Learning Loss for Test-Time Augmentation

Ildoo Kim* Younghoon Kim*
Kakao Brain Sungshin Women’s University
ildoo.kim@kakaobrain.com yhkim@sungshin.ac.kr

Sungwoong Kim
Kakao Brain
swkim@kakaobrain.com

Abstract

Data augmentation has been actively studied for robust neural networks. Most
of the recent data augmentation methods focus on augmenting datasets during
the training phase. At the testing phase, simple transformations are still widely
used for test-time augmentation. This paper proposes a novel instance-level test-
time augmentation that efficiently selects suitable transformations for a test input.
Our proposed method involves an auxiliary module to predict the loss of each
possible transformation given the input. Then, the transformations having lower
predicted losses are applied to the input. The network obtains the results by
averaging the prediction results of augmented inputs. Experimental results on
several image classification benchmarks show that the proposed instance-aware test-
time augmentation improves the model’s robustness against various corruptions.

1 Introduction

Various autonomous systems (e.g., autonomous vehicle [[11], medical diagnosis [2,158]], fault detection
in the manufacturing process [27]) try to adopt neural networks as visual recognition module. The
neural networks efficiently learn visual patterns to classify critical objects such as humans on the
roads, cancers in our body, and manufacturing products’ faults. Although recent research on deep
learning with the benchmark datasets has shown promising results [5 [44], robustness problems can
arise in real-world applications. As shown in previous works [19} 20, [15], the classification result
can be easily broken even with slight deformations to the input image. In processing an input image
using neural networks in real-world situations, several variations or corruptions can occur, leading
to unexpected results [38]]. Ensuring robustness is mission-critical in many applications, so many
researchers have focused on the problem of neural networks [[16, |51} 135 13,139, [31]].

Recently, advanced data augmentation techniques have been proposed to improve the robustness of
neural networks [47, 57, (7, 59} 155,15, 29]. Automatically searching augmentation policies in a data-
driven manner [5,29] is critical to achieve the state-of-the-art result [23] 144]]. Although the methods
enhance the robustness of networks significantly, there are potentials to improve the performance with
data augmentation in the testing phase. We empirically observe that simple deformations of input
images at test time cause significant performance drop even the network is trained with advanced data
augmentation. Moreover, we verify that there is still a large room to improve the trained network’s
performance with the appropriate data transformation at the testing phase.

Test-time augmentation of the input data has often been used to produce more robust prediction
results. Given a test input image, it averages the network’s predictions over multiple transformations

*Equal Contribution.
"Corresponding Author.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Augmented Predicted
Input Predefined Input Input Loss

Augmentations - — : :
4, g Average §F% Loss « 08 Single
> > SR 20 e 01" BERE [Model
0° Ensemble B | Prediction s Prediction

z T | VB

’ e A"..

90° - k R

A

W_>

(a) (b)

[a—

Figure 1: Conceptual comparison between conventional test-time augmentation and the proposed
test-time augmentation. (a) Conventional test-time augmentation. (b) Our proposed test-time aug-
mentation. Previous test-time augmentations use prefixed transformations regardless of input. On the
other hand, our method predicts the loss value for each transformation before choosing one or a few.
Note that this figure shows only one augmentation is selected by predicted losses, i.e. k = 1.

for ensemble effect 26,43, [18]]. However, previous test-time augmentation methods have adopted
simple geometric transformations such as horizontal, vertical flips, and rotations of 90 degrees
[4)153]]. To validate the naive transformations, they augment every input image in substantial amounts
[24] 150, 149]. The procedures naturally increase the inference cost at test time. More recently, [32]
proposed a learnable test-time augmentation method to find static policies from extended search space.
Nevertheless, it performs a greedy search on the test set that is not optimal for each input image. It
also requires an average ensemble of dozens of augmented inputs to improve the performance.

In this work, we propose an instance-aware test-time augmentation algorithm. With a pre-trained
target network, the proposed method aims to select optimal transformations for each test input
dynamically. The method requires measuring the expected effects of each candidate transformation to
classify the image accurately. We develop a separate network to predict the loss of transformed images
(see Figure[T). Note that the loss reflects both the correctness and the certainty of the classification
result. To produce the final classification result, we average the target network’s average classification
outputs over the transformations having lower predicted losses. We compare the proposed test-time
augmentation with the previous approaches on two benchmark datasets. The results demonstrate
that our proposed method achieves more robust performances on deformed datasets. The proposed
method is efficient: 1) the loss prediction network is compact, and 2) the instance-level selection can
significantly reduce the number of augmentations for ensembling. To the best of our knowledge, the
proposed method is the first instance-aware test-time augmentation method.

Our main contributions can be summarized as follows:

e We propose the instance-aware test-time augmentation algorithm based on the loss predictor.
The method enhances image classification performances by dynamically selecting test-time
transformations according to the expected losses.

e The proposed loss predictor can efficiently predict relative losses for all candidate trans-
formations. The predictor makes it possible to select appropriate transformations at the
instance level without a high computational burden.

e Compared with predefined test-time augmentation methods, we demonstrate the effective-
ness of the proposed method on image classification tasks. Especially, we validate the
enhanced robustness of the proposed method empirically against deformations at test time.

2 Related Works

Data Augmentation: Data augmentation is successfully applied to deep learning, ranging from image
classification [6] to speech recognition [1}|17]]. Generally, designing appropriate data transformation
requires substantial domain knowledge in various applications [41}[1,59]. Combining two samples,
searching augmentation policy, and mixing randomly generated augmentations have been proposed to
enhance the diversity of augmented images. Mixup [47, 57] combines two samples, where the label
of the new sample is calculated by the convex combination of one-hot labels. CutMix [S5] cuts the
patches and pastes to augment training images. The labels are also mixed proportionally to the area of

the patches. AutoAugment [} 29] searches the optimal augmentation policy set with reinforcement
learning. AugMix [20]] mixes randomly generated augmentations and uses a Jensen-Shannon loss
to enforce consistency. Although these training data augmentations have shown promising results,
there is still room to improve the performance with testing-phase methods. Moreover, the data
augmentation in the training phase is insufficient to handle the deformation in testing data [32]].

Test-Time Augmentation: Researchers have actively investigated data augmentations in the training
phase, transforming data before inference has received less attention. The basic test-time augmentation
combines multiple inference results using multiple data augmentations at test time to classify one
image. For example, [26} 43| 18] ensemble the predicted results of five cropped images where one is
for central and others for each corner of the image. Mixup inference [36]] mixups the input with other
random clean samples. Another strategy is to classify an image by feeding it at multiple resolutions
[18L 41]]. [32]] introduces a greedy policy search to learn a policy for test-time data augmentation
based on the predictive performance over a validation set. In medical segmentation, nnUNet [24]
flips and rotates the given input image to generate 64 variants. Then, they use the average of those
results to predict. Similar approaches have been studied in [50} 149].

Uncertainty Measure: Measuring uncertainty plays an important role in decision making with
deep neural networks [13]]. In the classification and segmentation tasks, the user makes subsequent
revisions in the final decision with estimated uncertainty [45} 28| 34, |33]]. Some methods have used
the loss estimation [[12, 140} 154]. The loss of the trained model for each input implies the certainty
of the output for the corresponding input. Therefore, by estimating the loss, we can measure the
uncertainty directly. [[1240] have calculated the loss of training data to improve performance. They
regard training data with high losses, which implies high uncertainty, as being important for model
improvement. Recently, [54] proposed to predict the loss values to measure the uncertainty of
unlabeled ones directly. They added a small auxiliary module to the target network and trained it
using the margin-ranking loss. We also measure the uncertainty of the available transformation with a
loss prediction module; however, we use a separate module to predict relative loss values for test-time
augmentation rather than active learning.

Robustness in Convolutional Neural Network: A convolutional neural network is vulnerable to
simple corruption. This vulnerability has been studied in several works. [9] explains that even
after networks are fine-tuned to be robust against Gaussian noise or blur, the networks lag behind
human visual capabilities. [14] explains that the generalization performance of fine-tuned networks
for specific corruption is poor. [19] proposes corrupted and perturbed ImageNet datasets and a
training-time data augmentation method to alleviate the convolutional neural network’s fragility. [48]]
fine-tuned blurred images and found that fine-tuning for one type of blur cannot be generalized to the
other types of blur. [8]] solves the under-fitting of corrupted data by using corruption-specific experts.
[46] demonstrated the robustness of deep models with the use of mixup. The findings of their paper
are, Mixup can be used for improving the certainty in predictions by tempering the overconfident
predictions on random Gaussian noise perturbations as well as out-of-distribution images to some
extent. [19] found that more representations, more redundancy, and more capacity significantly
enhance the robustness of networks against corrupted inputs. Increasing the capacity of networks is
simple and effective but requires a substantial amount of computational resources.

3 Method

In this section, we describe the proposed method in detail. We begin with the description of the overall
test-time augmentation procedure in Section[3.1] Then, we introduce our discretized transformation
space in Section [3.2] Our novel loss prediction module and the method to train this module are
introduced in Section [3.3]and [3.4] respectively. Details on implementation are in Appendix [A.3]

3.1 Test-Time Augmentation

We start this section with a formal definition of test-time augmentation. Let x be a given input
image and 7 be a transformation operation. If one chooses 7 = {71, 72, ..., Tjr; } as a candidate set of
augmentations at test time, applying conventional test-time augmentation can be formulated as:

Ytta = mz Gtarget(Ti(I))a (1)

=1

Predefined Augmented Real Relative
Input Aygmentations Input Losses Losses

—? —>‘ Trained Target Model ©arget }—V Yioss (T1(2))

z
T —>‘ Trained Target Model ©Oyarger }—’ Yioss (T2 (2)) §
- o = ===
. . . . 1
. . . : 1
- m o
W —>’ Trained Target Model ©arget }" Yioss (77 (2)) I
Spearman
Correlation
Ranking Loss
Toput T :
] 1
e . I
., [— Tz elizlllz o
. ; Mid- AO|lO o~ < -
b Block :
z : I —— -
3 ®)
] @loss

Figure 2: The training process of the proposed loss predictor. The upper part shows how we can get
the relative loss values. The lower illustrates our loss prediction network. Given an input z, every
possible input transformed by candidate transformations is evaluated on the trained target model,
Otarget, to get the real loss value. We normalize the real loss values from every transformed z to
calculate the relative loss values, ¥;,ss. Our loss prediction network ©,,,, aggregates multi-level
features to predict the relative loss values. The loss predictor is trained by ranking loss. Note that we
only train O,s; While ©y4rge is fixed.

where Oyqrget is the neural network trained on the target dataset. For example, ensemble
5 different crops and their horizontally flipped versions, which means ensembling by averaging
prediction results of 10 images. If one can sort out an optimal set of transformations 7, from
k-sized transformation subsets Ty, = {71, 72, ..., 7 } C T, test-time augmentation can be efficiently
conducted as:

1 I7¢ |
Yita = 7*2 Otarget (17 (7)), 2)
T =
where the total computational cost will be reduced by % = %, if the computational cost of

determining 7," can be ignored. As an ideal case, if one wants to improve the performance with
the smallest computation, only the best transformation 7;* can be used. The best transformation is
expected to enhance the performance of the target network optimally.

Here, we would like to dynamically compose 7,*, by selecting top-k transformations having the
k lowest predicted loss values given each input image, as shown in Figure |l To implement the
policy, we require an appropriate loss prediction module, ©;,55. In the following subsections, we
introduce the loss prediction module to estimate relative loss value for each discretized transformation
candidate.

3.2 Test-Time Augmentation Space

Diversifying candidate transformations increases the training cost of a loss prediction module because
it has to compute ground-truth loss values for every possible transform. In contrast, restricting
the diversity of augmentations degrades the effect of data augmentation. Therefore, we design a
moderately diverse augmentation space. We adopt two geometric transformations (rotation, zooming),
two color transformation (color, contrast), and one image filter (sharpness). We discretize the space
within a moderate range: {—20°, 20°} rotations; {0.8, 1.2} zoomings; color-enhancements; an auto-
contrast; and {0.2,0.5, 3.0, 4.0} sharpness-enhancements. To simplify further, we use the union set
of those with no transformation as 7 and apply the transformations individually, rather than using
their combinations i.e 7 = Trotate U TZoom U ... U Trdentity, and |T| = 12. Refer to Appendix
for specific parameters and operation methods.

3.3 Loss Prediction Module: Architecture

The loss prediction module is an essential part of our method to select promising sets of augmentations.
In this subsection, we describe how we design the module to estimate loss values corresponding to
each transformation.

One may want to estimate the loss values directly using the target network. Like the previous loss
predictors [54], the target network can also predict the loss value as an auxiliary output. However, this
requires at least one additional inference on the target network to decide test-time augmentation. It
means that a prediction is at least twice as computationally expensive as a prediction without test-time
augmentation. Therefore, to enhance efficiency, we use a small neural network completely-separated
from the target network. As shown in Figure our loss predictor ©,,4, takes x, original input without
transformations, and predicts relative losses of each transformed input within the given transformation
space 7 such that

yloss = @loss(x)a (3)

where .55 is a | T|-sized vector, representing relative loss values of each transformation 7 € 7.
Any neural network can be chosen for 0,s5. We use EfficientNet-BO [44] since it is the recently
proposed state-of-the-art architecture in image classification with much less computations required.
We also modify it to utilize multi-level features as in [54]. We expect that the network learns a variety
of low-level representations rather than high-level contents only. Note that each feature from the
multiple levels can be dropped during training for regularization.

3.4 Loss Prediction Module: Training Method

In this subsection, we describe how to train the loss prediction module. Let’s say we have a training
dataset Dy,.q4n, a validation dataset D454, and a fully-trained target network ©q,4e¢. The weights
of the target network are trained on Dy,.,;,, and its performance is evaluated on D,,4;;4 as an ordinary
learning scheme. We freeze the target network ©4,ge¢ and split Dyy.q4r, into two folds, Dioss—irain
and Dj,ss—yalig- The first fold will be used to train the loss prediction module and another one
will be used to validate the performance. It could be possible to use disjoined training datasets for
Otarget and Oy, resulting in reduced training data for the target network. We confirmed that the
performance improved marginally in this way, but to increase the usability of our method, we split
training data only for the loss predictor.

To generate the output of the loss prediction module, §;,ss, we gather the ground-truth loss values
Yloss for all possible transformations through inferences on the target network. Namely, as shown in
Figure 2] the input image is transformed by each of augmentations 7 € 7. Then, the transformed
images are fed into the target network to obtain the ground-truth loss value corresponding to 7.
Since in the proposed test-time augmentation, only relative losses are necessary, we normalize the
loss values by taking the softmax function on both the ground-truth loss values and the predicted
loss values. Here, we denote the ground-truth relative loss values as .55, and we use the ranking
loss surrogates proposed in [[10] which directly optimize Spearman correlation between the relative
losses as shown in the rightmost part of the Figure[2] Specifically, to optimize the non-differentiable
Spearman correlation between relative losses and predictions, we trained a recurrent neural network
that approximates the correlation using the official implementatioﬂ for [10]. We observe that
adopting these relative losses with the ranking loss leads to more stable training of the loss prediction
network than the exact loss values.

4 Experiments

In Section [£.1] and 4.2} we evaluate our method on two classification tasks. We choose CIFAR-
100 [25] and ImageNet [6] as standard classification benchmarks and use their corrupted variants,
CIFAR-100-C and ImageNet-C [19]. Those corrupted variants consist of 15 types of algorithmically
generated corruptions ¢ from noise, blur, weather, and digital categories. They also provide four
additional corruptions. Each corruption c¢ has five severity levels, s € {1,2,3,4,5}. We train the

*https://github.com/technicolor-research/sodeep

loss prediction module for augmented training images Dj,ss—¢rqin With 15 corruptions, and then
validate the model on the four additional corruptions. Note that we exclude operations in training-time
augmentation which overlap with the corruptions. Top-1 error rate on corruption ¢ with severity s is
denoted as E ;.

4.1 CIFAR-100 Classification

CIFAR-100 benchmark [25] is one of the most extensively studied classification task, which consists
of 60,000 images. All images in the dataset are 32 by 32 pixels in size, and most images are in good
quality in that the size of the target object is uniform and centered. As proposed in [19} 20], we use
the unnormalized average corruption error, CE, = % Zi:1 E. s, as the metric.

We set up an experiment to compare our proposed method with the conventional simple test-time
augmentations. In Table[I] the method we proposed and the conventional ones were compared. Center-
Crop, Horizontal-Flip and 5-Crops are widely-used test-time augmentations [26) [18]. See Appendix
for more details. Random baseline chooses random test-time augmentation for each input within
our augmentation space. As the result shows, the random baseline does not improve performance,
indicating that our augmentation space is sufficiently diverse. Even though ensemble methods with
Horizontal-Flip or 5-Crops require more than twice the computation cost, those methods improve
the performance marginally. On the other hand, when the proposed method is used, the performance
and the robustness for corrupted data are consistently improved with a negligible computational tax.
For example, Wide-ResNet-40-2 [56]] trained with Fast AutoAugment [[29] scored 45.15% average
error rate on 15 corruptions. With the proposed method with k£ = 1, the error rate is lowered to
41.92%. We remark that this requires only 1% more computations for an inference, which is quite
efficient compared to the conventional methods or the recently-proposed one [32]. Our method can
also leverage the ensemble technique, which can achieve 39.90% at a cost about four times that of
the Center-Crop. The conventional 5-Crop ensemble costs more, but the error rate is 45.27%.

When learning the loss predictor in the above setting, we can consider that some information about
corruption was given, so we added the corruption to training-time augmentation for a comparison. We
add 15 corruption operations to training-time augmentations of AugMix, which denotes AugMix+.
Augmentation operations, including corruptions, are uniformly-sampled for AugMix, in the same
way as other augmentations. The experiment result is shown in Table |2} As expected, performance
has improved significantly in most corruptions. However, for held-out corruptions, which are
excluded in training, performance improvements have not been generalized, and most importantly,
performance fell noticeably for the clean dataset. In the case of our method training loss predictors
with 15 corruptions, it is superior to AugMix+ in terms of stability. The proposed method has better
generalization on the held-out corruption and no degradation on the clean test-set.

As a particular case, we designed an experiment that assumed prior knowledge of a specific type of
corruption, such as blur. We train AugMix and Fast AutoAugment models with four blur corruptions
as an additional training-time augmentation case. We also use the same corruption when we train
our loss predictor. In Table 3] our method improves the robustness on blur corruptions by a large
margin. Remarkably, the proposed method maintains the performance of the clean test-set, regardless
of the training-time augmentation method. On the other hand, when blur corruptions are used as
training-time augmentation without our test-time augmentation, the performance degradation on the
clean test-set could not be prevented.

4.2 ImageNet Classification

ILSVRC 2012 classification benchmark (ImageNet) [6] consists of 1.2 million natural images of
1000 classes. We resize the input image for loss predictor ©;,ss to 64 by 64 pixels to reduce
computational overhead. Other hyperparameters and training settings are same as all experiments
as mentioned in Section[.T)and[A.3] Our loss predictor O, requires negligible computations for
inference compared to the target networks, so the relative cost is almost proportional to the number
of ensembles.

Table [4| shows performances with the baselines and the proposed test-time augmentation on ResNet-
50 [18]]. Our method outperforms by a clear margin over baseline methods. For models trained
with AugMix, ensemble of two augmented images by our methods (i.e. k= 2) lowers mCE for

Table 1: Evaluation result on CIFAR-100(-C) dataset. Metric for corrupted set is average corruption
error, nCE = ﬁ Y. CE..

Train-time Test-time Relative Clean Corrupted Corrupted

Model Augmentation Augmentation Cost Test-set set test-set
Wide-ResNet [S6] AugMix [20] Center-Crop 1.00 23.34 36.15 33.19
Horizontal-Flip 2.00 22.86 35.10 32.17
5-Crops 5.00 22.66 35.80 32.66
Random (k=1) 1.00 28.57 41.59 39.50
Random (k=2) 2.00 25.45 38.06 35.85
Random (k=4) 4.00 23.84 35.94 33.62
Ours (k=1) 1.01 23.31 33.15 30.84
Ours (k=2) 2.01 23.19 33.03 30.80
Ours (k=2)+Flip 4.02 22.69 32.76 30.11
Fast AutoAug [29]] | Center-Crop 1.00 21.39 45.15 41.59
Horizontal-Flip 2.00 20.84 44.28 40.71
5-Crops 5.00 21.46 45.27 41.63
Random (k=1) 1.00 27.30 47.15 43.49
Random (k=2) 2.00 25.55 48.22 45.57
Random (k=4) 4.00 23.33 45.60 43.06
Ours (k=1) 1.01 20.47 41.92 37.57
Ours (k=2) 2.01 20.43 40.84 36.78
Ours (k=2)+Flip 4.02 20.41 39.90 35.89
ResNext [52] AugMix [20] Center-Crop 1.00 20.87 33.73 31.46
Horizontal-Flip 2.00 20.17 33.20 33.06
5-Crops 5.00 20.64 33.52 31.09
Random (k=1) 1.00 25.37 39.03 35.66
Random (k=2) 2.00 22.83 35.61 34.04
Random (k=4) 4.00 21.05 33.67 31.98
Ours (k=1) 1.00 20.94 32.32 30.29
Ours (k=2) 2.00 20.91 3242 30.35
Ours (k=2) + Flip 4.00 20.22 31.90 29.78

Table 2: Comparison with training-time augmentation when corruptions are expected in the test
phase. Adding severely corrupted images to training data by training-time data augmentation can
affect adversely. AugMix+ is trained with corrupted images in training time. All metrics are top-1
error rates (for corrupted test sets, we average for 5-severity levels). It is bold when there is an
improvement of 1% or more, and red when there is more than 1% degradation in performance.

Corruptions Held-out Corruptions
Clean Noise Blur Weather Digital
Method Test-set|Gauss.n Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Bright Contr. Elastic Pixelate JPEG Speckle Gauss.b Spatter Satur.
AugMix 2334 | 54.32 4576 38.10|25.56 49.60 28.93 28.06|34.09 37.18 33.15 26.35|34.42 32.67 33.57 39.75| 43.07 26.85 27.67 35.17
AugMix+ 25.16 | 31.46 29.71 27.28|27.06 35.33 28.93 27.09|30.34 29.03 31.57 27.35|30.87 31.89 29.56 33.66| 29.56 27.52 29.33 35.54
Ours(k =1)| 23.31 | 45.76 29.77 36.78 | 24.93 42.42 27.89 26.85|34.71 36.45 33.23 26.37 |30.78 32.70 28.93 39.75| 38.68 25.82 2599 32.88

(known-)corruptions from 67.72% to 64.55%. Also, it shows generalization performance similar to
the conventional 5-Crops at less than half the computational cost.

We also compare the proposed method with the recently proposed test-time augmentation method,
GPS [32]] using their official code{ﬂ Moreover, we search policies directly on the corrupted dataset
using GPS to see how well it responds to corruption and name it GPSt. Experimental results show
that the proposed method outperforms both GPS and GPSt on ImageNet-C. This means that the
performances of GPS on both seen and unseen corruptions lag behind our proposed method. In
particular, the GPS policies found on the corrupted dataset produce poor results in the clean set,
while our method prevents the performance degradation on the clean set. We confirm by the GPS
code that the search space of GPS includes all our augmentation policies such as “auto-contrast”

*https://github.com/bayesgroup/gps-augment

Table 3: Evaluation after trying to improve performance against blur corruptions. It is bold when there
is an improvement of 1% or more, and red when there is more than 1% degradation in performance.

Clean Corruptions Held-out Corruptions
Method Test-set| Noise Blur Weather Digital Avg. Speckle Gauss.b Spatter Saturate
Fast AutoAug 21.39 |53.82 44.02 35.66 49.26 45.15| 5558 47.86 27.14 35.76
Fast AutoAug (\w Blur)| 22.41 |49.69 2648 33.76 40.89 36.90| 49.51 2448 2791 3644
AugMix 2334 |46.06 33.04 32.89 35.10 36.15| 43.07 2685 27.67 35.17
AugMix (\w Blur) 25.08 [58.62 38.69 36.54 4238 43.09| 53.27 26.12 3690 38.22
Fast AutoAug + Ours 21.44 |53.77 34.85 3571 47.33 42.20| 55.56 31.58 27.31 3589
AugMix + Ours 2335 |44.94 30.49 32.83 34.17 34.98| 4237 2598 2774 35.18

Table 4: ImageNet dataset evaluation result on ResNet-50. GPSt: Greedy Policy Search on the
corrupted dataset.

Train-time Test-time Relative Clean Corrupted set Corrupted Test-set
Augmentation Augmentation Cost Test-set mCE mCE
Standard Center-Crop 1 24.14 78.93 75.42
Horizontal-Flip 2 23.76 7791 74.32
5-Crops 5 2391 77.52 73.87
| 10-Crops 10 | 23.04 | ° 7669 7298
Random(k=1) 1 26.89 82.86 79.81
Random(k =2) 2 25.14 79.91 77.00
| Random(k=4) 4 | 2429 | 824 538
GPS(k=1) 1 24.86 82.13 79.43
GPS(k=2) 2 23.78 76.45 73.32
|GPSGh=d) 4 | B 27 387
GPSt(k=1) 1 27.39 77.21 75.07
GPSt(k=2) 2 27.04 76.48 74.27
(GPStk=4) 4| 2688 | 7600 7384
Ours(k=1) 1 24.14 75.52 74.29
Ours(k =2) 2 24.10 75.00 73.61
Ours(k =2) + Flip 4 23.74 74.00 72.59
AugMix [20] | Center-Crop 1 22.45 67.72 64.67
Horizontal-Flip 2 22.23 67.72 65.91
5-Crops 5 21.71 66.19 63.32
10Crops 10 | 2154 | 667 _ 6276
Random(k=1) 1 24.09 71.07 72.87
Random(k=2) 2 23.04 68.82 66.33
Random(k=4) 4| 2273 | 6730 _ 6488
Ours(k=1) 1 22.38 65.02 63.92
Ours(k=2) 2 22.37 64.55 63.39
Ours(k =2) + H-Flip 4 22.10 63.90 62.71
Ours(k =2) + 5-Crops 10 21.66 63.50 62.33

and “sharpness”; our performance gains come from the proposed instance-specific transformation.
As reported, GPS [32] ensembles prefixed 20 test-time augmented images to improve mCE of the
ResNet-50 model from 68.7% to 67.3%. Our method requires much less cost to achieve this relative
improvement, and a much higher level of performance is also possible. Figure [3| shows selected
examples, which are classified correctly after test-time augmentation.

5 Discussion

Possibilities. In Appendix we demonstrate that performance can be significantly improved,
assuming the lowest loss among augmented images can be selected. In the clean test-set, it beats
the existing state-of-the-art models by a clear margin. Also, for the corrupted test-set, such as

(b)

Rotation Sharpen 0.2

© =

Contrast Auto-Contrast Defocus Blur Sharpen 4.0

Figure 3: Selected Examples which are correctly classified by the proposed method. Left: Corrupted
image, Middle: Scatter plot of predictions (x) and actual loss values (y), Right: Test-time augmented
image by our method. In the Scatter Plot, the red circle corresponds to the augmented image that
matches the label, and the blue triangle does not. Note that it was processed to exaggerate the
corruption than the actual image in the case of (b) and (d).

ImageNet-C and CIFAR-100-C, models can be close to clean data performance. Also, a well-
designed augmentation space will be beneficial. In this work, we found some augmentation operations
contributed to some specific corruptions, e.g., sharpness enhancements for noise corruptions. By
adding sophisticated augmentation operations with a clear purpose, e.g., deblur for blurred images, it
is expected that large performance improvement can be achieved.

Learning Loss Prediction Module. As the accuracy of the learned loss predictor increases, the
performance of the proposed method may increase, so we examined how well the learned loss
predictor works. For ImageNet experiments, loss predictions from our loss predictors have an average
correlation of 0.38 on validation set Dj,ss—yq1iq and 0.30 on test set Dy, ;. In [534], the correlation
between predicted losses and ground-truth values for unseen data was 0.68, but our loss prediction
seems to be a more difficult problem because we predict the change of loss by transformation for
the same data. Since our method predicts a loss with a rather weak correlation, it works well for
ensembles when k < 2.

Limitations. One of the things we discovered while conducting various experiments was that it
was ineffective to train the loss predictor for some target models. For example, we were unable
to train appropriate loss predictors for models trained with CutMix. It was also difficult to train a
loss predictor that works well for some corruptions included in training-time augmentation. For
those cases, we conjecture that loss values are quite noisy to predict as predictions from a neural
network would fluctuate by a small perturbation [19]]. Further investigation on these problems could
be essential to make instance-aware test-time augmentation remarkably successful.

6 Conclusion

We propose a novel instance-aware test-time augmentation. The method introduces a loss prediction
network to determine appropriate image transformations in test time. Unlike the previous ensemble-
based methods, the proposed method is computationally efficient and practical to use in real-world
situations. The loss prediction module enhances the classification accuracy and robustness against
deformation in test time with a low computational cost. Although the method shows promising
results, there is still room for improving the method. In this paper, we used a limited number of
transformations and their specifications. To enhance robustness in real-world situations, we plan
to study more general settings for loss prediction networks. Reinforcement learning methods are
good candidates to optimize the loss prediction networks efficiently. Since the proposed framework
can apply to other domains, we will validate our method in various image tasks such as object
detection and segmentation. Moreover, examining the relationship between training- and test-time
augmentation is also crucial in future work because sophisticated combining of two augmentations
can further improve the performance of neural networks. We also expect future works to be conducted
to use less cost while including more augmentations.

Broader Impact

Regardless of the state of the given data, using it as an input of the neural network with the same
pre-processing can be ineffective in terms of performance and stability. We propose a novel instance-
aware test-time augmentation. If a deep learning model is in the deployment stage, it can be expected
to increase stability and performance through the proposed method. However, it is still necessary
to verify the stability and generalization of the proposed method because it is in an early stage of
research for instance-aware test-time augmentation. At this time, the performance of deep learning
models may be degraded in unexpected situations, although we haven’t described specific conditions.

References

[1] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete problems
in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[2] M. Aubreville, C. Knipfer, N. Oetter, C. Jaremenko, E. Rodner, J. Denzler, C. Bohr, H. Neumann,
F. Stelzle, and A. Maier. Automatic classification of cancerous tissue in laserendomicroscopy
images of the oral cavity using deep learning. Scientific reports, 7(1):1-10, 2017.

[3] J.-H. Choi, H. Zhang, J.-H. Kim, C.-J. Hsieh, and J.-S. Lee. Evaluating robustness of deep
image super-resolution against adversarial attacks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 303-311, 2019.

[4] C. Clausner, A. Antonacopoulos, and S. Pletschacher. Icdar2019 competition on recognition of
documents with complex layouts-rdcl2019. In 2019 International Conference on Document
Analysis and Recognition (ICDAR), pages 1521-1526. IEEE, 2019.

[5] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning
augmentation strategies from data. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 113—-123, 2019.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248-255. Teee, 2009.

[7] T. DeVries and G. W. Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

[8] S. Dodge and L. Karam. Quality resilient deep neural networks. arXiv preprint
arXiv:1703.08119, 2017.

[9] S. Dodge and L. Karam. A study and comparison of human and deep learning recognition
performance under visual distortions. In 2017 26th international conference on computer
communication and networks (ICCCN), pages 1-7. IEEE, 2017.

[10] M. Engilberge, L. Chevallier, P. Pérez, and M. Cord. Sodeep: a sorting deep net to learn ranking
loss surrogates. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 10792—-10801, 2019.

[11] H. M. Eraqi, M. N. Moustafa, and J. Honer. End-to-end deep learning for steering autonomous
vehicles considering temporal dependencies. arXiv preprint arXiv:1710.03804, 2017.

[12] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with
discriminatively trained part-based models. IEEE transactions on pattern analysis and machine
intelligence, 32(9):1627-1645, 20009.

[13] Y. Gal. Uncertainty in deep learning. University of Cambridge, 1:3, 2016.

[14] R. Geirhos, D. H. Janssen, H. H. Schiitt, J. Rauber, M. Bethge, and F. A. Wichmann. Comparing
deep neural networks against humans: object recognition when the signal gets weaker. arXiv
preprint arXiv:1706.06969, 2017.

[15] I.J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[16] G. Goswami, N. Ratha, A. Agarwal, R. Singh, and M. Vatsa. Unravelling robustness of deep
learning based face recognition against adversarial attacks. arXiv preprint arXiv:1803.00401,
2018.

[17] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770—
778, 2016.

10

[19] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. Proceedings of the International Conference on Learning Representa-
tions, 2019.

[20] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan. Augmix:
A simple data processing method to improve robustness and uncertainty. arXiv preprint
arXiv:1912.02781, 2019.

[21] E. Hoffer, T. Ben-Nun, I. Hubara, N. Giladi, T. Hoefler, and D. Soudry. Augment your batch:
better training with larger batches. arXiv preprint arXiv:1901.09335, 2019.

[22] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic
depth. In European conference on computer vision, pages 646—661. Springer, 2016.

[23] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen. Gpipe: Efficient
training of giant neural networks using pipeline parallelism. arXiv preprint arXiv:1811.06965,
2018.

[24] F. Isensee, J. Petersen, A. Klein, D. Zimmerer, P. Jaeger, S. Kohl, J. Wasserthal, G. Koehler,
T. Norajitra, S. Wirkert, et al. nnu-net: self-adapting framework for u-net-based medical image
segmentation. corr abs/1809.10486 (2018), 2019.

[25] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[26] A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097-1105,
2012.

[27] K. B. Lee, S. Cheon, and C. O. Kim. A convolutional neural network for fault classification and
diagnosis in semiconductor manufacturing processes. IEEE Transactions on Semiconductor
Manufacturing, 30(2):135-142, 2017.

[28] C. Leibig, V. Allken, M. S. Ayhan, P. Berens, and S. Wahl. Leveraging uncertainty information
from deep neural networks for disease detection. Scientific reports, 7(1):1-14, 2017.

[29] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim. Fast autoaugment. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[30] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[31] B. Liitjens, M. Everett, and J. P. How. Certified adversarial robustness for deep reinforcement
learning. In Conference on Robot Learning, pages 1328-1337. PMLR, 2020.

[32] D. Molchanov, A. Lyzhov, Y. Molchanova, A. Ashukha, and D. Vetrov. Greedy policy search: A
simple baseline for learnable test-time augmentation. arXiv preprint arXiv:2002.09103, 2020.

[33] T. Nair, D. Precup, D. L. Arnold, and T. Arbel. Exploring uncertainty measures in deep networks
for multiple sclerosis lesion detection and segmentation. Medical image analysis, 59:101557,
2020.

[34] O. Ozdemir, B. Woodward, and A. A. Berlin. Propagating uncertainty in multi-stage bayesian
convolutional neural networks with application to pulmonary nodule detection. arXiv preprint
arXiv:1712.00497, 2017.

[35] E. Panfilov, A. Tiulpin, S. Klein, M. T. Nieminen, and S. Saarakkala. Improving robustness
of deep learning based knee mri segmentation: Mixup and adversarial domain adaptation. In
Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 0-0,
2019.

[36] T. Pang, K. Xu, and J. Zhu. Mixup inference: Better exploiting mixup to defend adversarial
attacks. arXiv preprint arXiv:1909.11515, 2019.

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop,
2017.

[38] N. Patel, K. Liu, P. Krishnamurthy, S. Garg, and F. Khorrami. Lack of robustness of lidar-based
deep learning systems to small adversarial perturbations. In ISR 2018; 50th International
Symposium on Robotics, pages 1-7. VDE, 2018.

[39] N. A. Phillips, P. Rajpurkar, M. Sabini, R. Krishnan, S. Zhou, A. Pareek, N. M. Phu, C. Wang,
A.Y. Ng, and M. P. Lungren. Chexphoto: 10,000+ smartphone photos and synthetic photo-
graphic transformations of chest x-rays for benchmarking deep learning robustness. arXiv
preprint arXiv:2007.06199, 2020.

11

[40] A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object detectors with online
hard example mining. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 761-769, 2016.

[41] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929-1958, 2014.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1-9, 2015.

[44] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, pages 6105-6114, 2019.

[45] R. Tanno, D. E. Worrall, A. Ghosh, E. Kaden, S. N. Sotiropoulos, A. Criminisi, and D. C.
Alexander. Bayesian image quality transfer with cnns: exploring uncertainty in dmri super-
resolution. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 611-619. Springer, 2017.

[46] S. Thulasidasan, G. Chennupati, J. A. Bilmes, T. Bhattacharya, and S. Michalak. On mixup
training: Improved calibration and predictive uncertainty for deep neural networks. In Advances
in Neural Information Processing Systems, pages 13888—13899, 2019.

[47] Y. Tokozume, Y. Ushiku, and T. Harada. Between-class learning for image classification.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5486-5494, 2018.

[48] I Vasiljevic, A. Chakrabarti, and G. Shakhnarovich. Examining the impact of blur on recognition
by convolutional networks. arXiv preprint arXiv:1611.05760, 2016.

[49] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Vercauteren. Aleatoric uncertainty
estimation with test-time augmentation for medical image segmentation with convolutional
neural networks. Neurocomputing, 338:34-45, 2019.

[50] G. Wang, W. Li, S. Ourselin, and T. Vercauteren. Automatic brain tumor segmentation using con-
volutional neural networks with test-time augmentation. In International MICCAI Brainlesion
Workshop, pages 61-72. Springer, 2018.

[51] M. Wicker and M. Kwiatkowska. Robustness of 3d deep learning in an adversarial setting.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
11767-11775, 2019.

[52] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated residual transformations for
deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1492—-1500, 2017.

[53] X. Yang, Z. Zeng, S. G. Teo, L. Wang, V. Chandrasekhar, and S. Hoi. Deep learning for practical
image recognition: case study on kaggle competitions. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 923-931, 2018.

[54] D. Yoo and I. S. Kweon. Learning loss for active learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 93—-102, 2019.

[55] S. Yun, D. Han, S.J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Proceedings of the IEEE International Conference
on Computer Vision, pages 6023-6032, 2019.

[56] S.Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, 2016.

[57] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. arXiv preprint arXiv:1710.09412, 2017.

[58] Z. Zhang, P. Chen, M. McGough, F. Xing, C. Wang, M. Bui, Y. Xie, M. Sapkota, L. Cui,
J. Dhillon, et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning.
Nature Machine Intelligence, 1(5):236-245, 2019.

[59] Z.Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data augmentation. arXiv
preprint arXiv:1708.04896, 2017.

12

