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A Proofs and Derivations

A.1 Proof to Theorem 1

The exponential family parameterization of the multinomial distribution gives us the standard Softmax
function as the canonical response function

φj =
eηj∑k
i=1 e

ηi
(1)

and also the canonical link function

ηj = log(
φj
φk

) (2)

We begin by adding a term − log(φj/φ̂j) to both sides of Eqn. 2,

ηj − log
φj

φ̂j
= log(

φj
φk

)− log(
φj

φ̂j
) = log(

φ̂j
φk

) (3)

Subsequently,

φke
ηj−log

φj

φ̂j = φ̂j (4)

φk

k∑
i=1

e
ηi−log

φi
φ̂i =

k∑
i=1

φ̂i = 1 (5)

φk = 1/

k∑
i=1

e
ηi−log

φi
φ̂i (6)

Substitute Eqn. 6 back to Eqn. 4, we have

φ̂j = φke
ηj−log

φj

φ̂j =
e
ηj−log

φj

φ̂j∑k
i=1 e

ηi−log
φi
φ̂i

(7)
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Recall that

φj = p(y = j|x) = p(x|y = j)

p(x)

1

k
; φ̂j = p̂(y = j|x) = p(x|y = j)

p̂(x)

nj
n

(8)

then

log
φj

φ̂j
= log

n

knj
+ log

p̂(x)

p(x)
(9)

Finally, bring Eqn. 9 back to Eqn. 7

φ̂j =
e
ηj−log n

knj
−log p̂(x)

p(x)∑k
i=1 e

ηi−log n
kni
−log p̂(x)

p(x)

=
nje

ηj∑k
i=1 nie

ηi
(10)

A.2 Derivation for the Multiple Binary Logistic Regression variant

Definition. Multiple Binary Logisitic Regression uses k binary logistic regression to do multi-class
classification. Same as Softmax regression, the predicted label is the class with the maximum model
output,

ypred = argmax
j

(ηj). (11)

The only difference is that φj is expressed by a logistic function of ηj

φj =
eηj

1 + eηj
(12)

and the loss function sums up binary classification loss on all classes

l(θ) =

k∑
j=1

− log φ̃j (13)

where

φ̃j =

{
φj , if y = j

1− φj , otherwise
(14)

Setup. By the virtue of Bayes’ theorem, φj and 1− φj can be decomposed as

φj =
p(x|y = j)p(y = j)

p(x)
; 1− φj =

p(x|y 6= j)p(y 6= j)

p(x)
(15)

and for φ̂ and 1− φ̂,

φ̂j =
p(x|y = j)p̂(y = j)

p̂(x)
; 1− φ̂j =

p(x|y 6= j)p̂(y 6= j)

p̂(x)
(16)

Derivation. Again, we introduce the exponential family parameterization and have the following
link function for φj

ηj = log
φj

1− φj
(17)

Bring the decomposition Eqn. 15 and Eqn.16 into the link function above

ηj = log(
φ̂j

1− φ̂j
· φj
φ̂j
· 1− φ̂j
1− φj

) (18)

ηj = log(
φ̂j

1− φ̂j
· p(x|y = j)p(y = j)/p(x)

p(x|y = j)p̂(y = j)/p̂(x)
· p(x|y 6= j)p̂(y 6= j)/p̂(x)

p(x|y 6= j)p(y 6= j)/p(x)
) (19)

Simplify the above equation

ηj = log(
φ̂j

1− φ̂j
· p(y = j)

p̂(y = j)
· p̂(y 6= j)

p(y 6= j)
) (20)
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Substitute the nj in to the equation above

ηj = log(
φ̂j

1− φ̂j
· n/k
nj
· n− nj
n− n/k

) (21)

Then

ηj − log(
n/k

nj
· n− nj
n− n/k

) = log(
φ̂j

1− φ̂j
) (22)

Finally, we have

φ̂j =
e
ηj−log(n/knj ·

n−nj
n−n/k )

1 + e
ηj−log(n/knj ·

n−nj
n−n/k )

(23)

Remark. A careful implementation should be made for instance segmentation tasks. As discussed in
[17], suppressing background samples’ gradient leads to a large number of false positives. Therefore,
we restrict our loss to foreground samples, while applying the standard Sigmoid function to back-
ground samples, and ignore the constant n/k

n−n/k to avoid penalizing the background class. Please
refer to our code for the above-mentioned implementation details.

A.3 Proof to Theorem 2

Setup. Firstly, we define f as,
f(x) := −l(θ) + t (24)

where l(θ) and t is previously defined in the main paper.

Let errj(t) be the 0-1 loss on example from class j

errj(t) = Pr
(x,y)∈Sj

[f(x) < 0] = Pr
(x,y)∈Sj

[l(θ) > t] (25)

and errγ,j(t) be the 0-1 margin loss on example from class j

errγ,j(t) = Pr
(x,y)∈Sj

[f(x) < γj ] = Pr
(x,y)∈Sj

[l(θ) + γj > t] (26)

Let ˆerrγ,j(t) denote the empirical variant of errγ,j(t).

Proof. For any δ > 0 and with probability at least 1− δ, for all γj > 0, and f ∈ F , Theorem 2 in
[7] directly gives us

errj(t) ≤ ˆerrγ,j(t) +
4

γj
R̂j(F) +

√
log(log2

4B
γj

)

nj
+

√
log(1/δ)

2nj
(27)

where sup(x,y)∈S |l(θ) − t| ≤ B and R̂j(F) denotes the empirical Rademacher complexity of
function family F . By applying [1]’s analysis on the empirical Rademacher complexity and union
bound over all classes, we have the generalization error bound for the loss on a balanced test set

errbal(t) ≤
1

k

k∑
j=1

(
ˆerrγ,j(t) +

4

γj

√
C(F)
nj

+ εj(γj)
)

(28)

where

εj(γj) ,

√
log(log2

4B
γj

)

nj
+

√
log(1/δ)

2nj
(29)

is a low-order term of nj . To minimize the generalization error bound Eqn. 27, we essentially need
to minimize

k∑
j=1

4

γj

√
C(F)
nj

(30)
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By constraining the sum of γ as
∑k
j=1 γj = β, we can directly apply Cauchy-Schwarz inequality to

solve the optimal γ

γ∗j =
βn
−1/4
j∑k

i=1 n
−1/4
i

. (31)

A.4 Proof to Corollary 2.1

Preliminary. Notice that l̂∗j (θ) = lj(θ) + γ∗j can not be achieved for all class j, since − log φ̂∗j =
− log φj + γ∗j and γ∗j > 0 implies

φ̂∗j < φj ;
k∑
j=1

φ̂∗j <
k∑
j=1

φj = 1 (32)

The equation above contradicts the definition that the sum of φ̂∗ should be exactly equal to 1. To
solve the contradiction, we introduce a term γbase > 0, such that

− log φ̂∗j = − log φj − γbase + γ∗j ;

k∑
j=1

φ̂∗j = 1 (33)

To justify the new term γbase, we recall the definition of error

errγ,j(t) = Pr
(x,y)∈Sj

[l(θ) + γj > t]; errbal(t) = Pr
(x,y)∈Sbal

[l(θ) > t] (34)

If we tweak the threshold t with the term γbase

errγ,j(t+ γbase) = Pr
(x,y)∈Sj

[l(θ) + γj > t+ γbase] = Pr
(x,y)∈Sj

[(l(θ)− γbase) + γj > t] (35)

errbal(t+ γbase) = Pr
(x,y)∈Sbal

[l(θ) > t+ γbase] = Pr
(x,y)∈Sbal

[(l(θ)− γbase) > t] (36)

As γ∗ is not a function of t, the value of γ∗ will not be affected by the tweak. Thus, instead of looking
for l̂∗j (θ) = lj(θ) + γ∗j that minimizes the generalization bound for errbal(t), we are in fact looking
for l̂∗j (θ) = (lj(θ)− γbase) + γ∗j that minimizes generalization bound for errbal(t+ γbase)
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Proof. In this section, we show that l̂j in the corollary is an approximation of l̂∗j .

l̂j(θ)− (lj(θ)− γbase) = log φj − log φ̂j + γbase (37)

= log
eηj∑k
i=1 e

ηi
− log

eηj−log γ
∗
j∑k

i=1 e
ηi−log γ∗i

+ γbase (38)

= log
eηj∑k
i=1 e

ηi
− log

eηj∑k
i=1 e

ηi−log γ∗i +log γ∗j
+ γbase (39)

= log

k∑
i=1

eηi−log γ
∗
i +log γ∗j − log

k∑
i=1

eηi + γbase (40)

= (

k∑
i=1

eηi−log γ
∗
i +log γ∗j −

k∑
i=1

eηi)/α+ γbase (Mean-Value Theorem)

(41)

= (γ∗j

k∑
i=1

1

γ∗i
eηi −

k∑
i=1

eηi)/α+ γbase (42)

≥ (
γ∗j
β
(

k∑
i=1

e
1
2ηi)2 −

k∑
i=1

eηi)/α+ γbase (Cauchy-Schwarz Inequality)

(43)

= (γ∗j
λ

β

k∑
i=1

eηi −
k∑
i=1

eηi)/α+ γbase (1 ≤ λ ≤ k) (44)

≈ γ∗j (let β = 1, γbase = 1) (45)

(46)

where α = d
dx log(x

′) for some x′ in between
∑k
i=1 e

ηi−log γ∗i +log γ∗j and
∑k
i=1 e

ηi , λ is close to 1
when the model converges. Although the approximation holds under some constraints, we show that
it approximately minimizes the generalization bound derived in the last section.

A.5 Derivation for Eqn.12

Gradient for positive samples:

∂l̂
(s)
y=j(θ)

∂θj
=
∂ − log φ̂

(s)
j

∂θj
(47)

=

∂ − log e
θTj f(x

(s))+lognj∑n
i=1 e

θT
i
f(x(s))+logni

∂θj
(48)

= −
∂θTj f(x

(s)) + log nj

∂θj
+
∂ log

∑n
i=1 e

θTi f(x
(s))+logni

∂θj
(49)

= −f(x(s)) + f(x(s))
eθ
T
j f(x

(s))+lognj∑n
i=1 e

θTi f(x
(s))+logni

(50)

= −f(x(s)) + f(x(s))φ̂
(s)
j (51)

= f(x(s))(φ̂
(s)
j − 1) (52)
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Gradient for negative samples:

∂l̂
(s)
y 6=j(θ)

∂θj
=
∂ − log φ̂

(s)
y

∂θj
(53)

=

∂ − log e
θTy f(x

(s))+logny∑n
i=1 e

θT
i
f(x(s))+logni

∂θj
(54)

= −
∂θTy f(x

(s)) + log ny

∂θj
+
∂ log

∑n
i=1 e

θTi f(x
(s))+logni

∂θj
(55)

= f(x(s))
eθ
T
j f(x

(s))+lognj∑n
i=1 e

θTi f(x
(s))+logni

(56)

= f(x(s))φ̂
(s)
j (57)

Overall gradients on the training dataset:

n∑
s=1

l(s)(θ) =

nj∑
s=1

l
(s)
y=j(θ) +

k∑
i6=j

ni∑
s=1

l
(s)
y=i(θ) (58)

=

nj∑
s=1

f(x(s))(φ̂
(s)
j − 1) +

k∑
i 6=j

ni∑
s=1

f(x(s))φ̂
(s)
j (59)

With Class-Balanced Sampling (CBS), number of samples in each class is equalized and therefore
changed from ni and nj to B/k

B∑
s=1

l(s)(θ) =

B/k∑
s=1

f(x(s))(φ̂
(s)
j − 1) +

k∑
i 6=j

B/k∑
s=1

f(x(s))φ̂
(s)
j (60)

Set the overall gradient of a training batch to be zero gives

B/k∑
s=1

f(x(s))(1− φ̂(s)j )−
k∑
i 6=j

B/k∑
s=1

f(x(s))φ̂
(s)
j = 0 (61)

We can also rewrite the equation using empirical expectation

1

nj
E(x+,y=j)∼Dtrain [f(x

+)(1− φ̂j)]−
k∑
i 6=j

1

ni
E(x−,y=i)∼Dtrain [f(x

−)φ̂j ] = 0 (62)

Then we make the following approximation when the training loss is close to 0, i.e., φ̂y → 1

lim
φ̂y→1

nye
ηy

nyeηy +
∑k
i 6=y nie

ηi
= 1 (63)

lim
φ̂y→1

1

1 +
∑k
i 6=y

ni
ny
eηi−ηy

= 1 (64)

lim
φ̂y→1

k∑
i 6=y

ni
ny
eηi−ηy = 0 (65)

lim
φ̂y→1

k∑
i 6=y

eηi−ηy = 0 (66)
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for positive samples:

lim
φ̂y=j→1

φ̂j/φj = lim
φ̂y=j→1

nye
ηy

nyeηy +
∑k
i 6=y nie

ηi
/

eηy

eηy +
∑k
i6=y e

ηi
(67)

= lim
φ̂y=j→1

nye
ηy

eηy
·

eηy +
∑k
i 6=y e

ηi

nyeηy +
∑k
i 6=y nie

ηi
(68)

= lim
φ̂y=j→1

ny ·
1

ny
·

1 +
∑k
i 6=y e

ηi−ηy

1 +
∑k
i 6=y

ni
ny
eηi−ηy

(69)

= lim
φ̂y=j→1

ny ·
1

ny
· 1 + 0

1 + 0
(70)

= 1 (71)

for negative samples:

lim
φ̂y 6=j→1

φ̂j/φj = lim
φ̂y 6=j→1

nje
ηj

nyeηy +
∑k
i 6=y nie

ηi
/

eηj

eηy +
∑k
i6=y e

ηi
(72)

= lim
φ̂y 6=j→1

nje
ηj

eηj
·

eηy +
∑k
i 6=y e

ηi

nyeηy +
∑k
i 6=y nie

ηi
(73)

= lim
φ̂y 6=j→1

nj ·
1

ny
·

1 +
∑k
i 6=y e

ηi−ηy

1 +
∑k
i 6=y

ni
ny
eηi−ηy

(74)

= lim
φ̂y 6=j→1

nj ·
1

ny
· 1 + 0

1 + 0
(75)

= nj/ny (76)

Therefore, when φ̂y → 1, Eqn.62 can be expanded as

1

nj
E(x+,y=j)∼Dtrain [f(x

+)(1− φj)]−
k∑
i 6=j

1

ni
E(x−,y=i)∼Dtrain [f(x

−)φj
nj
ni

] ≈ 0 (77)

That is

1

n2j
E(x+,y=j)∼Dtrain [f(x

+)(1− φj)]−
k∑
i6=j

1

n2i
E(x−,y=i)∼Dtrain [f(x

−)φj ] ≈ 0 (78)

B Detailed Description for Meta Sampler and Meta Reweighter

B.1 Meta Sampler

To estimate the optimal sample rate, we first make the sampler differentiable. Normally, class-
balanced samplers take following steps:

1. Define a class sample distribution π = π
1{y=1}
1 π

1{y=2}
2 . . . π

1{y=k}
k .

2. Assign πj to all instance-label pairs (x, y = j) and normalize over the dataset, to give the
instance sample distribution ρ = ρ

1{i=1}
1 ρ

1{i=2}
2 . . . ρ

1{i=n}
n .

3. Draw discrete image indexes from ρ to form a batch with a size b.
4. Augment the images and feed images into a model.

The steps where discrete sampling and image augmentation happen are usually not differentiable. We
propose a simple yet effective method to back-propagate the gradient directly from the loss to the
learnable sample rates.
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Firstly, we use the Straight-through Gumbel Estimator [6] to approximate the gradient through the
multinomial sampling:

sj =
((log ρj + gj)/τ)∑n

i=1 exp((log(ρi + gi)/τ))
(79)

where s is the sample result, g is i.i.d. samples drawn from Gumbel(0, 1) and τ is the temperature
coefficient. Straight-through means that we use argmax to discretize s to (0,1) during forward and use
∇s during backward. Gumbel-Softmax re-parameterization is commonly found to have less variance
in gradient estimation than score functions [6].

Then, we use an external memory to connect sampler with loss. We use the Straight-through Gumbel
Estimator to draw b discrete samples from ρ, we denote as sb×n. sb×n is matrix of a n-dimensional
one-hot vectors, representing b selected images. Concretely, for the i-th sample, if the Gumbel
Estimator gives a sampling result to be c-th image, we have s(i) to be

s
(i)
j =

{
1, if j = c

0, otherwise
(80)

We save this matrix into an external memory during data preparation. After obtaining the classification
loss l(θ), which is the i-th loss in the batch computed from the c-th sample, we re-weight the loss by

l̃(i)(θ) = l(i)(θ) · s(i)c (81)

Notice that the re-weight will not change the loss value, it only connects sampling results with the
classification loss in the computation graph. By doing so, the gradient from the loss can directly
reach the learnable sample rate π.

B.2 Meta Reweighter

Since one image might contain multiple instances from several categories, we use Meta Reweighter,
rather than Meta Sampler on the LVIS dataset. Specifically, we assign the loss weight for instance
i to be ρi = πj , where π is a learnable class weight and j is the class label of instance i. Next, we
perform similar bi-level optimization as in Meta Sampler, where we re-weight the loss of an instance
by its loss weight ρi instead of a discrete 0-1 sampling result si.

C Implementation Details

C.1 Hardware

We use Intel Xeon Gold 6148 CPU @ 2.40GHz with Nvidia V100 GPU for model training. We take
a single GPU to train models on CIFAR-10-LT, CIRFAR-100-LT, ImageNet-LT and Places-LT, and 8
GPUs to train models on LVIS.

C.2 Software

We implement our proposed algorithm with PyTorch-1.3.0 [14] for all experiments. Second-order
derivatives are computed with Higher [4] library.

C.3 Training details

Decoupled Training. Through the paper, we refer to decoupled training as training the last linear
classifier on a fixed feature extractor obtained from instance-balanced training.

Meta Sampler/Reweighter. We apply Meta Sampler/Reweighter only when decoupled training to
save computational costs. We start them at the beginning of the decoupled training with no deferment.

CIFAR-10-LT and CIFAR-100-LT. All experiments use ResNet-32 as backbone like [2]. We use
Nesterov SGD with momentum 0.9 and weight-decay 0.0005 for training. We use a total mini-batch
size of 512 images on a single GPU. The learning rate increased from 0.05 to 0.1 in the first 800
iterations. Cosine scheduler [13] is applied afterward, with a minimum learning rate of 0. Our
augmentation follows [17]. In testing, the image size is 32x32. In end-to-end training, the model
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is trained for 13K iterations. In decoupled training experiments, we fix the Softmax model, i.e.,
the instance-balanced baseline model obtained from the previous end-to-end training, as the feature
extractor. And the classifier is trained for 2K iterations. For Meta Sampler and Meta Reweighter,
we use Adam[9] with betas (0.9, 0.99) and weight decay 0. The learning rate is set to 0.01 with no
warm-up strategy or scheduler applied. The meta-set is formed by randomly sampling 512 images
from the training set with replacement, using Class-Balanced Sampling.

ImageNet-LT and Places-LT. We follow the setup in [8] for decoupled classifier retraining. We first
train a base model without any bells and whistles following Kang et al. [8] for these two datasets. For
ImageNet-LT, the model is trained for 90 epochs from scratch. For Places-LT, we choose ResNet-152
as the backbone network pre-trained on the full ImageNet-2012 dataset and train it on Places-LT
following Kang et al [8]. For both datasets, we use SGD optimizer with momentum 0.9, batch size
512, cosine learning rate schedule [13] decaying from 0.2 to 0 and image resolution 224× 224.

After obtaining the base model, we retrain the last linear classifier. For Meta Sampler, we use Adam[9]
with betas (0.9, 0.99) and weight decay 0. The learning rate is set to 0.01 with no warm-up strategy
and is kept unchanged during the training process. The meta-set is formed by randomly sampling 512
images from the training set with replacement, using Class-Balanced Sampling. For ImageNet-LT,
we use SGD optimizer with momentum 0.9, batch size 512, cosine learning rate schedule decaying
from 0.2 to 0 for 10 epochs. For Places-LT, we use SGD optimizer with momentum 0.9, batch size
128, cosine learning rate schedule decaying from 0.01 to 0 for 10 epochs.

For the training process, we resize the image to 224× 224. During testing, we first resize the image
to 256× 256 and do center-crop to obtain an image of 224× 224.

LVIS. We use the off-the-shelf model Mask R-CNN with the backbone network ResNet-50 for LVIS.
The backbone network is pre-trained on ImageNet. We follow the setup (including Repeat Factor
Sampling) from the original dataset paper [5] for two baseline models (Softmax and Sigmoid). We
use an SGD optimizer with 0.9 momentum, 0.01 initial learning rate, and 0.0001 weight decay. The
model is trained for 90k iterations with 8 images per mini-batch. The learning rate is dropped by a
factor of 10 at both 60k iterations and 80k iterations.

Methods other than baselines are trained under the decoupled training scheme, with the above-
mentioned models as the base model. Slightly different from the decoupled training for classification
tasks [8], we fine-tune the bounding box classifier (one fully connected layer) instead of retraining
it from scratch. This significantly saves the training time. We use an SGD optimizer with 0.9
momentum, 0.02 initial learning rate, and 0.0001 weight decay. The model is trained for 22k
iterations with 8 images per mini-batch. The learning rate is dropped by a factor of 10 at both 11k
iterations and 18k iterations.

For our method with a Meta Reweighter, we use Adam optimizer with 0.001 for the Meta Reweighter
and train the Meta Reweighter together with the model. The learning rate is kept unchanged during
the training process.

We apply scale jitter and random flip at training time (sampling image scale for the shorter side from
640, 672, 704, 736, 768, 800). For testing, images are resized to a shorter image edge of 800 pixels;
no test-time augmentation is used.

C.4 Meta-learned sample rates with Softmax and Balanced Softmax

Figure 1 demonstrates that compared with standard Softmax function, Meta Sampler learns a more
balanced sample rates with our proposed Balanced Softmax. The sample rates for all the classes are
initialized with 0.5 and are constrained in the range of (0,1).

The blue bar represents the learned sample rates with standard Softmax. The sample rates of tail
classes approach 1 while the sample rates of head classes approach 0. Such an extreme divergence in
sample rates could potentially pose challenges to the meta-learning optimization process. A very low
optimal learning rate may also not be numerically stable.

With Balanced Softmax, we can see that Meta Sampler produces a more balanced distribution of
sample rates. After convergence, the sample rates for Softmax has a variance of 0.13. Balanced
Softmax significantly reduces the variance to 0.03.
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class 1 class 20 class 40 class 60 class 80 class 1000.0

0.2

0.4
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0.8

1.0

Softmax
Balanced Softmax

Figure 1: Learned sample rates with Meta-Sampler when training with Softmax and Balanced
Softmax. The experiment is on CIFAR-100-LT with imbalanced factor 200. The X-axis denotes
classes with a decreasing number of training samples. Y-axis denotes sample rates for different
classes. Balanced Softmax gives a smoother distribution compared to Softmax.

D More Details Regarding Datasets

D.1 Basic information

We hereby provide more details about datasets mentioned in the paper in Table 1

Dataset #Classes Imbalance Factor #Train Instances Head Class Size Tail Class Size
CIFAR-10-LT [10] 10 10-200 50,000 – 11,203 5,000 500-25
CIFAR-100-LT [10] 100 10-200 50,000 – 9,502 500 50-2
ImageNet-LT [12] 1,000 256 115,846 1280 5
Places-LT [18] 365 996 62,500 4,980 5
LVIS [5] 1,230 26,148 693,958 26,148 1

Table 1: Details of long-tailed datatsets. Notice that for both CIFAR-10-LT and CIFAR-100-LT, the
number of tail class varies with different imbalance factors.

All the datasets are publicly available for downloading, we provide the download link as follows:
ImageNet, CIFAR-10 and CIFAR-100, Places365, and LVIS.

D.2 Long-tailed datasets generation

CIFAR10-LT and CIFAR100-LT. We generated the long-tailed version of CIFAR-10 and CIFAR-
100 following Cui et al. [2]. For both the original CIFAR-10 and CIFAR-100, they contain 50000
training images and 10000 test images at a size of 32× 32 uniformly distributed in 10 classes and
100 classes. The long-tailed version is created by randomly reducing training samples. In particular,
the number of samples in the y-th class is nyµy , where ny is the original number of training samples
in the class and µ ∈ (0, 1). By varying µ, we generate three training sets with the imbalance factors
of 200, 100, and 10. The test set is kept unchanged and balance.

ImageNet-LT. We use the long-tailed version of ImageNet from Liu et al. [12]. It is created by
firstly sampling the class sizes from a Pareto distribution with the power value α = 6, followed by
sampling the corresponding number of images for each class. The ImageNet-LT dataset has 115,846
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Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance Factor 200 100 10 200 100 10
Focal Loss∗ [11] 65.29 70.38 86.66 35.62 38.41 55.78
Class Balanced Loss∗ [2] 68.89 74.57 87.49 36.23 39.60 57.99
L2RW∗ [15] 66.51 74.16 85.19 33.38 40.23 53.73
LDAM† [1] - 73.35 86.96 - 39.6 56.91
LDAM-DRW† [1] - 77.03 88.16 - 42.04 58.71
Meta-Weight-Net∗ [16] 68.89 75.21 87.84 37.91 42.09 58.46
Equalization Loss‡ [17] - - - 43.38 - -
BALMS 81.5 84.9 91.3 45.5 50.8 63.0

Table 2: Comparisons with reported SOTA results on Top 1 accuracy for CIFAR-LT. * indicates
results reported in [16]. † indicates results reported in [1]. ‡ indicates results reported in [17].

Feature Training Classifier Training Accuracy
Softmax Softmax 69.53
Softmax+CBS Softmax 57.06
Balanced Softmax Softmax 65.75
Softmax Softmax+CBS 76.59
Softmax+CBS Softmax+CBS 63.96
Balanced Softmax Softmax+CBS 75.35
Softmax Balanced Softmax 78.53
Softmax+CBS Balanced Softmax 68.24
Balanced Softmax Balanced Softmax 77.04

Table 3: Comparison of decoupled training results with features from Softmax and Balanced Softmax.
The experiment is on CIFAR-10-LT with imbalanced factor 200. The Softmax pretrained features
generally outperform the Balanced Softmax pretrained features.

training images in 1,000 classes, and its imbalance factor is 256 as shown in Table 1. The original
ImageNet [3] validation set is used as the test set, which contains 50 images for each class.

Places-LT. In a similar spirit to the long-tailed ImageNet, a long-tailed version of the Places-365
dataset is generated using the same strategy as above. It contains 62,500 training images from 365
classes with an imbalance factor 996. In the test set, there are 100 test images for each class.

LVIS. We use official training and validation split from LVIS [5]. No modification is made.

E Comparisons with Reported SOTA Results on CIFAR-LT

We used our reproduced results on CIFAR-LT in the empirical analysis section in the paper since
prior works chose different baselines and cannot be fairly compared with. Table 2 compares our
method with more results originally reported in corresponding papers.

F More Visualizations and Analysis

F.1 Visualization and analysis on the feature space of Balanced Softmax

Recent work [8] shows that instance-balanced training results in the best feature space in practice. In
this section, we use t-SNE to visualize the feature space created by Balanced Softmax. The result is
shown in Fig. 2. The following pattern can be observed: CBS and Balanced Softmax tend to have a
more concentrated center area compared to the Softmax baseline. This indicates that the Softmax
baseline’s features are more suitable for the classification task than Balanced Softmax and CBS’s.
Further empirical analysis in Table 3 advocates the claim.
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Softmax Softmax+CBS Balanced Softmax

Figure 2: t-SNE visualization of the feature space created by different methods. The experiment is
on CIFAR-10-LT with imbalanced factor 200. The 10 colors represent the 10 classes. Compared to
Softmax, Softmax+CBS and Balanced Softmax have a more concentrated center area, making them
less suitable for classification.

F.2 Visualization of re-sampling’s effect towards training

We use a two-dimensional, three-way classification example to demonstrate re-sampling’s effect on
training a one-layer linear classifier either with standard Softamx or with Balanced Softmax. The
result, shown in Figure 3, confirms that the linear classifier’s solution is unaffected by re-sampling.
Meanwhile, different re-sampling strategies have different effects on the optimization process, where
CBS causes the over-balance problem to Balanced Softmax’s optimization.

Method

Iterations

Softmax

Softmax
+ CBS

Balanced Softmax

Balanced Softmax
+ CBS

1000 5000 25000 125000

Figure 3: Visualization of decision boundaries over iterations with different training setups. We
create an imbalanced, two-dimensional, dummy dataset of three classes: red, yellow and blue. The
red point represents 10000 red samples, the yellow point represents 100 yellow samples and the blue
point represents 1 blue sample. Background shading shows the decision surface. Both Softmax and
Softmax+CBS converge to symmetric decision boundaries, and Softmax+CBS converges faster than
Softmax. Note that symmetric decision boundaries do not optimize for the generalization error bound
on an imbalanced dataset [1]. Both Balanced Softmax and Balanced Softmax+CBS converge to a
better solution: they successfully push the decision boundary from the minority class toward the
majority class. Compared to Balanced Softmax, Balanced Softmax+CBS shows the over-balance
problem: its optimization is dominated by the minority class.
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