . , n do

5: xi  Sample p(xi|x�i)
6: end for

7: end for

8: return x

9: end procedure

10: procedure AIS(K,num cycles, num samples)
11: for i = 1, 2 . . . , num samples do

12: Sample x ⇠ p0

13: w
(i)  1

14: for k = 1, 2, . . . ,K do

15: w
(i)  w

(i) · fk(x)
fk�1(x)

16: x GIBBSSAMPLING(x,�k, num cycles)
17: end for

18: end for

19: return Z = 1
num samples

Pnum samples
i=1 w

(i)

20: end procedure
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E Mode estimation comparisons

Here, we compare the mode estimates given by M
4 and M

4+ with max-product belief propagation
and decimation algorithm given in libDAI [22] over complete graphs across a range of coupling
strengths for k = 2, 3, 4, 5.

(a) k = 2, n = 20 (b) k = 3, n = 10 (c) k = 4, n = 8 (d) k = 5, n = 7

Figure 4: Mode estimation comparison with max-product BP and decimation

We can observe that for both methods, the relative errors are very small (⇠ 0.018 at worst) compared
to the other methods, but M4+ suffers a little for larger k.

Next, we show the results for the mode estimation task (timing comparison versus AIS) on complete
graphs for k = 2, 3, 4, 5. The coupling matrices are fixed to have a coupling strength CS(A) = 2.5.

(a) k = 2, n = 20 (b) k = 3, n = 10 (c) k = 4, n = 8 (d) k = 5, n = 7

Figure 5: Mode estimation comparison with AIS

We can observe that both M
4 and M

4+ are able to achieve an accurate estimate of the mode much
quicker than AIS across different values of k.

20



F Performance of AIS with varying parameters

Here, we demonstrate how the performance of AIS is affected on separately varying the parameters K
and num cycles (Algorithm 5) in the partition function task. We consider similar problem instances
described in Section 5 in the paper:

1. We fix num cycles = 1 and vary K. Figure 6 shows the results. We can observe that
increasing K helps increase the accuracy of the estimate of Z, but also becomes very
expensive w.r.t. time.

(a) Complete graph k = 2, n = 20 (b) ER graph k = 2, n = 20 (c) Complete graph k = 3, n = 10

Figure 6: Variation of K in AIS

2. Next, we fix K and vary num cycles in the Gibbs sampling step. Figure 7 shows the results.
We can observe that increasing num cycles helps increase the accuracy of the estimate of
Z (although the effect is much less pronounced when compared to increasing K), but also
becomes very expensive w.r.t. time.

(a) Complete graph k = 2, n = 20 (b) ER graph k = 2, n = 20 (c) Complete graph k = 3, n = 10

Figure 7: Variation of num cycles in AIS
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G Image Segmentation - more results

We describe in more detail the setting in DenseCRF [19]. Let fi denote the feature vector associated
with the ith pixel in an image e.g. position, RGB values, etc. Then, the image segmentation task is to
compute the configuration of labels x 2 [k]n for the pixels in an image that maximizes:

max
x2[k]n

X

i<j

µ(xi, xj)K̄(fi, fj) +
X

i

 u(xi).

The first term provides pairwise potentials where K̄(fi, fj) is modelled as a Gaussian kernel consist-
ing of smoothness and appearance kernels and the coefficient µ is the label compatibility function.
The second term corresponds to unary potentials for the individual pixels. In keeping with the SDP
relaxation described above, we relax each pixel to Rd to derive the following optimization problem:

max
vi2Rd, kvik2=1 8i2[n]

X

i<j

K̄(fi, fj)v
T
i vj + ✓

nX

i=1

kX

l=1

log pi,l · vTi rl. (15)

In the first term above, the term v
T
i vj models the label compatibility function µ, and we can observe

that if K̄(fi, fj) is large i.e. the pixels are similar, it encourages the vectors vi and vj to be aligned.
The second term models unary potentials �u from available rough annotations, so that we have a bias
vector rl for each label, and the term log pi,l plugs in our prior belief based on annotations of the i

th

pixel being assigned the l
th label. The coefficient ✓ helps control the relative weight on the pairwise

and unary potentials. The mixing method update for the above objective is:

vi  normalize

0

@
X

j 6=i

K̄(fi, fj)vj + ✓

LX

l=1

log pi,l · rl

1

A

| {z }
Gi

. (17)

We note here that computing the pairwise kernels K̄(fi, fj) naively has a quadratic time complexity
in n, and for standard images, the number of pixels is pretty large, making this computation very slow.
Here, we use the high-dimensional filtering method as in DenseCRF [19] which provides a linear
time approximation for simultaneously updating all the vis as given by the update in (17). However,
because of the simultaneous nature of the updates, we are no longer employing true coordinate
descent. Hence, we instead propose to use a form of gradient descent with a small learning rate ↵ to
update each of the vis as follows. Here, the Gis are those that are simultaneously given for all i at
once by the high-dimensional filtering method:

vi  normalize(vi + ↵ ·Gi).

At convergence, we use the same rounding scheme described in Algorithm 2 above to obtain a
configuration of labels for each pixel. Figures 8, 9 below show the results of using our method for
performing image segmentation on some benchmark images obtained from the works of DenseCRF
[19], Lin et al. [20]. We can see that our method produces accurate segmentations, competitive with
the quality of segmentations demonstrated in DenseCRF[19].

The naive runtime for segmenting a standard (say 400x400) image by our method (without any
GPU parallelization) is roughly ⇠ 2 minutes. We remark here that performing each segmentation
constitutes randomly initializing the vi vectors and solving (15) via the mixing method, and also
performing a few rounds of rounding. However, with parallelization and several optimizations, we
believe that there is massive scope for significantly reducing this runtime.
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Figure 8: Original image, annotated image, segmented image
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Figure 9: Original image, annotated image, segmented image
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