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A Proof of Theorem 11

For completeness, we give the full details of the proof of Theorem 1; a sketch of the proof is presented2

in Section 4 of the main paper.3

Denote Algorithm 3 by Ã. We view Ã as mapping a given input {(Xi, Yi)}n+1
i=1 and a collection of4

subsamples or bootstrapped samples S̃1, . . . , S̃B to a matrix of residuals R ∈ R(n+1)×(n+1), where5

Rij =

{ ∣∣Yi − µ̃ϕ\i,j(Xi)
∣∣ if i 6= j,

0 if i = j.

For any permutation σ on {1, . . . , n+ 1}, let Πσ stand for its matrix representation—that is, Πσ ∈6

{0, 1}(n+1)×(n+1) has entries (Πσ)σ(i),i = 1 for each i, and zeros elsewhere. Furthermore, for each7

subsample or bootstrapped sample S̃b = {ib,1, . . . , ib,m}, write σ(S̃b) = {σ(ib,1), . . . , σ(ib,m)}.8

We now claim that9

R
d
= ΠσRΠ>σ , (S1)

for any fixed permutation σ on {1, . . . , n+ 1}. Here R is the residual matrix obtained by a run of10

Algorithm 3, namely,11

R = Ã
(

(X1, Y1), . . . , (Xn+1, Yn+1); S̃1, . . . , S̃B

)
.

To see why (S1) holds, observe that deterministically, we have12

ΠσRΠ>σ = Ã
(

(Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1));σ(S̃1), . . . , σ(S̃B)
)
.

Furthermore, we have13 (
(X1, Y1), . . . , (Xn+1, Yn+1)

)
d
=
(

(Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1))
)

by Assumption 1, and14 (
S̃1, . . . , S̃B

)
d
=
(
σ(S̃1), . . . , σ(S̃B)

)
since subsampling or resampling treats all the indices the same. Finally, the subsamples or boot-15

strapped samples (i.e., the S̃b’s) are drawn independently of the data points (i.e., the (Xi, Yi)’s).16

Combining these calculations yields (S1).17

Next, given R, define a “tournament matrix" A = A(R) as18

Aij =

{
1I [Rij > Rji] if i 6= j,

0 if i = j.
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It is easily checked that A(ΠσRΠ>σ ) = ΠσA(R)Π>σ , and hence (S1) implies that19

A
d
= ΠσAΠ>σ . (S2)

Let Sα(A) be the set of row indices with row sums greater than or equal to (1− α)(n+ 1), i.e.,20

Sα(A) =

i = 1, . . . , n+ 1 :

n+1∑
j=1

Aij ≥ (1− α)(n+ 1)

 .

The argument of Step 3 in the proof of Barber et al. [1, Theorem 1] applies to the lifted J+aB21

“tournament matrix" A, and it holds deterministically that22

|Sα(A)| ≤ 2α(n+ 1). (S3)

On the other hand, if j is any index, and σ is any permutation that swaps indices n+ 1 and j, then23

P
[
n+ 1 ∈ Sα(A)

]
= P

[
j ∈ Sα(ΠσAΠ>σ )

]
= P

[
j ∈ Sα(A)

]
.

The first two events are the same, and the second equality uses (S2). Thus,24

P
[
n+ 1 ∈ Sα(A)

]
=

1

n+ 1

n+1∑
j=1

P
[
j ∈ Sα(A)

]

=
1

n+ 1
E

n+1∑
j=1

1I
[
j ∈ Sα(A)

] =
E|Sα(A)|
n+ 1

≤ 2α. (S4)

Note that the event
[
n+ 1 ∈ Sα(A)

]
is exactly the event Ẽn+1, defined in Section 4. As described in25

the proof sketch in Section 4 of the main paper, we can couple this lifted event to the event En+1,26

also defined in Section 4 in terms of the actual J+aB, as follows. Let B =
∑B̃
b=1 1I

[
S̃b 63 n+ 1

]
, the27

number of S̃b’s containing only training data, and let 1 ≤ b1 < · · · < bB ≤ B̃ be the corresponding28

indices. Note that the distribution of B is Binomial, as specified in the theorem. Now, for each29

k = 1, . . . , B, define Sk = S̃bk . We can observe that each Sk is an independent uniform draw30

from {1, . . . , n} (with or without replacement). Therefore, we can equivalently consider running31

J+aB (Algorithm 2) with these particular subsamples or bootstrapped samples S1, . . . , SB , in which32

case it holds deterministically that µ̃ϕ\n+1,i = µ̂ϕ\i for each i = 1, . . . , n. This ensures that33

|Yn+1 − µ̃ϕ\n+1,i(Xn+1)| = |Yn+1 − µ̂ϕ\i(Xn+1)| and |Yi − µ̃ϕ\i,n+1(Xi)| = |Yi − µ̂ϕ\i(Xi)|,34

and thus,35

P[En+1] = P[Ẽn+1] ≤ 2α.

Finally, as in Step 1 in the proof of Barber et al. [1, Theorem 1], it easily follows from the definition36

of ĈJ+aB
α,n,B that if Yn+1 /∈ ĈJ+aB

α,n,B(Xn+1) then the event En+1 must occur. Indeed, if Yn+1 /∈37

ĈJ+aB
α,n,B(Xn+1), then either Yn+1 falls below the lower bound, i.e.,38

n∑
i=1

1I
[
Yn+1 − µ̂ϕ\i(Xn+1) <

∣∣Yi − µ̂ϕ\i(Xi)
∣∣ ] ≥ (1− α)(n+ 1),

or Yn+1 exceeds the upper bound, i.e.,39

n∑
i=1

1I
[
Yn+1 − µ̂ϕ\i(Xn+1) >

∣∣Yi − µ̂ϕ\i(Xi)
∣∣ ] ≥ (1− α)(n+ 1),

and the above two expressions imply40

n∑
i=1

1I
[ ∣∣Yn+1 − µ̂ϕ\i(Xn+1)

∣∣ > ∣∣Yi − µ̂ϕ\i(Xi)
∣∣ ] ≥ (1− α)(n+ 1).

Therefore, we conclude that41

P
[
Yn+1 /∈ ĈJ+aB

α,n,B(Xn+1)
]
≤ 2α,

thus proving the theorem.42
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B Guarantees with stability43

Many ensembles that are used in practice are variants of bagging, where multiple independent copies44

of the given training data set are generated through a resampling mechanism, after which estimates45

from different data sets are pooled together via an averaging procedure of some kind. Bagging can be46

understood as a smoothing operation that when applied on a discontinuous base learner, often greatly47

improve its accuracy [3–5].48

For ensembles of this type, the aggregated predictions they produce frequently exhibit a concentrating49

behavior as B → ∞, making the corresponding J+aB interval much like a jackknife+ interval. In50

such cases, it is reasonable to expect a J+aB interval to remain valid regardless of the choice ofB, e.g.,51

random with a Binomial distribution or fixed, by its proximity to a jackknife+ interval. Intuitively,52

this happens when the aggregation is insensitive to any one prediction participating in the ensemble.53

To formalize, let E∗ denote the expectation with respect to the resampling measure — that is, we54

take the expectation with respect to the random collection of subsamples or bootstrapped samples55

S1, . . . , SB conditional on all the observed data {(Xi, Yi)}ni=1 and Xn+1. For example, when56

ϕ(·) = mean(·) is the mean aggregation,57

E∗ [µ̂mean(Xn+1)] = E
[
µ̂1(Xn+1)

∣∣(X1, Y1), . . . , (Xn, Yn), Xn+1

]
,

the expected prediction from the model µ̂1 fitted on training sample S1, where the expectation is58

taken with respect to the draw of S1.59

Assumption S1 (Ensemble stability). For ε ≥ 0 and δ ∈ (0, 1), it holds for each i = 1, . . . , n that60

P
[∣∣µ̂ϕ\i(Xi)− E∗

[
µ̂ϕ\i(Xi)

]∣∣ > ε
]
≤ δ.

Here µ̂ϕ\i is the ensembled leave-one-out model defined in Algorithm 2. To gain intuition for this61

assumption, we consider the mean aggregation as a canonical example, and verify that it satisfies62

Assumption S1 for any bounded base regression method.63

Proposition S1. Suppose that ϕ(·) = mean(·) is the mean aggregation, and suppose the base64

regression methodR always outputs a bounded regression function, i.e.,R maps any training data65

set to a function µ̂ taking values in a bounded range [`, u], for fixed constants ` < u. Then, for any66

ε > 0, Assumption S1 is satisfied with67

δ = 2 exp

(
−2
√
Bθε2

(u− `)2

)
+ exp

(
−
(√
B − 1

)2
θ2

2

)
,

where θ = (1 − 1
n )m in the case of bagging (i.e., the Sb’s are bootstrapped samples, drawn with68

replacement), or θ = 1− m
n in the case of subagging (i.e., the Sb’s are subsamples drawn without69

replacement).70

Proof. By exchangeability, it suffices to prove the statement for a single i ∈ {1, . . . , n}. Fix i, and71

let Bi denote the number of Sb’s not containing the index i, i.e., Bi =
∑B
b=1 1I

[
Sb 63 i

]
. For any72

fixed γ ∈ (0, 1),73

P∗
[ ∣∣µ̂mean\i(Xi)− E∗[µ̂mean\i(Xi)]

∣∣ > ε
]

≤ P∗
[ ∣∣µ̂mean\i(Xi)− E∗[µ̂mean\i(Xi)]

∣∣ > ε and Bi ≥ γθB
]

+ P∗
[
Bi < γθB

]
.

As for our earlier notation E∗, here P∗ denotes the probability with respect to the random collection74

of subsamples or bootstrapped samples S1, . . . , SB conditional on the data (X1, Y1), . . . , (Xn, Yn).75

The arithmetic mean aggregation function, ϕmean, satisfies76

sup
y1,...,yBi

,

y′b∈[`,u]

|ϕmean(y1, . . . , yBi)− ϕmean(y1, . . . , yb−1, y
′
b, yb+1, . . . , yBi)| ≤

u− `
Bi

, b = 1, . . . , Bi.

Thus, by McDiarmid’s inequality [2, Theorem 6.2],77

P∗
[ ∣∣µ̂mean\i(Xi)− E∗[µ̂mean\i(Xi)]

∣∣ > ε
∣∣∣Bi ≥ γθB] ≤ 2 exp

(
− 2Bγθε2

(u− `)2

)
. (S5)
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On the other hand, Bi ∼ Binomial(B, θ), where θ =
(
1− 1

n

)m
for sampling with replacement, or78

θ = 1− m
n for sampling without replacement. The Chernoff inequality for the binomial [2, Chapter79

2] implies80

P [Bi < γθB] ≤ exp

(
−B (1− γ)

2
θ2

2

)
. (S6)

Combining (S5) and (S6),81

P∗
[∣∣µ̂mean\i(Xi)− E∗[µ̂mean\i(Xi)]

∣∣ > ε
]
≤ 2 exp

(
− 2Bγθε2

(u− `)2

)
+ exp

(
−B (1− γ)

2
θ2

2

)
.

Taking γ = 1/
√
B yields82

P∗
[∣∣µ̂mean\i(Xi)− E∗[µ̂mean\i(Xi)]

∣∣ > ε
]
≤ 2 exp

(
−2
√
Bθε2

(u− `)2

)
+ exp

(
−
(√
B − 1

)2
θ2

2

)
.

83

To study coverage properties under this notion of stability, we first define the ε-inflated J+aB prediction84

interval as85

Ĉε-J+aB
α,n,B(x) =

[
q−α,n{µ̂ϕ\i(x)−Ri} − ε, q+α,n{µ̂ϕ\i(x) +Ri}+ ε

]
,

for any ε ≥ 0. We then have the following guarantee:86

Theorem S1. Under (ε, δ)-ensemble stability (Assumption S1), the 2ε-inflated jackknife+-after-87

bootstrap prediction interval satisfies88

P
[
Yn+1 ∈ Ĉ2ε-J+aB

α,n,B (Xn+1)
]
≥ 1− 2α− 4

√
δ.

Delaying the proof to the end of this section, we discuss the difference between Theorem S1 and89

Theorem 1. Theorem 1 gives an assumption-free lower-bound of 1 − 2α on the coverage, but the90

probability is over all randomness, including that of the Binomial draw. By contrast, the ≈ 1− 2α91

coverage guarantee of Theorem S1 holds for a fixed value of B used to run Algorithm 2, but at the92

cost of requiring the ensemble algorithmRϕ,B to satisfy ensemble stability.93

In contrast to the above notion of ensemble stability, Steinberger and Leeb [6] and Barber et al. [1]94

study coverage of jackknife and jackknife+ under algorithmic stability of (non-ensembled) regression95

methodR. This requiresR to satisfy96

P
[∣∣µ̂\i(Xn+1)− µ̂(Xn+1)

∣∣ > ε∗
]
≤ δ∗. (S7)

This can be interpreted as saying that a prediction µ̂(Xn+1) is only slightly perturbed if a single point97

is removed from the training. In this setting, jackknife and jackknife+ are each shown to guarantee98

≈ 1− α coverage.99

We can take a lifted version of this assumption, requiring that (S7) holds on the ensembled models on100

average over the resampling process:101

P
[∣∣E∗ [µ̂ϕ\i(Xn+1)− E∗ [µ̂ϕ(Xn+1)]

]∣∣ > ε∗
]
≤ δ∗. (S8)

Note that one can have ensemble stability without algorithmic stability. For example, a bounded102

regression method may still be highly unstable relative to adding/removing a single data point (thus103

violating algorithmic stability), while Proposition S1 ensures that ensemble stability will hold under104

mean aggregation.105

When an ensemble method satisfies both Assumption S1 and the lifted version of algorithmic stability106

(S8), then the following result yields a coverage bound that is ≈ 1− α, rather than ≈ 1− 2α as in107

Theorem S1:108

Theorem S2. Assume that (ε, δ)-ensemble stability (Assumption S1) holds, and in addition, the109

ensembled model satisfies algorithmic stability on average over the resampling process, i.e., (S8).110

Then the 2ε+ 2ε∗-inflated J+aB prediction interval satisfies111

P
[
Yn+1 ∈ Ĉ(2ε+2ε∗)-J+aB

α,n,B (Xn+1)
]
≥ 1− α− 3

√
δ − 4

√
δ∗.
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Proof of Theorems S1 and S2. Put µ̂∗ϕ\i = E∗[µ̂ϕ\i], where we recall that E∗ is the expectation112

conditional on the data. LetR∗ϕ denote the regression algorithm mapping data to µ̂∗ϕ, i.e.,113

R∗ϕ : {(Xi, Yi)}ni=1 7→ E∗
[
ϕ
({
R
(
{(Xib,` , Yib,`)}m`=1

)
: b = 1, . . . , B′, B′ ∼ Binomial(B, θ)

})]
,

where θ = θ(n) = (1− 1
n+1 )m (in the case of sampling with replacement) or θ = θ(n) = 1− m

n+1114

(in the case of sampling without replacement). We emphasize that n here refers to the size of the115

sample being fed throughR∗ϕ (e.g., each leave-one-out regressor µ̂∗ϕ\i is trained on n− 1 data points,116

so in this case, θ = θ(n− 1)). R∗ϕ is a deterministic function of the data, since it averages over the117

random draw of the subsamples or bootstrapped samples. Furthermore, it is a symmetric regression118

algorithm (i.e., satisfies Assumption 2).119

Fix some α′ ∈ (0, 1) to be determined later, and construct the jackknife+ interval120

Ĉ∗J+
α′,n(x) =

[
q−α′,n{µ̂

∗
ϕ\i(x)−R∗i }, q+α′,n{µ̂

∗
ϕ\i(x) +R∗i }

]
,

where R∗i = |Yi − µ̂∗ϕ\i(Xi)| is the leave-one-out residual for this new regression algorithm. By121

Barber et al. [1, Theorem 1], Ĉ∗J+
α′,n satisfies122

P
[
Yn+1 ∈ Ĉ∗J+

α′,n(Xn+1)
]
≥ 1− 2α′.

If, additionally,R∗ϕ satisfies the algorithmic stability condition (S7) given in Section B of the main123

paper, then by Barber et al. [1, Theorem 5], the 2ε∗-inflated jackknife+ interval124

Ĉ∗2ε
∗-J+

α′,n (x) =
[
q−α′,n{µ̂

∗
ϕ\i(x)−R∗i } − 2ε∗, q+α′,n{µ̂

∗
ϕ\i(x) +R∗i }+ 2ε∗

]
satisfies125

P
[
Yn+1 ∈ Ĉ∗2ε

∗-J+
α′,n (Xn+1)

]
≥ 1− α′ − 4

√
δ∗.

Next, by Assumption S1, for each i = 1, . . . , n,126

P
[∣∣∣µ̂ϕ\i(Xi)− µ̂∗ϕ\i(Xi)

∣∣∣ > ε
]
≤ δ. (S9)

Let α′ = α−
√
δ. By the above argument, to prove the theorems, it suffices to show127

Ĉ2ε-J+aB
α,n,B (Xn+1) ⊇ Ĉ∗-J+

α′,n(Xn+1) with probability at least 1− 2
√
δ

in order to complete the proof of Theorem S1, or128

Ĉ
(2ε+2ε∗)-J+aB
α,n,B (Xn+1) ⊇ Ĉ∗2ε

∗-J+
α′,n (Xn+1) with probability at least 1− 2

√
δ

in order to complete the proof of Theorem S2. In fact, these two claims are proved identically—we129

simply need to show that130

Ĉ
(2ε+2ε′)-J+aB
α,n,B (Xn+1) ⊇ Ĉ∗2ε

′-J+
α′,n (Xn+1) with probability at least 1− 2

√
δ (S10)

with the choice ε′ = 0 for Theorem S1, or ε′ = ε∗ for Theorem S2.131

To complete the proof, then, we establish the bound (S10). Suppose Ĉ(2ε+2ε′)-J+aB
α,n,B (Xn+1) 6⊇132

Ĉ∗2ε
′-J+

α′,n (Xn+1). We have that either133

q+α,n
{
µ̂ϕ\i(Xn+1) +Ri

}
+ 2ε < q+α′,n

{
µ̂∗ϕ\i(Xn+1) +R∗i

}
or134

q−α,n
{
µ̂ϕ\i(Xn+1)−Ri

}
− 2ε > q−α′,n

{
µ̂∗ϕ\i(Xn+1)−R∗i

}
,

where Ri = |Yi − µ̂ϕ\i(Xi)|. As in the proof of Barber et al. [1, Theorem 5], this implies that135 ∣∣∣µ̂ϕ\i(Xn+1)− µ̂∗ϕ\i(Xn+1)
∣∣∣+
∣∣∣µ̂ϕ\i(Xi)− µ̂∗ϕ\i(Xi)

∣∣∣ > 2ε

5



for at least d(1− α)(n+ 1)e − (d(1− α′)(n+ 1)e − 1) ≥
√
δ(n+ 1) many indices i = 1, . . . , n.136

Thus,137

P
[
Ĉ

(2ε+2ε′)-J+aB
α,n,B (Xn+1) 6⊇ Ĉ∗2ε

′-J+
α′,n (Xn+1)

]
≤ P

[
n∑
i=1

1I
[∣∣∣µ̂ϕ\i(Xn+1)− µ̂∗ϕ\i(Xn+1)

∣∣∣+
∣∣∣µ̂ϕ\i(Xi)− µ̂∗ϕ\i(Xi)

∣∣∣ > 2ε
]
≥
√
δ(n+ 1)

]

≤ 1√
δ(n+ 1)

n∑
i=1

P
[∣∣∣µ̂ϕ\i(Xn+1)− µ̂∗ϕ\i(Xn+1)

∣∣∣+
∣∣∣µ̂ϕ\i(Xi)− µ̂∗ϕ\i(Xi)

∣∣∣ > 2ε
]

≤ 2n√
δ(n+ 1)

P
[∣∣∣µ̂ϕ\n(Xn+1)− µ̂∗ϕ\n(Xn+1)

∣∣∣ > ε
]
.

The second inequality is the Markov’s inequality, and the last step uses the exchangeability of the138

data points. Plugging in (S9),139

P
[
Ĉ

(2ε+2ε′)-J+aB
α,n,B (Xn+1) 6⊇ Ĉ∗2ε

′-J+
α′,n (Xn+1)

]
≤ 2
√
δ,

implying (S10). This completes the proofs for Theorems S1 and S2.140

C Jackknife-minmax-after-bootstrap141

As in Barber et al. [1], we may also consider the jackknife-minmax-after-bootstrap, which constructs142

the interval143

ĈJ-mm-aB
α,n,B (x) =

[
min
i
µ̂ϕ\i(x)− q−α,n {Ri} , max

i
µ̂ϕ\i(x) + q+α,n {Ri}

]
.

The original jackknife-minmax satisfies 1−α lower bound on the coverage, and the same modification144

of the jackknife+ proof is applicable here, ensuring a 1 − α lower bound on the coverage of the145

jackknife-minmax-after-bootstrap with the same caveat of a random B. However, as for the non-146

ensembled version, the method is too conservative, and is not recommended for practice.147

D Supplementary experiments148

In this section, we report the results on additional experiments.149

First, we provide a more detailed description of the ensembles and the jackknife-type constructions150

considered. LetRϕ,B denote the ensemble Algorithm 1 that first generates B bootstrap replicates of151

the given training data set, calls on a base regression methodR to fit a model to each generated data152

set, after which the results are combined through an aggregation function ϕ. ForR, we use one of153

RIDGE, RF, or NN, which are described in Section 5. For ϕ, we use one of MEAN, MEDIAN, or154

TRIMMED MEAN:155

• MEAN is the arithmetic mean, i.e., ϕ(y1, . . . , yk) = k−1
∑k
i=1 yk.156

• MEDIAN is the middle value of the given list, i.e., for odd k, ϕ(y1, . . . , yk) is the (k+ 1)/2-157

th smallest number of the list {y1, . . . , yk}; for even k, it is the average of the k/2-th and158

the (k + 2)/2-th smallest.159

• TRIMMED MEAN is the arithmetic mean of the middle 50% of the given list, i.e.,160

ϕ(y1, . . . , yk) = (d0.75ke− b0.25kc)−1
∑d0.75ke
i=b0.25kc+1 y(i), where y(1) ≤ · · · ≤ y(k) is the161

sorted list. We use scipy.stats.trim_mean with proportioncut=0.25.162

J+AB is defined in Algorithm 2. J+ ENSEMBLE refers to the following application of the jackknife+163

[1] with the ensemble learnerRϕ,B′ (with hyperparameter B′):164
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Algorithm 1 J+ ENSEMBLE

for i = 1, . . . , n do
Compute µ̂J+ ENSEMBLE

\i = Rϕ,B′({(Xj , Yj)}nj=1,j 6=i)

Compute the residual, RJ+ ENSEMBLE
i = |Yi − µ̂J+ ENSEMBLE

\i (Xi)|.
end for
Compute the ensembled prediction interval: at each x ∈ R,

Ĉ J+ ENSEMBLE
α,n,B′ (x)

=
[
q−α,n{µ̂J+ ENSEMBLE

\i (x)−RJ+ ENSEMBLE
i }, q+α,n{µ̂J+ ENSEMBLE

\i (x) +RJ+ ENSEMBLE
i }

]
.

By contrast, J+ NON-ENSEMBLE applies the jackknife+ around the base learning algorithmR:165

Algorithm 2 J+ NON-ENSEMBLE

for i = 1, . . . , n do
Compute µ̂J+ NON-ENSEMBLE

\i = R({(Xj , Yj)}nj=1,j 6=i)

Compute the residual, RJ+ NON-ENSEMBLE
i = |Yi − µ̂J+ NON-ENSEMBLE

\i (Xi)|.
end for
Compute the non-ensembled prediction interval: at each x ∈ R,

Ĉ J+ NON-ENSEMBLE
α,n (x)

=
[
q−α,n{µ̂J+ NON-ENSEMBLE

\i (x)−RJ+ NON-ENSEMBLE
i }, q+α,n{µ̂J+ NON-ENSEMBLE

\i (x) +RJ+ NON-ENSEMBLE
i }

]
.

Note that for J+AB, we match the expected number of models aggregated in each leave-one-out166

model µ̂ϕ\i to B′, the fixed number of models aggregated in each ensembled model µ̂J+ ENSEMBLE
\i by167

drawing B ∼ Binomial(B̃, (1− 1
n+1 )m) with B̃ = [B′/{(1− 1

n+1 )m(1− 1
n )m}], where [·] refers168

to the integer part of the argument.169

In Section 5, we compared J+AB with J+ ENSEMBLE and J+ NON-ENSEMBLE for R = RF and170

ϕ = MEAN using MEPS data set. Here, we use all nine combinations ofR and ϕ, and also expand171

the number of trials to ten. The results are presented in Figures S1 and S2. In Table S1, we report the172

average wall-clock time for eachR-ϕ combination for m = 0.6n. The additional results lend extra173

support to the conclusion that the J+AB is a computationally efficient alternative to J+ ENSEMBLE,174

which yields more precise confidence intervals than J+ NON-ENSEMBLE when ensembling improves175

the precision of the base regression method.176

Table S1: Average wall-clock times in seconds over 10 independent splits of MEPS data set.
(m = 0.6n and sampling with replacement)

ENSEMBLE

R ϕ J+AB J+ ENSEMBLE J+ NON-ENSEMBLE

RIDGE MEAN 0.22 1.93 0.40
MEDIAN 0.59 2.71
TRIMMED MEAN 0.57 2.58

RF MEAN 6.03 43.87 4.60
MEDIAN 6.24 44.29
TRIMMED MEAN 6.84 39.23

NN MEAN 16.82 160.00 14.12
MEDIAN 17.80 169.31
TRIMMED MEAN 17.48 162.84
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The other experiment in Section 5 checked the coverage of the J+aB method using a Binomial B.177

Only the results for m = 0.6n on the MEPS data set were reported. Here, we present the complete178

set of results for m/n = 0.1, 0.2, . . . , 1.0 and for all three data sets. We expand the number of trials179

to ten, and increase n = 200 and the hyperparameter B̃ in B ∼ Binomial(B̃, (1 − 1
n+1 )m). In180

addition, we report the results with B′ FIXED (as opposed to RANDOM). For J+AB FIXED, we fix181

the total number of bootstrap replicates at B′ = 50. For J+AB RANDOM, we set the expected total182

number of bootstrap replicates to B′ by taking B̃ = [B′/(1− 1
n+1 )m]. Consistent with what we saw183

in Table 1, the coverage respects the 1 − 2α lower bound, and in fact, stays close to 1 − α in all184

considered scenarios. In addition, Figures S3–S8 show that J+AB RANDOM and J+AB FIXED have185

essentially the same behavior in practice.186
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Coverage on MEPS
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Figure S1: Comparing the coverage of J+AB, J+ ENSEMBLE, and J+ NON-ENSEMBLE for varying
m/n on MEPS data set. The solid lines show the average, and the shaded areas show +/− one
standard error over 10 independent splits of the data. The black dash-dotted line marks the 1 − α
target coverage level.
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Width on MEPS
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Figure S2: Comparing the interval width of J+AB, J+ ENSEMBLE, and J+ NON-ENSEMBLE for
varying m/n on MEPS data set. The solid lines show the average and the shaded areas show +/−
one standard error over 10 independent splits of the data.
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Coverage on COMMUNITIES
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Figure S3: Average coverage of J+AB RANDOM and J+AB FIXED on COMMUNITIES data set. The
solid lines show the average and the shaded areas show +/− one standard error over 10 independent
splits of the data. The black dash-dotted line marks the 1− α target coverage level.
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Coverage on BLOG
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Figure S4: Average coverage of J+AB RANDOM and J+AB FIXED on BLOG data set. The solid lines
show the average, and the shaded areas show +/− one standard error over 10 independent splits of
the data. The black dash-dotted line marks the 1− α target coverage level.
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Coverage on MEPS
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Figure S5: Average coverage of J+AB RANDOM and J+AB FIXED on MEPS data set. The solid lines
show the average, and the shaded areas show +/− one standard error over 10 independent splits of
the data. The black dash-dotted line marks the 1− α target coverage level.
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Width on COMMUNITIES
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Figure S6: Average interval width of J+AB RANDOM and J+AB FIXED on COMMUNITIES data
set. The solid lines show the average, and the shaded areas show +/− one standard error over 10
independent splits of the data.
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Width on BLOG
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Figure S7: Average interval width of J+AB RANDOM and J+AB FIXED on BLOG data set. The solid
lines show the average, and the shaded areas show +/− one standard error over 10 independent splits
of the data.
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Figure S8: Average interval width of J+AB RANDOM and J+AB FIXED on MEPS data set. The solid
lines show the average, and the shaded areas show +/− one standard error over 10 independent splits
of the data.
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