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Abstract

We present a novel approach to estimating discrete distributions with (potentially)
infinite support in the total variation metric. In a departure from the established
paradigm, we make no structural assumptions whatsoever on the sampling distribu-
tion. In such a setting, distribution-free risk bounds are impossible, and the best one
could hope for is a fully empirical data-dependent bound. We derive precisely such
bounds, and demonstrate that these are, in a well-defined sense, the best possible.
Our main discovery is that the half-norm of the empirical distribution provides tight
upper and lower estimates on the empirical risk. Furthermore, this quantity decays
at a nearly optimal rate as a function of the true distribution. The optimality follows
from a minimax result, of possible independent interest. Additional structural
results are provided, including an exact Rademacher complexity calculation and
apparently a first connection between the total variation risk and the missing mass.

1 Introduction

Estimating a discrete distribution in the total variation (TV) metric is a central problem in computer
science and statistics (see, e.g., Han et al. [2015], Kamath et al. [2015], Orlitsky and Suresh [2015] and
the references therein). The TV metric, which we use throughout the paper, is a natural and abundantly
motivated choice [Devroye and Lugosi, 2001]. For support size d, a sample of size O(d/ε2) suffices
for the maximum-likelihood estimator (MLE) to be ε-close (with constant probability) to the unknown
target distribution. A matching lower bound is known [Anthony and Bartlett, 1999], and has been
computed down to the exact constants [Kamath et al., 2015].

Classic VC theory — and, in particular, the aforementioned results — imply that for infinite support,
no distribution-free sample complexity bound is possible. If µ is the target distribution and µ̂m is its
empirical (i.e., MLE) estimate based on m iid samples, then Berend and Kontorovich [2013] showed
that

1

4
Λm(µ)− 1

4
√
m
≤ E [‖µ− µ̂m‖TV] ≤ Λm(µ), m ≥ 2, (1)

where

Λm(µ) =
∑

j∈N:µ(j)<1/m

µ(j) +
1

2
√
m

∑
j∈N:µ(j)≥1/m

√
µ(j). (2)
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The quantity Λm(µ) has the advantage of always being finite and of decaying to 0 as m→∞. The
bound in (1) suggests that Λm(µ), or a closely related measure, controls the sample complexity for
learning discrete distributions in TV. Further supporting the foregoing intuition is the observation
that for finite support size d and m � 1, we have Λm .

√
d/m, recovering the known minimax

rate. Additionally, a closely related measure turns out to control a minimax risk rate in a sense made
precise in Theorem 2.5.

One shortcoming of (1) is that the lower bound only holds for the MLE, leaving the possibility that a
different estimator could achieve significantly improved bounds. Another shortcoming of (1) and
related estimates is that they are not empirical, in that they depend on the unknown quantity we are
trying to estimate. A fully empirical bound, on the other hand, would give a high-probability estimate
on ‖µ− µ̂m‖TV solely in terms of observable quantities such as µ̂m. Of course, such a bound should
also be non-trivial, in the sense of improving with growing sample size and approaching 0 asm→∞.
A further desideratum might be something akin to instance optimality: We would like the rate at
which the empirical bound decays to be “the best” possible for the given µ, in an appropriate sense.
Our analogue of instance optimality is inspired by, but distinct from, that of Valiant and Valiant
[2016], as discussed in detail in Related work below.

Our contributions. We address the shortcomings of existing estimators detailed above by providing
a fully empirical bound on ‖µ− µ̂m‖TV. Our main discovery is that the quantity Φm(µ̂m) :=

1√
m

∑
j∈N

√
µ̂m(j) satisfies all of the desiderata posed above for an empirical bound. As we

show in Theorems 2.1 and 2.2, Φm(µ̂m) provides tight, high-probability upper and lower bounds
on ‖µ− µ̂m‖TV. Further, Theorem 2.3 shows that E [Φm(µ̂m)] behaves as Λm(µ) defined in (2).
Finally, a result in the spirit of instance optimality, Theorem 2.4, shows that no other estimator-bound
pair can improve upon (µ̂m,Φm), other than by small constants. The latter follows from a minimax
bound of independent interest, Theorem 2.5. Additional structural results are provided, including an
exact Rademacher complexity calculation and a connection (apparently the first) between the total
variation risk and the missing mass.

Definitions, notation and setting. As we are dealing with discrete distributions, there is no loss
of generality in taking our sample space to be the natural numbers N = {1, 2, 3, . . .}. For k ∈ N,
we write [k] := {i ∈ N : i ≤ k}. The set of all distributions on N will be denoted by ∆N, which we
enlarge to include the “deficient” distributions: ∆N ⊂ ∆◦N :=

{
µ ∈ [0, 1]N :

∑
i∈N µ(i) ≤ 1

}
. For

d ∈ N, we write ∆d ⊂ ∆N to denote those µ whose support is contained in [d].

For µ ∈ ∆◦N and I ⊆ N, we write µ(I) =
∑
i∈I µ(i). We define the decreasing permutation of

µ ∈ ∆◦N, denoted by µ↓, to be the sequence (µ(i))i∈N sorted in non-increasing order, achieved by a1

permutation Π↓µ : N→ N; thus, µ↓(i) = µ(Π↓µ(i)). For 0 < η < 1, define Tµ(η) ∈ N as the least t
for which

∑∞
i>t µ

↓(i) < η. This induces a truncation of µ, denoted by µ[η] ∈ ∆◦N and defined by
µ[η](i) = 1[Π↓µ(i) ≤ Tµ(η)]µ(i).

For µ,ν ∈ ∆◦N, we define the total variation distance in terms of the `1 norm:

‖µ− ν‖TV :=
1

2
‖µ− ν‖1 =

1

2

∑
i∈N
|µ(i)− ν(i)| . (3)

For µ ∈ ∆◦N, we also define the half-norm2 as

‖µ‖1/2 :=

(∑
i∈Ω

√
µ(i)

)2

; (4)

note that while ‖µ‖1/2 may be infinite, we have ‖µ‖1/2 ≤ ‖µ‖0, where the latter denotes the support
size.

For m ∈ N and µ ∈ ∆N, we write X = (X1, . . . , Xm) ∼ µm to mean that the components of the
vector X are drawn iid from from µ. We reserve µ̂m ∈ ∆N for the empirical measure induced by
the sampleX , i.e. µ̂m(i) := 1

m

∑
t∈[m] 1[Xt = i]; the term MLE will be used interchangeably.

1While µ↓ is uniquely defined, Π↓
µ is not. Uniqueness could be ensured by taking the lexicographically first

permutation, but will not be needed for our results.
2The half-norm is not a proper vector-space norm, as it lacks sub-additivity.
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For the class of boolean functions over the integers {f : N→ {0, 1}}, which we denote by {0, 1}N,
recall the definition of the empirical Rademacher complexity [Mohri et al., 2012, Definition 3.1]
conditional on the sampleX:

R̂m(X) := E
σ

[
sup

f∈{0,1}N

1

m

m∑
t=1

σtf(Xt)

]
, (5)

where σ = (σ1, . . . , σm) ∼ Uniform({−1, 1}m). The expectation of the above random quantity is
the Rademacher complexity [Mohri et al., 2012, Definition 3.2]:

Rm := E
X∼µm

[
R̂(X)

]
. (6)

Related work. Given the classical nature of the problem, a comprehensive literature survey is
beyond our scope; the standard texts Devroye and Györfi [1985], Devroye and Lugosi [2001] provide
much of the requisite background. Chapter 6.5 of the latter makes a compelling case for the TV
metric used in this paper, but see Waggoner [2015] and the works cited therein for results on other `p
norms. Though surveying all of the relevant literature is a formidable task, a relatively streamlined
narrative may be distilled. Conceptually, the simplest case is that of ‖µ‖0 <∞ (i.e., finite support).
Since learning a distribution over [d] in TV is equivalent to agnostically learning the function class
{0, 1}d, standard VC theory [Anthony and Bartlett, 1999, Kontorovich and Pinelis, 2019] entails that
the MLE achieves the minimax risk rate of

√
d/m over all µ ∈ ∆N with ‖µ‖0 ≤ d. An immediate

consequence is that in order to obtain quantitative risk rates for the case of infinite support, one
must assume some sort of structure [Diakonikolas, 2016]. One can, for example, obtain minimax
rates for µ with bounded entropy [Han et al., 2015], or, say, bounded half-norm (as we do here).
Alternatively, one can restrict one’s attention to a finite class Q ⊂ ∆N; here too, optimal results are
known [Bousquet et al., 2019]. Berend and Kontorovich [2013] was one of the few works that made
no assumptions on µ ∈ ∆N, but only gave non-empirical bounds.

Our work departs from the paradigm of a-priori constraints on the unknown sampling distribution.
Instead, our estimates hold for all µ ∈ ∆N. Of course, this must come at a price: no a-priori sample
complexity bounds are possible in this setting. Absent any prior knowledge regarding µ, one can only
hope for sample-dependent empirical bounds, and we indeed obtain these. Further, our empirical
bounds are essentially the best possible, as formalized in Theorem 2.4. The latter result may be
thought of as a learning-theoretic analogue of being instance-optimal, as introduced by Valiant and
Valiant [2017] in the testing framework. Instance optimality is a very natural notion in the context of
testing whether an unknown sampling distribution µ is identical to or ε-far from a given reference one,
µ0. For example, Valiant and Valiant discovered that a truncated 2/3-norm of µ0 — i.e., a quantity
closely related to ‖µ0‖2/3 — controls the complexity of the testing problem in TV distance. Instance
optimality is more difficult to formalize for distribution learning, since for any given µ ∈ ∆N, there
is a trivial “learner” with µ hard-coded inside. Valiant and Valiant [2016] defined this notion in terms
of competing against an oracle who knows the distribution up to a permutation of the atoms, and did
not provide empirical confidence intervals. We do derive fully empirical bounds, and further show
that they are impossible to improve upon — by any estimator — other than by constants. Our results
suggest that the half-norm ‖µ‖1/2 plays a role in learning analogous to that of ‖µ‖2/3 in testing. As
an intriguing aside, we note that the half-norm corresponds to the Tsallis q-entropy with q = 1/2,
which was shown to be an optimal regularizer in some stochastic and adversarial bandit settings
[Zimmert and Seldin, 2019]. We leave the question of investigating a deeper connection between the
two results for future work.

2 Main results

In this section, we formally state our main results. Recall from the Definitions that the sample
X = (X1, . . . , Xm) ∼ µm induces the empirical measure (MLE) µ̂m, and that a key quantity in our
bounds is

Φm(µ̂m) =
1√
m
‖µ̂m‖

1/2
1/2 =

1√
m

∑
j∈N

√
µ̂m(j). (7)

Our first result is a fully empirical, high-probability upper bound on ‖µ̂m − µ‖TV in terms of
Φm(µ̂m):
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Theorem 2.1. For all m ∈ N, δ ∈ (0, 1), and µ ∈ ∆N, we have that

‖µ̂m − µ‖TV ≤ Φm(µ̂m) + 3

√
log 2

δ

2m

holds with probability at least 1− δ. We also have

E [‖µ̂m − µ‖TV] ≤ E [Φm(µ̂m)] .

Since ‖µ̂m‖1/2 ≤ ‖µ̂m‖0 ≤ ‖µ‖0, this recovers the minimax rate of
√
d/m for µ ∈ ∆N with

‖µ‖0 ≤ d. We also provide a matching lower bound:
Theorem 2.2. For all m ∈ N, δ ∈ (0, 1), and µ ∈ ∆N, we have that

‖µ̂m − µ‖TV ≥ 1

4
√

2
Φm(µ̂m)− 3

√
log 2

δ

m

holds with probability at least 1− δ.

Our empirical measure Φm(µ̂m) is never much worse than the non-empirical Λm(µ), defined in (2):
Theorem 2.3. For all m ∈ N and µ ∈ ∆N we have

E [Φm(µ̂m)] ≤ 2Λm(µ)

and, with probability at least 1− δ,

Φm(µ̂m) ≤ 2Λm(µ) +
√

log(1/δ)/m.

Furthermore, no other estimator-bound pair (µ̃m,Ψm) can improve upon (µ̂m,Φm), other than by a
constant. This is the “instance optimality” result alluded to above:
Theorem 2.4. There exist universal constants a, b > 0 such that the following holds. For any
estimator-bound pair (µ̃m,Ψm) and any continuous function θ : R+ → R+ such that

E [‖µ̃m − µ‖TV] ≤ E [Ψm(µ̃m)] ≤ θ

(
E [Φm(µ̂m)]

)
holds for all µ ∈ ∆N, θ necessarily verifies

inf
0<x<b

θ(x)

x
≥ 1

a
.

The next result, framed in the high-probability setting, draws a direct parallel between our char-
acterization of the learning sample complexity via the half-norm and Valiant and Valiant [2017]’s
characterization of the testing sample complexity via the 2/3-norm. The truncation is needed to
ensure finiteness, since the ‖µ‖1/2 =∞ for heavy-tailed distributions (e.g. µ(i) ∝ 1/i2).

Theorem 2.5. There is a universal constant C > 0 such that for all Λ ≥ 2 and 0 < ε, δ < 1, the
MLE µ̂m verifies the following optimality property: For all µ ∈ ∆N with ‖µ[2εδ/9]‖1/2 ≤ Λ, we
have

m ≥ Cε−2 max {Λ, log(1/δ)} =⇒ P (‖µ̂m − µ‖TV < ε) ≥ 1− δ.

On the other hand, for any estimator µ̃m : Nm → ∆N there is a µ ∈ ∆N with

max
{
‖µ[ε/18]‖1/2 , ‖µ[2εδ/9]‖1/2

}
≤ Λ such that:

m < Cε−2 min {Λ, log(1/δ)} =⇒ P (‖µ̃m − µ‖TV ≥ ε) ≥ min {3/4, 1− δ} .

The above is a simplified statement chosen for brevity; a considerably refined version is stated and
proved in Theorem 3.1.
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3 Proofs

3.1 Proof of Theorem 2.1

The proof consists of two parts. The first is contained in Lemma 3.1, which provides a high-probability
empirical upper bound, and an expectation bound, similar to Theorem 2.1, but in terms of R̂m(X)

instead of Φm(µ̂m). The second part, contained in Lemma 3.2, provides an estimate of R̂m(X) in
terms of Φm(µ̂m).
Lemma 3.1. For all m ∈ N, δ ∈ (0, 1), and µ ∈ ∆N, we have that

‖µ̂m − µ‖TV ≤ 2R̂m(X) + 3

√
log 2

δ

2m

holds with probability at least 1− δ. We also have,

E [‖µ̂m − µ‖TV] ≤ 2Rm. (8)

Proof. The high-probability bound from the observation,

‖µ̂m − µ‖TV := sup
A⊆N

(µ(A)− µ̂m(A)) = sup
f∈F

(
E

X∼µ
[f(X)]− 1

m

m∑
i=1

f(Xi)

)
(9)

where F := {IA|A ⊆ N} = {0, 1}N , combined with [Mohri et al., 2012, Theorem 3.3], which states:
Let G be a family of functions from Z to [0, 1] and let ν be a distribution supported on a subset of Z .
Then, for any δ > 0 , with probability at least 1− δ over Z = (Z1, . . . , Zm) ∼ νm, the following
holds:

sup
g∈G

(
E
Z∼ν

[g(Z)]− 1

m

m∑
i=1

g(Zi)

)
≤ 2R̂m(Z) + 3

√
log 2

δ

2m
.

Plugging in F for G and µ for ν in the above theorem completes the proof of the high-probability
bound. The expectation bound (eq. (8)) follows from the observation at eq. (9) and a symmetrization
argument [Mohri et al., 2012, eq. (3.8) to (3.13)].

In order to complete the proof, we apply
Lemma 3.2 (Empirical Rademacher estimates). LetX = (X1, . . . , Xm) and let µ̂m be the empirical
measure constructed from the sampleX . Then,

1

2
√

2
Φm(µ̂m) ≤ R̂m(X) ≤ 1

2
Φm(µ̂m).

Proof. The proof is based on an argument that was also developed in [Scott and Nowak, 2006,
Section 7.1, Appendix E.] in the context of histograms and dyadic decision trees, and that was
credited to Gilles Blanchard.
Let Ŝ = {Xi|i ∈ [m]} be the empirical support according to the sample X = (X1, X2, ..., Xm).
Then,

mR̂m(X) = E
σ

[
sup

f∈{0,1}N

m∑
i=1

σif(Xi)

]
= E
σ

[
sup
A⊆Ŝ

m∑
i=1

σiIA(Xi)

]

=
∑
x∈Ŝ

E
σ

[
sup
A⊆{x}

∑
i:Xi=x

σiIA(Xi)

]
=
∑
x∈Ŝ

E
σ

( ∑
i:Xi=x

σi

)
+

 =
∑
x∈Ŝ

1

2
E
σ

∣∣∣∣∣∣
mµ̂m(x)∑
i=1

σi

∣∣∣∣∣∣
 ,

where the last equality follows from counting {i : Xi = x} and the symmetry of the random variable∑m
i=1 σi for all n ∈ N. Now, by Khintchine’s inequality, for 0 < p <∞ and x1, x2, ..., xm ∈ C we

have

Ap

(
m∑
i=1

|xi|2
)1/2

≤

(
E
σ

[∣∣∣∣∣
m∑
i=1

xiσi

∣∣∣∣∣
p])1/p

≤ Bp

(
m∑
i=1

|xi|2
)1/2

,
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where Ap, Bp > 0 are constants depending on p. Sharp values for Ap, Bp were found by Haagerup
[1981]. In particular, for p = 1 he found thatA1 = 1√

2
andB1 = 1. By using Khintchine’s inequality

for each Eσ
[∣∣∣∑mµ̂m(x)

i=1 σi

∣∣∣] with these constants, we get

1√
2

√
mµ̂m(x) ≤ E

σ

∣∣∣∣∣∣
mµ̂m(x)∑
i=1

σi

∣∣∣∣∣∣
 ≤√mµ̂m(x),

and hence
1

2
√

2

∑
x∈Ŝ

√
mµ̂m(x) ≤ mR̂m(X) ≤ 1

2

∑
x∈Ŝ

√
mµ̂m(x).

Dividing by m completes the proof.

Remark: We also give an exact expression for R̂m(X) in Lemma A.1, and show in Corollary A.1
with a more delicate analysis that

‖µ̂m‖
1/2
1/2√

2πm
− 3

2

√
1

2π

1

m3/2

∥∥∥µ̂+
m

∥∥∥−1/2

−1/2
≤ R̂m(X) ≤

‖µ̂m‖
1/2
1/2√

2πm
+

√
1

2π

1

m3/2

∥∥∥µ̂+
m

∥∥∥−1/2

−1/2
.

3.2 Proof of Theorem 2.2

The proof follows from applying the lower bound of Lemma 3.2 to the following lemma:
Lemma 3.3 (lower bound by empirical Rademacher). For all m ∈ N, δ ∈ (0, 1), and µ ∈ ∆N, we
have that

‖µ̂m − µ‖TV ≥
1

2
R̂m(X)− 3

√
log 2

δ

m

holds with probability at least 1− δ.

Proof. The proof is closely based on [Wainwright, 2019, Proposition 4.12], which states: Let
Y = (Y1, . . . , Ym) ∼ νm for some distribution ν on Z , let G ⊆ [−b, b]Z be a function class, and let
σ = (σ1, . . . , σm) ∼ Uniform({−1, 1}m). Then

sup
g∈G

∣∣∣∣∣ E
Y∼ν

[g(Y )]− 1

m

m∑
i=1

g(Yi)

∣∣∣∣∣ ≥ 1

2
E
σ,Y

[
sup
g∈G

∣∣∣∣∣ 1

m

m∑
i=1

σig(Yi)

∣∣∣∣∣
]
−

supg∈G |EY∼ν [g(Y )]|
2
√
m

− δ (10)

holds with probability at least 1 − e−
nδ2

2b2 . Plugging in X for Y , µ for ν, N for Z , 1 for b, and
F := {IA|A ⊆ N} = {0, 1}N for G in (10) together with observing that

‖µ̂m − µ‖TV := sup
A⊆N

(µ(A)− µ̂m(A)) = sup
f∈F

∣∣∣∣∣ E
X∼µ

[f(X)]− 1

m

m∑
i=1

f(Xi)

∣∣∣∣∣ ,
E
σ,X

[
sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

σif(Xi)

∣∣∣∣∣
]
≥ Rm, and sup

f∈F

∣∣∣∣ E
X∼µ

[f(X)]

∣∣∣∣ = 1,

followed by some algebraic manipulation we get

‖µ̂m − µ‖TV ≥
1

2
Rm −

1

2
√
m
−

√
2 log 2

δ

m
(11)

with probability at least 1− δ/2. Applying McDiarmid’s inequality to the 1/m-bounded-differences
function R̂m(X) (similar to [Mohri et al., 2012, Eq. (3.14)]) we get:

1

2
Rm ≥

1

2
R̂m(X)− 1

2

√
log 2

δ

2m
(12)

6



with probability at least 1− δ/2. To conclude the proof, combine (11) and (12) with the union bound
to get:

‖µ̂m − µ‖TV ≥
1

2
R̂m(X)− 1

2
√
m
− 1

2

√
log 2

δ

2m
−

√
2 log 2

δ

m

with probability at least 1− δ, and use the fact − 1
2
√
m
− 1

2

√
log 2

δ

2m −
√

2 log 2
δ

m ≥ −3

√
log 2

δ

m for all
m ∈ N, δ ∈ (0, 1) .

Remark 3.1. We note that by using a more careful analysis, the constants of Theorem 2.2 can be

improved to yield, under the same assumptions, ‖µ̂m − µ‖TV ≥
1
2R̂m(X)− 1

4
√
m
− 3

2

√
log 2

δ

2m with
probability at least 1− δ.

3.3 Proof of Theorem 2.3

Invoking Fubini’s theorem, we write

1√
m

E
[
‖µ̂m‖

1/2
1/2

]
=

1

m

∞∑
i=1

E
X∼Bin(m,µ(i))

[√
X
]
.

Since X ∈ {0, 1, 2, . . .}, we have
√
X ≤ X and hence E

[√
X
]
≤ E [X]. On the other hand,

Jensen’s inequality implies E
[√

X
]
≤
√
E [X], whence

1√
m

E
[
‖µ̂m‖

1/2
1/2

]
≤ 1

m

∞∑
i=1

min{
√
mµ(i),mµ(i)} (13)

=
∑

i: µ(i)≤1/m

µ(i) +
1√
m

∑
i: µ(i)>1/m

√
µ(i) ≤ 2Λm(µ). (14)

The high-probability bound follows from applying McDiarmid’s inequality to the 2/m-bounded-
differences function: for all δ ∈ (0, 1), we have

Φm(µ̂m) ≤ E [Φm(µ̂m)] +
√

log(1/δ)/m.

�

3.4 Statement and proof of the refined version of Theorem 2.5

Theorem 3.1. There is a universal constant C > 0 such that for all Λ ≥ 2 and 0 < ε, δ < 1,
the MLE verifies the following optimality property: For all µ ∈ ∆N with ‖µ[2εδ/9]‖1/2 ≤ Λ, if
(X1, . . . , Xm) ∼ µm and m ≥ C

ε2 max
{

Λ, ln δ−1
}

, then ‖µ̂m − µ‖TV < ε holds with probability
at least 1− δ.

On the other hand, for all Λ ≥ 2 and 0 < ε < 1/16, 0 < δ < 1, for any estimator µ̄ : Nm → ∆N
there is a µ ∈ ∆N with ‖µ[ε/18]‖1/2 ≤ Λ such that µ̄ must require at least m ≥ C

ε2 Λ samples in
order for ‖µ̄− µ‖TV < ε to hold with probability at least 3/4, and for any estimator ν̄ : Nm → ∆N
there is a ν ∈ ∆N with ‖ν[2εδ/9]‖1/2 ≤ Λ, such that ν̄ must require at least m ≥ C

ε2 ln 1
δ samples

in order for ‖ν̄ − ν‖TV < ε to hold with probability at least 1− δ.

Minimax risk. For any Λ ∈ [2,∞), 0 < ε, δ < 1, we define the minimax risk

Rm(Λ, ε, δ) := inf
µ̄

sup
µ:‖µ[2εδ/9]‖1/2<Λ

P
X∼µm

(‖µ̄− µ‖TV > ε) ,

where the infimum is taken over all functions µ̄ : Nm → ∆N, and the supremum is taken over the
subset of distributions such that ‖µ[2εδ/9]‖1/2 < Λ.
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Upper bound. Let Λ ∈ [2,∞), 0 < ε, δ < 1, µ ∈ ∆N, such that ‖µ[2εδ/9]‖1/2 ≤ Λ, m ∈ N,
(X1, . . . , Xm) ∼ µ and let µ̂m be the MLE. For η > 0, consider the two truncated distributions µ[η]
and µ̂′m, where we define the latter as

µ̂′m(i) := µ̂m(i)1[µ[η](i) > 0], i ∈ N.

By the triangle inequality, P (‖µ̂m − µ‖TV > ε) ≤ P (E1 + E2 + E3 > ε), where

E1 :=
∥∥µ̂m − µ̂′m∥∥TV

, E2 :=
∥∥µ̂′m − µ[2εδ/9]

∥∥
TV
, E3 := ‖µ[2εδ/9]− µ‖TV .

By Markov’s inequality,

P
(
E1 >

ε

3

)
≤ 3

ε
E
[∥∥µ̂m − µ̂′m∥∥TV

]
=

3

2ε
E

[ ∞∑
i=1

∣∣µ̂m(i)− µ̂′m(i)
∣∣]

=
3

2ε
E

 1

m

∑
i∈N : Πµ(i)>Tµ(η)

m∑
t=1

1[Xt = i]

 =
3

2ε
P (Πµ(Xt) > Tµ(η)) ≤ δ

3
.

Moreover, E3 = 1
2

∑∞
i>Tµ(η) µ

↓(i) ≤ εδ
9 ≤

ε
3 . In order to apply the union bound, it remains to

handle P (E2 > ε/3). This is achieved in two standard steps. The first follows an argument similar to
that of [Berend and Kontorovich, 2013, Lemma 5], that bounds from above the quantity in expectation

using Jensen’s inequality, E [E2] ≤
‖µ[2εδ/9]‖1/2

1/2√
m

≤
√

Λ
m . An application of McDiarmid’s inequality

controls the fluctuations around the expectation [Berend and Kontorovich, 2013, (7.5)] and concludes
the proof.

�

Sample complexity lower bound m = Ω
(

log δ−1

ε2

)
. See Lemma B.1.

Sample complexity lower bound m = Ω
(

Λ
ε2

)
. Let ε ∈ (0, 1/16) and Λ > 2. First observe that

Λ/2 ≤ 2bΛ/2c ≤ Λ, and 2bΛ/2c ∈ 2N. As a result,

Rm(Λ, ε, δ)
(i)

≥ inf
µ̄

sup
µ:‖µ[2εδ/9]‖1/2≤2bΛ/2c

P
X∼µm

(‖µ̄− µ‖TV > ε)

(ii)

≥ inf
µ̄

sup
µ∈∆2bΛ/2c

P
X∼µm

(‖µ̄− µ‖TV > ε)
(iii)

≥ 1

2

(
1− mCε2

2bΛ/2c

)
≥ 1

2

(
1− 2mCε2

Λ

)
where (i) and (ii) follow from taking the supremum over increasingly smaller sets, (iii) is Lemma B.2
invoked for 2bΛ/2c ∈ N, and C > 0 is a universal constant. To conclude, m ≤ Λ

4Cε2 =⇒
Rm(Λ, ε, δ) ≥ 1/4, which yields the second lower bound. �

Remark: The universal constant in the lower bound obtained by Tsybakov’s method at Lemma B.2 is
suboptimal, and we give a short proof in the appendix for completeness. We refer the reader to the
more involved methods of Kamath et al. [2015] for obtaining tighter bounds.

3.5 Proof of Theorem 2.4

Let d ∈ 2N and m ∈ N, and restrict the problem to µ ∈ ∆d. Let ε ∈ (0, 1/16). By Lemma B.2,
R̄m(d, ε) := infµ̄ supµ∈∆d

P (‖µ̄− µ‖TV > ε) ≥ 1
2

(
1− Cmε2

d

)
for some C > 0, whence

Markov’s inequality yields

1

2

(
1− Cmε2

d

)
≤ 1

ε
inf
µ̄

sup
µ∈∆d

E [‖µ̄− µ‖TV] .

Restrict m ≥ d
b2 , with b :=

√
3C/16 and set ε =

√
d

3Cm , so that

inf
µ̄

sup
µ∈∆d

E [‖µ̄− µ‖TV] ≥ 1

a

√
d

m
, where a :=

√
27C (15)
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Suppose that θ(
√
d/m) < 1

a

√
d
m , then by hypothesis,

inf
µ̄

sup
µ∈∆d

E [‖µ̄− µ‖TV] ≤ sup
µ∈∆d

E [Ψm(µ̃m)] ≤ sup
µ∈∆d

θ

(
E [Φm]

)
.

For µ ∈ ∆d, E
[√

‖µ̂m‖1/2

m

]
≤
√

d
m . It follows that

sup
µ∈∆d

θ

(
E [Φm]

)
≤ θ

(√
d

m

)
<

1

a

√
d

m
,

which contradicts (15). We have therefore established, for

r ∈ R :=

{√
d/m : (m, d) ∈ N× 2N,m ≥ d

b2

}
,

the lower bound θ(r) ≥ r/a. We extend the lower bound to the open interval (0, b), by observing
that R is dense in (0, b) followed by a continuity argument. �

Broader Impact

This work is of purely theoretical nature and does not present any foreseeable societal consequence.
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A Analysis of the Empirical Rademacher complexity

From Lemma 3.2 (see also [Scott and Nowak, 2006, Section 7.1, Appendix E.]), we see that the
Khintchine inequality already yields a control of R̂m(X) by ‖µ̂m‖

1/2
1/2 up to universal constants.

1

2
√

2
‖µ̂m‖

1/2
1/2 ≤ R̂m(X) ≤ 1

2
‖µ̂m‖

1/2
1/2 .

Furthermore, it is possible to derive an exact expression for it, from the expected absolute distance of
a symmetric random walk:
Lemma A.1 (Empirical Rademacher complexity, exact expression). Let X = (X1, . . . , Xm) and
let µ̂m be the empirical measure constructed from the sampleX . Then,

R̂m(X) =
1

m

∑
x: µ̂m(x)>0

1

2mµ̂m(x)

⌈
mµ̂m(x)

2

⌉(
mµ̂m(x)

dmµ̂m(x)/2e

)
.

Proof. Write mR̂m(X) =
∑
x: µ̂m(x)>0

1
2 Eσ

[∣∣∣∑mµ̂m(x)
i=1 σi

∣∣∣] as in the proof of Lemma 3.2.

Now, observe that Eσ
[∣∣∣∑mµ̂m(x)

i=1 σi

∣∣∣] is the expectation value of the absolute distance of a 1-
dimensional symmetric random walk after mµ̂m(x) steps, also known as the “heads minus tails”
process [Handelsman, 1991]:

E
σ

∣∣∣∣∣∣
mµ̂m(x)∑
i=1

σi

∣∣∣∣∣∣
 =

1

m2mµ̂m(x)

⌈
mµ̂m(x)

2

⌉(
mµ̂m(x)

dmµ̂m(x)/2e

)
.

However, the above is inconvenient and involves the computation of factorials. Leveraging delicate
bounds for the central binomial coefficient obtained with the Wallis product in Dunbar [2009], we
derive the following corollary, that gives exact the first-order constant in terms of the half-norm,
makes the minus-half-norm appear as a second dominant term, and that is easily computable.
Corollary A.1 (Empirical Rademacher complexity, first order bound). LetX = (X1, . . . , Xm) and
let µ̂m be the empirical measure constructed from the sampleX . Then writing

φm(X) :=
‖µ̂m‖

1/2
1/2√

2πm
,

it holds that

‖µ̂m‖
1/2
1/2√

2πm
− 3

2

√
1

2π

1

m3/2

∥∥∥µ̂+
m

∥∥∥−1/2

−1/2
≤ R̂m(X) ≤

‖µ̂m‖
1/2
1/2√

2πm
+

√
1

2π

1

m3/2

∥∥∥µ̂+
m

∥∥∥−1/2

−1/2
.

Proof. Let n ∈ N, if n = 2k, k ≥ 1,

1

2n

⌈n
2

⌉( n

dn/2e

)
=

1

4k
k

(
2k

k

)
,

and if n = 2k − 1, k ≥ 1, dn/2e = k such that similarly,

1

2n

⌈n
2

⌉( n

dn/2e

)
=

1

22k−1
k

(
2k − 1

k

)
=

2

4k
k

(2k − 1)!

k!(2k − k − 1)!

=
2

4k
k

(2k)!(2k − k)

(2k)k!(2k − k)!
=

2

4k
k

2k − k
2k

(
2k

k

)
=

1

4k
k

(
2k

k

)
.

Moreover, from Dunbar [2009, p.11], for k ≥ 1, an application of the Wallis product yields,

k√
π/2
√

2k + 1

(
1− 1

2k

)
≤ 1

4k
k

(
2k

k

)
≤ k√

π/2
√

2k + 1

(
1 +

1

2k

)
.
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If follows that when n = 2k,√
n

2π

{√
n

n+ 1

(
1− 1

n

)}
≤ 1

2n

⌈n
2

⌉( n

dn/2e

)
≤
√

n

2π

{√
n

n+ 1

(
1 +

1

n

)}
,

and for n = 2k − 1,√
n

2π

{
n+ 1√
n(n+ 2)

(
1− 1

n+ 1

)}
≤ 1

2n

⌈n
2

⌉( n

dn/2e

)
≤
√

n

2π

{
n+ 1√
n(n+ 2)

(
1 +

1

n+ 1

)}
For all n ∈ N, √

n

n+ 1

(
1 +

1

n

)
≤ n+ 1√

n(n+ 2)

(
1 +

1

n+ 1

)
≤ 1 +

1

n
,√

n

n+ 1

(
1− 1

n

)
≥ n+ 1√

n(n+ 2)

(
1− 1

n+ 1

)
≥ 1− 3

2n
,

such that

R̂m(X) ≤
√

1

2πm

∑
x : µ̂m(x)>0

√
µ̂m(x)

{
1 +

1

mµ̂m(x)

}

≤ φm(X) +

√
1

2π

1

m3/2

∥∥∥µ̂+
m

∥∥∥−1/2

−1/2
,

where we wrote ∥∥∥µ̂+
m

∥∥∥−1/2

−1/2
:=
∑
x∈N

1[µ̂m(x) > 0]√
µ̂m(x)

,

and conversely,

R̂m(X) ≥ φm(X)− 3

2

√
1

2π

1

m3/2

∥∥∥µ̂+
m

∥∥∥−1/2

−1/2
.

B Auxiliary lemmas for lower bounds

Lemma B.1 (Sample complexity lower bound m = Ω
(
log δ−1/ε2

)
). Let Λ ≥ 2, 0 < ε < 1/2 and

0 < δ < 1. For any estimator ν̄ : Nm → ∆N there is a ν ∈ ∆N with ‖ν[2εδ/9]‖1/2 ≤ Λ, such

that ν̄ must require at least m = Ω
(

log δ−1

ε2

)
samples in order for ‖ν̄ − ν‖TV < ε to hold with

probability at least 1− δ.

Proof. The proof is standard and consists of lower bounding the difficulty of learning a biased
coin. Recall that for µ0 := (1/2, 1/2),µε := (1/2 − ε, 1/2 + ε), direct computations lead to
‖µ0 − µε‖1 = 2ε, and DKL (µε||µ0) = (1/2 − ε) ln 1/2−ε

1/2 + (1/2 + ε) ln 1/2+ε
1/2 ≤ 4ε2, where

DKL (µε||µ0) is the KL divergence between µε and µ0. We also verify that ‖µε‖1/2 ≤ ‖µ0‖1/2 ≤
2 ≤ Λ, hence also for their truncated version. From an immediate corollary of LeCam’s theorem
[Tsybakov, 2009, Theorem 2.2, Lemma 2.6], Rm(Λ, ε, δ) ≥ 1

2 exp (−mDKL (µε||µ0)), whence
m ≤ 1

4ε2 log δ−1

2 =⇒ Rm(Λ, ε, δ) ≥ δ.

Lemma B.2. Let d ∈ 2N, d ≥ 16,m ∈ N, ε ∈ (0, 1/16), and let

R̄m(d, ε) := inf
µ̄

sup
µ:µ∈∆d

P
X∼µm

(‖µ̄− µ‖TV > ε) ,

where the infimum is taken over all µ̄ : [d]m → ∆d. Then there is a universal C > 0 such that

R̄m(d, ε) ≥ 1

2

(
1− Cmε2

d

)
.

12



Proof. As is customary in Analysis, the universal constant C > 0 may change its value from
expression to expression. Consider the family of distributions

D(d) :=
{
µ(σ) ∈ ∆d,σ ∈ {0, 1}d/2

}
,

where

µ(σ) :=
1

d

(
1 + 16εσ1, 1− 16εσ1, 1 + 16εσ2, 1− 16εσ2, . . . , 1 + 16εσd/2, 1− 16εσd/2

)
.

From the Varshamov-Gilbert bound [Tsybakov, 2009, Lemma 2.9], there exists a D̃(d) ( D(d)

satisfying (a)
∣∣∣D̃(d)

∣∣∣ > 2d/16, (b) for µ(σ),µ(σ′) ∈ D̃(d), σ 6= σ′ =⇒
∥∥∥µ(σ) − µ(σ′)

∥∥∥
TV
≥ 2ε,

and (c) µ(0) ∈ D̃(d). It is straightforward to verify that DKL

(
µ(σ)

∣∣∣∣µ(0)
)
≤ Cε2. Applying

Tsybakov’s method [Tsybakov, 2009, Theorem 2.5],

R̄m(d, ε) ≥ inf
µ̄

sup
µ∈D̃(d)

P (‖µ̄− µ‖TV > ε)

≥ 1

2

1−
4m

|D̃(d)|
∑
µ(σ)∈D̃(d)DKL

(
µ(σ)

∣∣∣∣µ(0)
)

ln
∣∣∣D̃(d)

∣∣∣


so that R̄m(d, ε) ≥ 1
2

(
1− Cmε2

d

)
.

C Convergence properties of the empirical bound

In this section, we briefly analyze convergence of 1√
m
‖µ̂m‖

1/2
1/2. In Proposition C.1 we confirm

that the quantity converges almost surely and in L1, but with Proposition C.2, with show that this
convergence can be arbitrarily slow.
Proposition C.1 (L1 and almost sure convergence). Letµ ∈ ∆N and letX := (X1, . . . , Xm) ∼ µm.

Then, 1√
m
‖µ̂m‖

1/2
1/2

L1−−→ 0 and 1√
m
‖µ̂m‖

1/2
1/2

a.s.−−→ 0.

Proof. For L1 convergence the proof is as follows:

lim
m→∞

E
[∣∣∣∣ 1√

m
‖µ̂m‖

1/2
1/2 − 0

∣∣∣∣] = lim
m→∞

E
[

1√
m
‖µ̂m‖

1/2
1/2

]
≤ lim
m→∞

2Λm(µ) (Theorem 2.3)

= 0. ([Berend and Kontorovich, 2013, Lemma 7])

Now, for almost sure convergence, recall that 1√
m
‖µ̂m‖

1/2
1/2 satisfies 2/m-bounded-differences. By

the L1 convergence established above, we have that for all ε > 0 there is an Mε ∈ N s.t. for all
m ≥Mε, we have E

[
1√
m
‖µ̂m‖

1/2
1/2

]
≤ ε/2. Invoking McDiarmid’s inequality, for every m ≥Mε,

we have

P
(

1√
m
‖µ̂m‖

1/2
1/2 ≥ ε/2

)
≤ exp

(
−mε

2

2

)
.

Thus,
∞∑
m=1

P
(

1√
m
‖µ̂m‖

1/2
1/2 ≥ ε/2

)
≤Mε +

∞∑
m=Mε

exp

(
−mε

2

2

)
<∞.

An application of the Borel-Cantelli lemma completes the proof:
1√
m
‖µ̂m‖

1/2
1/2

a.s.−−→ 0.

13



To formalize our idea of arbitrarily slow convergence, we adapt the terminology developed in Deutsch
and Hundal [2010a,b]. We begin with the set of all [0, 1]-valued sequences that converge to 0:

U := {U ∈ [0, 1]N : lim
m→∞

U(m) = 0}.

Following Deutsch and Hundal [2010a, Definition 2.7], we will say that the statistic θ̂m : Nm → [0, 1]
converges arbitrarily slowly to 0 in L1 if

1. ∀µ ∈ ∆N, limm→∞ E
[
θ̂m

]
= 0,

2. ∀U ∈ U ,∃µ ∈ ∆N such that ∀m ∈ N,E
[
θ̂m

]
≥ U(m).

It turns out [Deutsch and Hundal, 2010b, Remark 2.8, Theorem 2.9] that restricting the set U to the
decreasing sequences,

U↓ := {U ∈ [0, 1]N : sup
m∈N

U(m+ 1)/U(m) ≤ 1, lim
m→∞

U(m) = 0},

does not change the above definition of arbitrarily slow convergence.
Proposition C.2 (Arbitrary slow convergence in L1). For any sequence 1 > r1 > r2 > . . .
decreasing to 0, there is a distribution µ ∈ ∆N such that 2EX∼µm [‖µ− µ̂m‖TV] > rm for all
m ≥ 1.

Proof.

2E [‖µ− µ̂m‖TV] = E [‖µ− µ̂m‖1]

=

∞∑
i=1

E [|µ(i)− µ̂m(i)|]

=

∞∑
i=1

E [1[µ̂m(i) > 0] |µ(i)− µ̂m(i)|+ 1[µ̂m(i) = 0] |µ(i)− µ̂m(i)|]

=

∞∑
i=1

E [1[µ̂m(i) > 0] |µ(i)− µ̂m(i)|] +

∞∑
i=1

E [1[µ̂m(i) = 0]µ(i)]

=

∞∑
i=1

E [1[µ̂m(i) > 0] |µ(i)− µ̂m(i)|] + E

 ∑
i: µ̂m(i)=0

µ(i)


≥ E

 ∑
i: µ̂m(i)=0

µ(i)

 = E [µ (N \ {X1, . . . Xm})]

= E [Um] ,

where Um := µ (N \ {X1, . . . Xm}) is the missing mass random variable. From [Berend and
Kontorovich, 2012, Proposition 4], we have that: For any sequence 1 > r1 > r2 > . . . decreasing to
0, there is a distribution µ ∈ ∆N such that E [Um] > rm for all m ≥ 1.

Remark C.1. To our knowledge, the above result is the first to establish a connection between the
TV risk ‖µ− µ̂m‖TV and the missing mass Um.
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