
We would like to thank you for your thorough evaluation, helpful suggestions, and comments. We here address the key1

concerns and note that the paper will be updated accordingly. We conducted new experiments to reinforce the evidence2

for this response, as reviewers suggested. Before we begin, however, we emphasize that the paper provides the first3

efficient instance-aware test-time augmentation method resulting in significant gains over previous approaches.4

Table 1: ImageNet(-C) result of ResNet-50 with the standard training-time augmentations.

Test-time Relative Clean Corrupted set Corrupted Test-set
Augmentation Cost Test-set mCE mCE

Center-Crop 1 24.14 78.93 75.42
Horizontal-Flip 2 23.76 77.91 74.32
5-Crops 5 23.91 77.52 73.87
10-Crops 10 23.04 76.69 72.98

Random(k=1) 1 26.89 82.86 79.81
Random(k=2) 2 25.14 79.91 77.00
Random(k=4) 4 24.29 78.24 75.38

GPS(k=1) 1 24.86 82.13 79.43
GPS(k=2) 2 23.78 76.45 73.32
GPS(k=4) 4 23.44 77.27 73.87

GPS�(k=1) 1 27.39 77.21 75.07
GPS�(k=2) 2 27.04 76.48 74.27
GPS�(k=4) 4 26.88 76.09 73.84

Ours(k=1) 1 24.14 75.52 74.29
Ours(k=2) 2 24.10 75.00 73.61
Ours(k=2) + Flip 4 23.74 74.00 72.59

Figure 1: Comparison for the same 5 Crop
candidates on the clean ImageNet set using
ResNet-50. Top-1 accuracies by the number of
ensembles. We trained our loss predictor for
five crop areas. Compared to the 5-crop en-
semble, choosing one transform by our method
gives almost the same performance, and select-
ing the two transforms achieves even better per-
formance with less computational cost.
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Figure 2: Comparison for the same GPS trans-
forms on the clean ImageNet set using ResNet-
50. Top-1 accuracies by the number of en-
sembles. We trained our loss predictor on the
searched GPS policies to choose ones specific
for each test instance. Our method properly se-
lects valid transforms from the candidates cho-
sen greedily by GPS, and therefore further im-
proves the performances over static ensemble
from GPS.
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*GPS : Greedy Policy Search on the clean dataset.
*GPS�: Greedy Policy Search on the corrupted dataset.

5

Comparison study with GPS (Greedy Policy Search) [30] (R1+R2+R3): The official code for GPS (released after6

our submission) is used for comparison. In Table 1, we show that the proposed method outperformed both GPS and7

GPS� on ImageNet-C. This means that the performances of GPS on both seen and unseen corruptions lagged behind8

our proposed method. In particular, the GPS policies found on the corrupted dataset produced poor results in the clean9

set, while our method prevented the performance degradation on the clean set. We confirmed by the GPS code that the10

search space of GPS includes all our augmentation policies such as "auto-contrast" and "sharpness"; our performance11

gains come from the proposed instance-specific transformation. A detailed comparison will be included.12

Test-time augmentation for the clean set (R2+R3): We conducted experiments with loss predictor trained for the13

clean set. In Figure 1, our loss predictor picks out promising one out of five crop regions. Even if only one crop region14

is selected using the loss predictor, the obtained performance is comparable to the existing 5-crop ensemble. This is15

clear proof that our method is also effective on the clean set and separated from our search space, our loss predictor16

itself contributes to enhancing the classification performance. We will include the result of the clean test-set.17

Validating loss predictor (R2+R3): Firstly, we add random baselines with k ≥ 1. As k increases, the random18

baselines’ performance marginally increases, but our method using loss predictor instead of random selection shows19

significant improvements. Secondly, in Table 1, our method uses augmentation space, which is a subset of GPS’s space.20

Nevertheless, our performance is better since we select the best one for the test instance with the loss predictor. Lastly,21

in Figure 1 and 2, it is also a critical rationale that performance increases consistently when the order of the policy is22

dynamically determined with the loss predictor. We will elaborate more on this in the revised paper.23

Details of the loss function (R1+R4): We used the surrogated ranking loss proposed in [8], as described in L171.24

Specifically, to optimize the non-differentiable Spearman correlation between relative losses and predictions, we trained25

a recurrent neural network that approximates the correlation using the official implementation. This surrogate loss26

function has been chosen after an extensive comparison with others. We will revise the paper with the details.27

R1: We will add the missing related works and add calibrated log-likelihood to our revised paper. R2: As the reviewer28

pointed out, our test-time transformations consist of basic operations that may restore a corrupt image close to normal.29

However, transformations for a given test image is selected by the loss predictor. As [17] shows, manually targeted30

image restoration can be harmful to robustness when the corruption of each test image is unknown at test-time. In31

addition, as shown in Table 2 and 3 in the manuscript, taking into account our transformations at training-time of the32

target network leads to performance degradation on some corruptions and (most importantly) clean set. The proposed33

loss predictor contributes to picking the most proper one that not distorts more but may restore a corrupted image,34

which improves the robustness of the target network in a consistent way. R3: In Table 1, we compare the performance35

of baselines and our method on the ResNet-50 trained with the standard train-time augmentation. We will update the36

experimental results with various train-time augmentations and more baselines, and revise the manuscript to reflect37

your additional comments. R4: As the number of transformations increases, the cost of transforming and inferencing38

the input linearly increases. But this is highly parallelizable. Also, in this study, we prepared a small setting to focus on39

demonstrating the potentials of instance-aware test-time augmentation. Although the augmentation space is limited, the40

experiment results show the superiority of our methods against previous approaches. Also, applying augmentations41

repeatedly to expand transformation space in a combinatorial way is promising in our experiment. We expect future42

works to be conducted in the direction of using less cost while expressing more augmentations.43


