
Supplementary Material

This supplementary material provides additional methods, results and discussion, as well as imple-
mentation details.

• Section 1 gives a complete description of our setup and of the Playground environment.
• Section 2 presents a focus on generalization and studies different types of generalization.
• Section 3 presents a focus on exploration and how it is influenced by goal imagination.
• Section 4 presents a focus on the goal imagination mechanism we use for IMAGINE.
• Section 5 presents a focus on the Modular-Attention architecture.
• Section 6 presents a focus on the benefits of learning the reward function.
• Section 7 provides additional visualization of the goal embeddings and the attention vectors.
• Section 8 discusses the comparison with goal-as-state approaches.
• Section 9 gives all necessary implementation details.

1 Complete Description of the Playground Environment and Its Language

Environment description. The environment is a 2D square: [−1.2,1.2]2. The agent is a disc of
diameter 0.05 with an initial position (0,0). Objects have sizes uniformly sampled from [0.2,0.3]
and their initial positions are randomized so that they are not in contact with each other. The agent
has an action space of size 3 bounded in [−1,1]. The first two actions control the agent’s continuous
2D translation (bounded to 0.15 in any direction). The agent can grasp objects by getting in contact
with them and closing its gripper (positive third action), unless it already has an object in hand.
Objects include 10 animals, 10 plants, 10 pieces of furniture and 2 supplies. Admissible categories
are animal, plant, furniture, supply and living_thing (animal or plant), see Figure 1. Objects are
assigned a color attribute (red, blue or green). Their precise color is a continuous RGB code uniformly
sampled from RGB subspaces associated with their attribute color. Each scene contains 3 of these
procedurally-generated objects (see paragraph about the Social Partner below).

Category

Object
Type

furnitureanimal plant

living thing

supply

dog
cat
chameleon
human
fly

cactus
carnivorous
flower
tree
bush

grass
aglae
tea
rose
bonsai

parrot
mouse
lion
pig
cow

cupboard
sink
window
sofa
carpet

door
chair
desk
lamp
table

water
food

Figure 1: Representation of possible objects types and categories.

Agent perception. At time step t, we can define an observation ot as the concatenation of body
observations (2D-position, gripper state) and objects’ features. These two types of features form
affordances between the agent and the objects around. These affordances are necessary to understand
the meaning of object interactions like grasp. The state st used as input of the models is the
concatenation of ot and ∆ot=ot−o0 to provide a sense of time. This is required to acquire the
understanding and behavior related to the grow predicate, as the agent needs to observe and produce
a change in the object’s size.

Social Partner. SP has two roles:

• Scene organization: SP organize the scene according to the goal selected by the agent. When
the agent selects a goal, it communicates it to SP. If the goal starts by the word grow, SP adds
a procedurally-generated supply (water or food for animals, water for plants) of any size
and color to the scene. If the goal contains an object (e.g. red cat), SP adds a corresponding
object to the scene (with a procedurally generated size and RGB color). Remaining objects
are generated procedurally. As a result, the objects required to fulfill a goal are always

1

present and the scene contains between 1 (grow goals) and 3 (go goals) random objects.
Note that all objects are procedurally generated (random initial position, RGB color and
size).

• Scene description: SP provides NL descriptions of interesting outcomes experienced by
the agent at the end of episodes. It takes the final state of an episode (sT) as input and
returns matching NL descriptions: DSP(sT)⊂DSP. When SP provides descriptions, the agent
considers them as targetable goals. This mapping DSP→G train simply consists in removing
the first you token (e.g. turning you grasp red door into the goal grasp red door). Given the
set of previously discovered goals (Gknown) and new descriptions DSP(sT), the agent infers
the set of goals that were not achieved: Gna(sT) = Gknown \ DSP(sT), where \ indicates the
complement.

Grammar. We now present the grammar that generates descriptions for the set of goals achievable
in the Playground environment (GA). Bold and { } refer to sets of words while italics refers to
particular words:

1. Go: (e.g. go bottom left)
• go + zone

2. Grasp: (e.g. grasp any animal)
• grasp + color ∪ {any} + object type ∪ object category
• grasp + any + color + thing

3. Grow: (e.g. grow blue lion)
• grow + color ∪ {any} + living thing ∪ {living_thing, animal, plant}
• grow + any + color + thing

Word sets are defined by:

• zone = {center, top, bottom, right, left, top left, top right, bottom left, bottom right}
• color = {red, blue, green}
• object type = living thing ∪ furniture ∪ supply
• object category = {living_thing, animal, plant, furniture, supply}
• living thing = animal ∪ plant
• animal = {dog, cat, chameleon, human, fly, parrot, mouse, lion, pig, cow}
• plant = {cactus, carnivorous, flower, tree, bush, grass, algae, tea, rose, bonsai}
• furniture = {door, chair, desk, lamp, table, cupboard, sink, window, sofa, carpet}
• supply = {water, food}
• predicate = {go, grasp, grow}

We partition this set of achievable goals into a training (G train) and a testing (G test) set. Goals from
G test are intended to evaluate the ability of our agent to explore the set of achievable outcomes beyond
the set of outcomes described by SP. The next section introduces this testing set and focuses on
generalization. Note that some goals might be syntactically valid but not achievable. This includes
all goals of the form grow + color ∪ {any} + furniture ∪ {furniture} (e.g. grow red lamp).

IMAGINE Pseudo-Code. Algorithm 1 outlines the pseudo-code of our learning architecture. See
Main Section 3.2 for high-level descriptions of each module and function.

2

Algorithm 1: IMAGINE

1: Input: env, SP
2: Initialize: Le,R, π, mem(R), mem(π), Gknown, Gim

Random initializations for networks
empty sets for memories and goal sets

3: for e=1:Nepisodes do
4: if Gknown 6=Ø then
5: sample gNL from Gknown∪Gim
6: g←Le(gNL)
7: else
8: sample g from N (0,I)
9: s0← env.reset()

10: for t=1:T do
11: at←π(st−1,g)
12: st← env.step(at)
13: memπ .add(st−1,at,st)
14: GSP← SP.get_descriptions(sT)
15: Gknown←Gknown∪ GSP

16: mem(R).add(sT , gNL) for gNL in GSP

17: if goal imagination allowed then
18: Gim← Imagination(Gknown) # see Algorithm 2
19: Batchπ←ModularBatchGenerator(mem(π)) # Batchπ={(s,a,s′)}
20: Batchπ← Hindsight(Batchπ,R,Gknown,Gim) # Batchπ={(s,a,r,g,s′)} where r=R(s,g)
21: π←RL_Update(Batchπ)
22: if e% reward_update_freq ==0 then
23: BatchR←ModularBatchGenerator(mem(R))
24: Le,R← LE&RewardFunctionUpdate(BatchR)

3

2 Focus on Generalization

Because scenes are procedurally-generated, SR computed on G train measures the generalization to
new states. When computed on G test, however, SR measures both this state generalization and the
generalization to new goal descriptions from G test. As SRtrain is almost perfect, this section focuses
solely on generalization in the language space: SRtest.

Different types of generalization. Generalization can occur in two different modules of the IMAG-
INE architecture: in the reward function and in the policy. Agents can only benefit from goal
imagination when their reward function is able to generalize the meanings of imagined goals from
the meanings of known ones. When they do, they can further train on imagined goals, which might,
in turn, reinforce the generalization of the policy. This section characterizes different types of
generalizations that the reward and policy can both demonstrate.

• Type 1 - Attribute-object generalization: This is the ability to accurately associate an attribute
and an object that were never seen together before. To interpret the goal grasp red tree
requires to isolate the red and tree concepts from other sentences and to combine them to
recognize a red tree. To measure this ability, we removed from the training set all goals
containing the following attribute-object combinations: {blue door, red tree, green dog} and
added them to the testing set (4 goals).

• Type 2 - Object identification: This is the ability to identify a new object from its attribute.
We left out of the training set all goals containing the word flower (4 goals). To interpret
the goal grasp red flower requires to isolate the concept of red and to transpose it to the
unknown object flower. Note that in the case of grasp any flower, the agent cannot rely on
the attribute, and must perform some kind of complement reasoning:“if these are known
objects, and that is unknown, then if must be a flower".

• Type 3 - Predicate-category generalization: This is the ability to interpret a predicate for a
category when they were never seen together before. As explained in Section 1, a category
regroups a set of objects and is not encoded in the object state vector. It is only a linguistic
concept. We left out all goals with the grasp predicate and the animal category (4 goals). To
correctly interpret grasp any animal requires to identify objects that belong to the animal
category (acquired from "growing animal" and "growing animal objects" goals), to isolate
the concept of grasping (acquired from grasping non-animal objects) and to combine the
two.

• Type 4 - Predicate-object generalization: This is the ability to interpret a predicate for an
object when they were never seen together before. We leave out all goals with the grasp
predicate and the fly object (4 goals). To correctly interpret grasp any fly, the agent should
leverage its knowledge about the grasp predicate (acquired from the "grasping non-fly
objects" goals) and the fly object (acquired from the "growing flies" goals).

• Type 5 - Predicate dynamics generalization: This is the ability to generalize the behavior
associated with a predicate to another category of objects, for which the dynamics is changed.
In the Playground environment, the dynamics of grow with animals and plants is a a bit
different. animals can be grown with food and water whereas plants only grow with water.
We want to see if IMAGINE can learn the dynamics of grow on animals and generalize it
to plants. We left out all goals with the grow predicate and any of the plant objects, plant
and living thing categories (48 goals). To interpret, grow any plant, the agent should be able
to identify the plant objects (acquired from the "grasping plants" goals) and that objects
need supplies (food or water) to grow (acquired from the "growing animals" goals). Type
5 is more complex than Type 4 for two reasons: 1) because the dynamics change and 2)
because it mixes objects and categories. Note that, by definition, the zero-shot generalization
is tested without additional reward signals (before imagination). As a result, even the best
zero-shot generalization possible cannot adapt the grow behavior from animals to plant and
would bring food and water with equal probability p=0.5 for each.

Table 1 provides the exhaustive list of goals used to test each type of generalization.

Different ways to generalize. Agent can generalize to out-of-distribution goals (from any of the 5
categories above) in three different ways:

4

1. Policy zero-shot generalization: The policy can achieve the new goal without any supple-
mentary training.

2. Reward zero-shot generalization: The reward can tell whether the goal is achieved or not
without any supplementary training.

3. Policy n-shot generalization or behavioral adaptation: When allowed to imagine goals,
IMAGINE agents can use the zero-shot generalization of their reward function to au-
tonomously train their policy to improve on imagined goals. After such training, the
policy might show improved generalization performance compared to its zero-shot abilities.
We call this performance n-shot generalization. The policy received supplementary training,
but did not leverage any external supervision, only the zero-shot generalization of its internal
reward function. This is crucial to achieve Type 5 generalization. As we said, zero-shot
generalization cannot figure out that plants only grow with water. Fine-tuning the policy
based on experience and internal rewards enables agents to perform behavioral adaptation:
adapting their behavior with respect to imagined goals in an autonomous manner (see Main
Figure 3b).

Table 1: Testing goals in G test, by type.
Type 1 Grasp blue door, Grasp green dog,Grasp red tree, Grow green dog

Type 2 Grasp any flower, Grasp blue flower, Grasp green flower, Grasp red flower,
Grow any flower, Grow blue flower, Grow green flower, Grow red flower

Type 3 Grasp any animal, Grasp blue animal, Grasp green animal, Grasp red animal
Type 4 Grasp any fly, Grasp blue fly, Grasp green fly, Grasp red fly

Type 5

Grow any algae, Grow any bonsai, Grow any bush, Grow any cactus
Grow any carnivorous, Grow any grass, Grow any living_thing, Grow any plant
Grow any rose, Grow any tea, Grow any tree, Grow blue algae
Grow blue bonsai, Grow blue bush,Grow blue cactus, Grow blue carnivorous
Grow blue grass, Grow blue living_thing, Grow blue plant, Grow blue rose
Grow blue tea, Grow blue tree,Grow green algae, Grow green bonsai
Grow green bush, Grow green cactus, Grow green carnivorous, Grow green grass
Grow green living_thing, Grow green plant, Grow green rose, Grow green tea
Grow green tree, Grow red algae, Grow red bonsai, Grow red bush
Grow red cactus, Grow red carnivorous, Grow red grass, Grow red living_thing
Grow red plant, Grow red rose, Grow red tea, Grow red tree

Experiments. Figure 2 presents training and generalization performance of the reward function
and policy. We evaluate the generalization of the reward function via its average F1 score on G test,
the generalization of the policy by SRtest.

Reward function zero-shot generalization. When the reward function is trained in parallel of the
policy, we monitor its zero-shot generalization capabilities by computing the F1-score over a dataset
collected separately with a trained policy run on goals from G test (kept fixed across runs for fair
comparisons). As shown in Figure 2a, the reward function exhibits good zero-shot generalization
properties over 4 types of generalization after 25×103 episodes. Note that, because we test on data
collected with a different RL policy, the F1-scores presented in Figure 2a may not faithfully describe
the true generalization of the reward function during co-training.

Policy zero-shot generalization. The zero-shot performance of the policy is evaluated in Figure 2b
(no imagination condition) and in the period preceding goal imagination in Figure 2c and 2d (before
vertical dashed line). The policy shows excellent zero-shot generalization properties for Type 1, 3
and 4, average zero-shot generalization on Type 5 and fails to generalize on Type 2. Type 1, 3 and 4
can be said to have similar levels of difficulty, as they all require to learn two concepts individually
before combining them at test time. Type 2 is much more difficult as the meaning of only one word is
known. The language encoder indeed receives a new word token which seems to disturb behavior. As
said earlier, zero-shot generalization on Type 5 cannot do better than 0.5, as it cannot infer that plants
only require water.

Policy n-shot generalization. When goal imagination begins (Figures 2c and 2d after the vertical line),
agents can imagine goals and train on them. This means that SR evaluates n-shot policy generalization.

5

Agents can now perform behavior adaptation. They can learn that plants need water. As they learn
this, their generalization performance on goals from Type 5 increases and goes beyond 0.5. Note that
this effects fights the zero-shot generalization. By default, policy and reward function apply zero-shot
generalization: e.g. they bring water or food equally to plants. Behavioral adaptation attempts to
modify that default behavior. Because of the poor zero-shot generalization of the reward on goals of
Type 2, agents cannot hope to learn Type 2 behaviors. Moreover, Type 2 goals cannot be imagined,
as the word flower is unknown to the agent.

0 20 40 60 80 100
Episodes (x103)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
-s

co
re

Train set
Type 1

Type 2
Type 3

Type 4
Type 5

(a) Reward Function, no imagination

0 20 40 60 80 100
Episodes (x103)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Train
Type 1

Type 2
Type 3

Type 4
Type 5

(b) Policy, no imagination

0 20 40 60 80 100
Episodes (x103)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Train
Type 1

Type 2
Type 3

Type 4
Type 5

(c) Policy, imagination half way

0 20 40 60 80 100
Episodes (x103)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Train
Type 1

Type 2
Type 3

Type 4
Type 5

(d) Policy, imagination early

Figure 2: Zero-shot and n-shot generalizations of the reward function and policy. Each figure
represents the training and testing performances (split by generalization type) for the reward (a), and
the policy (b, c, d). (a) and (b) represent zero-shot performance in the no imagination conditions.
In (c) and (d), agents start to imagine goals as denoted by the vertical dashed line. Before that line,
SR evaluate zero-shot generalization. After, it evaluates the n-shot generalization, as agent can train
autonomously on imagined goals.

6

3 Focus on exploration

Interesting Interactions. Interesting interactions are trajectories of the agent that humans could
infer as goal-directed. If an agent brings water to a plant and grows it, it makes sense for a human.
If it then tries to do this for a lamp, it also feels goal-directed, even though it does not work. This
type of behavior characterizes the penchant of agents to interact with objects around them, to try new
things and, as a result, is a good measure of exploration.

Sets of interesting interactions. We consider three sets of interactions: 1) interactions related to
training goals; 2) to testing goals; 3) the extra set. This extra set contains interactions where the agent
brings water or food to a piece of furniture or to another supply. Although such behaviors do not
achieve any of the goals, we consider them as interesting exploratory behaviors. Indeed, they testify
that agents try to achieve imagined goals that are meaningful from the point of view of an agent
that does not already know that doors cannot be grown, i.e. corresponding to a meaningful form of
generalization after discovering that animals or plants can be grown (e.g. grow any door).

The Interesting Interaction Count metric. We count the number of interesting interactions com-
puted over all final transitions from the last 600 episodes (1 epoch). Agents do not need to target
these interactions, we just report the number of times they are experienced. Indeed, the agent does
not have to target a particular interaction for the trajectory to be interesting from an exploratory point
of view. The HER mechanism ensures that these trajectories can be replayed to learn about any goal,
imagined or not. Computed on the extra set, the Interesting Interaction Count (IC) is the number of
times the agent was found to bring supplies to a furniture or to other supplies over the last epoch:

ICextra =
∑

i∈I=Gextra

600∑
t=1

δi,t,

where δi,t=1 if interaction i was achieved in episode t, 0 otherwise and I is the set of interesting
interactions (here from the extra set) performed during an epoch.

Agents that are allowed to imagine goals achieve higher scores in the testing and extra sets of
interactions, while maintaining similar exploration scores on the training set, see Figures 3a to 3c.

0 20 40 60 80 100
Episodes (x103)

0

200

400

600

I2
C

early half-way never

(a)

0 20 40 60 80 100
Episodes (x103)

0

20

40

60

80

I2
C

early half-way never

(b)

0 20 40 60 80 100
Episodes (x103)

0

10

20

30

40

50

I2
C

early half-way never

(c)

Figure 3: Exploration metrics (a) Interesting interaction count (IC) on training set, (b) IC on
testing set, (c) IC on extra set. Goal imagination starts early (vertical blue line), half-way (vertical
orange line) or does not start (no imagination baseline in green).

7

4 Focus on Goal Imagination

Algorithm 2 presents the algorithm underlying our goal imagination mechanism. This mechanism is
inspired from the Construction Grammar (CG) literature and generates new sentences by composing
known ones [7]. It computes sets of equivalent words by searching for sentences with an edit distance
of 1: sentences where only one word differs. These words are then labelled equivalent, and can
be substituted in known sentences. Note that the goal imagination process filters goals that are
already known. Although all sentences from G train can be imagined, there are filtered out of the
imagined goals as they are discovered. Imagining goals from G train before they are discovered drives
the exploration of IMAGINE agents. In our setup, however, this effect remains marginal as all the
goals from G train are discovered in the first epochs (see Figure 5).

Algorithm 2: Goal Imagination. The edit distance between
two sentences refers to the number of words to modify to
transform one sentence into the other.

1: Input: Gknown (discovered goals)
2: Initialize: word_eq (list of sets of equivalent words,

empty)
3: Initialize: goal_template (list of template sentences

used for imagining goals, empty)
4: Initialize: Gim (empty)
5: for gNL in Gknown do {Computing word equivalences}
6: new_goal_template = True
7: for gm in goal_template do
8: if edit_distance(gNL,gm)<2 then
9: new_goal_template = False

10: if edit_distance(gNL,gm)==1 then
11: w1,w2← get_non_matching_words(gNL,gm)

12: if w1 and w2 not in any of word_eq sets then
13: word_eq.add({w1,w2})
14: else
15: for eq_set in word_eq do
16: if w1∈eq_set or w2∈eq_set then
17: eq_set = eq_set ∪ {w1,w2}
18: if new_goal_template then
19: goal_template.add(gNL)
20: for g in goal_template do {Generating new sentences}
21: for w in g do
22: for eq_set in word_eq do
23: if w∈ eq_set then
24: for w′ in eq_set do
25: gim← replace(g, w, w′)
26: if gim /∈Gknown then
27: Gim =Gim∪ {gim}
28: Gim =Gim \Gknown {filtering known goals.}

Figure 4: Venn diagram of goal spaces.

8

Table 2: All imaginable goals G im generated by the Construction Grammar Heuristic.

Goals from G train G train. (Note that known goals are filtered from the set of imagined goals.
However, any goal from G train can be imagined before it is encountered
in the interaction with SP.)

Goals from G test All goals from Type 1, 3, 4 and 5, see Table 1

Syntactically
incorrect goals

Go bottom top, Go left right, Grasp red blue thing,
Grow blue red thing, Go right left, Go top bottom,
Grasp green blue thing, Grow green red thing, Grasp green red thing
Grasp blue green thing, Grasp blue red thing, Grasp red green thing.

Syntactically
correct but

unachievable goals

Go center bottom, Go center top, Go right center, Go right bottom,
Go right top, Go left center, Go left bottom, Go left top,
Grow green cupboard, Grow green sink, Grow blue lamp, Go center right,
Grow green window, Grow blue carpet, Grow red supply, Grow any sofa,
Grow red sink, Grow any chair, Go top center, Grow blue table,
Grow any door, Grow any lamp, Grow blue sink, Go bottom center,
Grow blue door, Grow blue supply, Grow green carpet, Grow blue furniture,
Grow green supply, Grow any window, Grow any carpet, Grow green furniture,
Grow green chair, Grow green food, Grow any cupboard, Grow red food,
Grow any table, Grow red lamp , Grow red door, Grow any food,
Grow blue window, Grow green sofa, Grow blue sofa, Grow blue desk,
Grow any sink, Grow red cupboard, Grow green door, Grow red furniture,
Grow blue food, Grow red desk , Grow red table, Grow blue chair,
Grow red sofa, Grow any furniture, Grow red window, Grow any desk,
Grow blue cupboard, Grow red chair, Grow green desk, Grow green table,
Grow red carpet, Go center left, Grow any supply, Grow green lamp,
Grow blue water, Grow red water, Grow any water, Grow green water,
Grow any water, Grow green water.

9

Imagined goals. We run our goal imagination mechanism based on the Construction Grammar
Heuristic (CGH) from G train. After filtering goals from G train, this produces 136 new imagined
sentences. Table 2 presents the list of these goals while Figure 4 presents a Venn diagram of the
various goal sets. Among these 136 goals, 56 belong to the testing set G test. This results in a coverage
of 87.5% of G test, and a precision of 45%. In goals that do not belong to G test, goals of the form Grow
+ {any} ∪ color + furniture ∪ supplies (e.g. Grow any lamp) are meaningful to humans, but are not
achievable in the environment (impossible).

Variants of goal imagination mechanisms. Main Section 4.2 investigates variants of our goal
imagination mechanisms:

1. Lower coverage: To reduce the coverage of CGH while maintaining the same precision,
we simply filter half of the goals that would have been imagined by CGH. This filtering
is probabilistic, resulting in different imagined sets for different runs. It happens online,
meaning that the coverage is always half of the coverage that CGH would have had at the
same time of training.

2. Lower precision: To reduce precision while maintaining the same coverage, we sample a
random sentence (random words from the words of G train) for each goal imagined by CGH
that does not belong to G test. Goals from G test are still imagined via the CGH mechanism.
This variants only doubles the imagination of sentences that do not belong to G test.

3. Oracle: Perfect precision and coverage is achieved by filtering the output of CGH, keeping
only goals from G test. Once the 56 goals that CGH can imagine are imagined, the oracle
variants adds the 8 remaining goals: those including the word flower (Type 2 generalization).

4. Random goals: Each time CGH would have imagined a new goal, it is replaced by a randomly
generated sentence, using words from the words of G train.

Note that all variants imagine goals at the same speed as the CGH algorithm. They simply filter or
add noise to its output, see Figure 5.

0 5 10 15
Episodes (x103)

0

50

100

150

200

Co
un

ts

Train
Test

Not in Test

(a) CGH

0 5 10 15
Episodes (x103)

0

50

100

150

200

Co
un

ts

Train
Test

Not in Test

(b) Low Coverage

0 5 10 15
Episodes (x103)

0

50

100

150

200

Co
un

ts

Train
Test

Not in Test

(c) Low Precision

0 5 10 15
Episodes (x103)

0

50

100

150

200

Co
un

ts

Train
Test

Not in Test

(d) Oracle

0 5 10 15
Episodes (x103)

0

50

100

150

200

Co
un

ts

Train
Test

Not in Test

(e) Random Goals

Figure 5: Evolution of known goals for various goal imagination mechanisms. All graphs show
the evolution of the number of goals from G train, G test and others in the list of known goals Gknown.
We zoom on the first epochs, as most goals are discovered and invented early. Vertical dashed line
indicates the onset of goal imagination. (a) CGH; (b) Low Coverage; (c) Low precision; (d) Oracle;
(e) Random Goals.

10

Effect of low coverage on generalization. In Main Section 4.2, we compare our goal imagination
mechanism to a Low Coverage variant that only covers half of the proportion of G test covered by
CGH (44%). Figure 6 shows that the generalization performance on goals from G test that the agent
imagined (n-shot generalization, blue) are not significantly higher than the generalization performance
on goals from G test that were not imagined (zero-shot generalization). As they are both significantly
higher than the no imagination baseline, this implies that training on imagined goals boosts zero-shot
generalization on similar goals that were not imagined.

0 20 40 60 80 100
Episodes (x103)

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Test Imagined
Test Not Imagined

No Imagination Baseline

Figure 6: Zero-shot versus n-shot. We look at the Low Coverage variant of our goal imagination
mechanism that only covers 43.7% the test set with a 45% precision. We report success rates on
testing goals of Type 5 (grow + plant) and compare with the no imagination baseline (green). We
split in two: goals that were imagined (blue), and goals that were not (orange).

11

Details on the impacts of various goal imagination mechanisms on exploration. Figure 7
presents the IC exploration scores on the training, testing and extra sets for the different goal
imagination mechanisms introduced in Main Section 4.2. Let us discuss each of these scores:

1. Training interactions. In Figure 7a, we see that decreasing the precision (Low Precision and
Random Goal conditions) affects exploration on interactions from the training set, where it
falls below the exploration of the no imagination baseline. This is due to the addition of
meaningless goals forcing agent to allow less time to meaningful interactions relatively.

2. Testing interactions. In Figure 7b, we see that the highest exploration scores on interactions
from the test set comes from the oracle. Because it shows high coverage and precision,
its spends more time on the diversity of interactions from the testing set. What is more
surprising is the exploration score of the low coverage condition, higher than the exploration
score of CGH. With an equal precision, CGH should show better exploration, as it covers
more test goals. However, the Low Coverage condition, by spending more time exploring
each of its imagined goals (it imagined fewer), probably learned to master them better,
increasing the robustness of its behavior towards those. This insight advocates for the use
of goal selection methods based on learning progress [6, 4]. Agents could estimate their
learning progress on imagined goals using their internal reward function and its zero-shot
generalization. Focusing on goals associated to high learning progress might help agents
filter goals they can learn about from others.

3. Extra interactions. Figure 7c shows that only the goal imagination mechanisms that invent
goals not covered by the testing set manage to boost exploration in this extra set. The oracle
perfectly covers the testing set, but does not generate goals related to other objects (e.g.
grow any lamp).

0 20 40 60 80 100
Episodes (x103)

0

200

400

600

I2
C

CGH
No imag.

Random
Oracle

Low coverage
Low precision

(a) IC on Gtrain

0 20 40 60 80 100
Episodes (x103)

0

50

100

150

200

I2
C

CGH
No imag.

Random
Oracle

Low coverage
Low precision

(b) IC on Gtest

0 20 40 60 80 100
Episodes (x103)

0

10

20

30
I2
C

CGH
No imag.

Random
Oracle

Low coverage
Low precision

(c) IC on Gextra

Figure 7: Exploration metrics for different goal imagination mechanisms: (a) Interesting interac-
tion count (IC) on training set, IC on testing set, (c) IC on extra set. Goal imagination starts early
(vertical line), except for the no imagination baseline (green). Standard errors of the mean plotted for
clarity (as usual, 10 seeds).

12

5 Focus on Architectures

This section compares our proposed object-based modular architecture MA for the policy and reward
function to a flat architecture that does not use inductive biases for efficient skill transfer. We
hypothesize that only the object-based modular architectures enable a generalization performance
that is sufficient for the goal imagination to have an impact on generalization and exploration. Indeed,
when generalization abilities are low, agents cannot evaluate their performance on imagined goals
and thus, cannot improve.

Preliminary study of the reward function architecture. We first compared the use of modular
and flat architectures for the reward function (MAR vs FAR in Figure 8). This experiment was
conducted independently from policy learning, in a supervised setting. We use a dataset of 50×103

trajectories and associated goal descriptions collected using a pre-trained policy. To closely match
the training conditions of IMAGINE, we train the reward function on the final states sT and test it on
any states st, t=[1, .., T] of other episodes. Table 3 provides the F1 score computed at convergence
on G train and G test for the two architectures.

Table 3: Reward function architectures performance.

F1train F1test
MAR 0.98±0.02 0.64±0.22
FAR 0.60±0.10 0.22±0.05

MAR outperforms FAR on both the training and testing sets. In addition to its poor generalization
performance, FAR’s performance on the training set are too low to support policy learning. As a result,
the remaining experiments in this paper use the MAR architecture for all reward functions. Thereafter,
MA is always used for the reward function and the terms MA and FA refer to the architecture of the
policy.

Architectures representations. The combination of MA for the reward function and either MA or
FA for the policy are represented in Figure 9.

Policy architecture comparison. Table 4 shows that MA significantly outperforms FA on both the
training and testing sets at convergence. Figure 10a clearly shows an important gap between the
generalization performance of the modular and the flat architecture. In average, less than 20% of the
testing goals can be achieved with FA when MA masters half of them without imagination. Moreover,
there is no significant difference between the never and the early imagination conditions for the flat
architecture. The generalization boost enabled by the imagination is only observable for the modular
architecture (see Main Table 1). Figure 10c and 10d support similar conclusions for exploration: only
the modular architecture enable goal imagination to drive an exploration boost on the testing and
extra sets of interactions.

Table 4: Architectures performance. Both p-values < 10−10.

SRtrain SRtest
MA 0.95±0.05 0.76±0.10
FA 0.40±0.13 0.16±0.06

In preliminary experiments, we tested a Flat-Concatenation (FC) architecture where the gated
attention mechanism was replaced by a simple concatenation of goal encoding to the state vector.
We did not found signficant difference with respect to FA. We chose to pursue with the attention
mechanism, as it improves model interpretability (see Additional Visualization 7).

13

(a) FAR (b) MAR

Figure 8: Reward function architectures: (a) Flat-attention reward function (FAR) and (b) Modular-
attention reward function (MAR). We use MAR for all experiments except for the experiment in
Table 3

NL

LSTM

g

g

NNcast NNcast

s
body

s obj2 3sobjsobj1

NN
ORNN

r(x , g)

r(x , g) r

r(x , g)

1

2

3

a NN

g
backpropbackprop

Modular Reward FunctionFlat Policy

(a)

NL

LSTM

g

g

NNcast NNcast

s
body

s obj2 3sobjsobj1

NN
ORNN

r(x , g)

r(x , g) r

r(x , g)

1

2

3

NN

z(x , g)

z(x , g) a

z(x , g)

1

2

3

+ NN
action

g
backpropbackprop

Modular Reward FunctionModular Policy

(b)

Figure 9: Policy and reward function architectures: (a) Modular-attention (MA) reward + Flat-
attention (FA) policy. (b) MA reward + MA policy. In both figures, the reward function is represented
on the right in green, the policy on the left in pink, the language encoder in the bottom in yellow and
the attention mechanisms at the center in blue.

14

0 20 40 60 80 100
Episodes (x103)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 R
a
te

MA early

FA early

MA never

FA never

(a) SRtest

0 20 40 60 80 100
Episodes (x103)

0

200

400

600

I2
C

MA early
FA early

MA never
FA never

(b) ICtrain

0 20 40 60 80 100
Episodes (x103)

0

20

40

60

80

I2
C

MA early
FA early

MA never
FA never

(c) ICtest

0 20 40 60 80 100
Episodes (x103)

0

10

20

30

40

I2
C

MA early
FA early

MA never
FA never

(d) ICextra

Figure 10: Policy architecture comparison: (a) SR on G test for the FA and MA architectures when
the agent starts imagining goals early (plain, after the black vertical dashed line) or never (dashed).
(b, c, d) IC on interactions from the training, testing and extra sets respectively. Imagination is
performed using CGH. Stars indicate significant differences between CGH and the corresponding no
imagination baseline.

15

6 Focus on Reward Function

Our IMAGINE agent is autonomous and, as such, needs to learn its own reward function. It does so
by leveraging a weak supervision from a social partner that provides descriptions in a simplified
language. This reward function can be used for many purposes in the architecture. This paper
leverages some of these ideas (the first two), while others are left for future work (the last two):

• Behavior Adaptation. As Main Section 4.1 showed, the reward function enables agents to
adapt their behavior with respect to imagined goals. Whereas the zero-shot generalization
pushed agents to grow plants with food and water with equal probability, the reward function
helped agents to correct that behavior towards more water.

• Guiding Hindsight Experience Replay (HER). In multi-goal RL with discrete sets of
goals, HER is traditionally used to modify transitions sampled from the replay buffer. It
replaces originally targeted goals by others randomly selected from the set of goals [1, 11].
This enables to transfer knowledge between goals, reinterpreting trajectories in the light of
new goals. In that case, a reward function is required to compute the reward associated to
that new transition (new goal). To improve on random goal replay, we favor goal substitution
towards goals that actually match the state and have higher chance of leading to rewards. In
IMAGINE, we scan a set of 40 goal candidates for each transition, and select substitute goals
that match the scene when possible, with probability p = 0.5.

• Exploring like Go-Explore. In Go-Explore [5], agents first reach a goal state, then start
exploring from there. We could reproduce that behavior in our IMAGINE agents with our
internal reward function. The reward function would scan each state during the trajectory.
When the targeted goal is found to be reached, the agent could switch to another goal,
add noise on its goal embedding, or increase the exploration noise on actions. This might
enable agents to explore sequences of goal-directed behaviors. We leave the study of this
mechanism for future work.

• Filtering of Imagined Goals. When generating imagined goals, agents also generate
meaningless goals. Ideally, we would like agents to filter these from meaningful goals.
Meaningful goals, are goals the agent can interpret with its reward function, goals from
which it can learn directed behavior. They are interpreted from known related goals via
the generalization of the reward function. If we consider an ensemble of reward functions,
chances are that all reward functions in the ensemble will agree on the interpretation of
meaningful imagined goals. On the other hand, they might disagree on meaningless goals, as
their meanings might not be as easily derived from known related goals. Using an ensemble
of reward function may thus help agents filter meaningful goals from meaningless ones.
This could be done by labeling a dataset of trajectories with positive or negative rewards and
comparing results between reward functions, effectively computing agreement measures for
each imagined goals. Having an efficient filtering mechanism would drastically improve
the efficiency of goal imagination, as Main Section 4.2 showed that the ratio of meaningful
goals determines generalizations performance. This is also left for future work.

16

7 Additional Visualizations

Visualizing Goal Embedding To analyze the goal embeddings learned by the language encoder
Le, we perform a t-SNE using 2 components, perplexity 20, a learning rate of 10 for 5000 iterations.
Figure 11 presents the resulting projection for a particular run. The embedding seems to be organized
mainly in terms of motor predicates (11a), then in terms of colors (11b). Object types or categories
do not seem to be strongly represented (11c).

Go Grasp Grow

(a)

Other
Blue

Red
Green

(b)

Other
Furniture

Plant
Animal

(c)

Figure 11: t-SNE of Goal Embedding. The same t-SNE is presented, with different color codes (a)
predicates, (b) colors, (c) object categories.

Visualizing Attention Vectors In the modular-attention architectures for the reward function and
policy, we train attention vectors to be combined with object-specific features using a gated attention
mechanism. In each architecture, the attention vector is shared across objects (permutation invariance).
Figure 12 presents examples of attention vectors for the reward function (12a) and for the policy
(12b) at the end of training. These attention vectors highlight relevant parts of the object-specific
sub-state depending on the NL goal:

• When the sentence refers to a particular object type (e.g. dog) or category (e.g. living
thing), the attention vector suppresses the corresponding object type(s) and highlights the
complement set of object types. If the object does not match the object type or category
described in the sentence, the output of the Hadamard product between object types and
attention will be close to 1. Conversely, if the object is of the required type, the attention
suppression ensures that the output stays close to zero. Although it might not be intuitive for
humans, it efficiently detects whether the considered object is the one the sentence refers to.

• When the sentence refers to a navigation goal (e.g. go top, the attention highlights the
agent’s position (here y).

• When the sentence is a grow goal, the reward function focuses on the difference in object’s
size, while the policy further highlights the object’s position.

The attention vectors uses information about the goal to highlight or suppress parts of the input using
the different strategies described above depending on the type of input (object categories, agent’s
position, difference in size etc). This type of gated-attention improves the interpretability of the
reward function and policy.

17

Go top Grow any
dog

Grasp any
living thing

Grasp any
blue thing

0.0 0.2 0.4 0.6 0.8 1.0

Grow any
animal

Agent y

Dog

Animals

Living things

Things

RGB code

Delta obj size

Obj grasped ?

Bo
dy +

de
lta

bo
dy

An
im

.
Pl

an
ts

Li
vi

ng
 th

in
gs

O
bj

ec
t o

bs
er

va
tio

ns

Th
in

gs

Fu
rn

i.
Su

p.

O
bj

po
s,

co
lo

r,
si

ze
.

D
el

ta
 o

bj
ec

t o
bs

er
va

tio
ns

(a)

Go top

Bo
dy +

de
lta

bo
dy

An
im

.
Pl

an
ts

Li
vi

ng
 th

in
gs

O
bj

ec
t o

bs
er

va
tio

ns

Th
in

gs

Fu
rn

i.
Su

p.

O
bj

po
s,

co
lo

r,
si

ze
.

D
el

ta
 o

bj
ec

t o
bs

er
va

tio
ns

Grow any
dog

Grasp any
living thing

Grasp any
blue thing

0.0 0.2 0.4 0.6 0.8 1.0

Grow any
animal

Dog

Animals

Living things

Things

RGB code

Delta obj size

Obj grasped ?

Go top Grow any
dog

Grasp any
living thing

Grasp any
blue thing

0.0 0.2 0.4 0.6 0.8 1.0

Grow any
animal

Agent y,
delta y Dog

Animals

Living things

Things

RGB code

Delta obj size

Supplies

Obj position

Obj grasped ?

(b)

Figure 12: Attention vectors (a) αg for the reward function (1 seed). (b) βg for the policy (1 seed).

18

8 Comparing IMAGINE to goal-as-state approaches.

In the goal-conditioned RL literature, some works have proposed goal generation mechanisms to
facilitate the acquisition of skills over large sets of goals [13, 15, 4, 12]. Some of them had a special
interest in exploration, and proposed to bias goal sampling towards goals from low density areas [15].
One might then think that IMAGINE should be compared to these approaches. However, there are a
few catches:

1. Nair et al. [13, 12], Pong et al. [15] use generative models of states to sample state-based
goals. However, our environment is procedurally generated. This means that sampling a
given state from the generative model has a very low probability to match the scene. If the
present objects are three red cats, the agent has no chance to reach a goal specifying dogs and
lions’ positions, colors and sizes. Indeed, most of the state space is made of object features
that cannot be acted upon (colors, types, sizes of most objects). One could imagine using
SP to organize the scene, but we would need to ask SP to find the three objects specified
by the generated goal, in the exact colors (RGB codes) and size. Doing so, there would be
no distracting object for agent to discover and learn about. A second option is to condition
the goal generation on the scene as it is done in Nair et al. [12]. The question of whether it
might work in procedurally-generated environments remains open.

2. Assuming a perfect goal generator that only samples valid goals that do not ask a change of
object color or type, the agent would then need to bring each object to its target position
and to grow objects to their very specific goal size. These goals are not the same as those
targeted by IMAGINE, they are too specific. These approaches –like most goal-conditioned
RL approaches– represent goals as particular states (e.g. block positions in manipulation
tasks, visual states in navigation tasks) [16, 1, 13, 15, 4]. In contrast, language-conditioned
agents represent abstract goals, usually defined by specific constraints on states (e.g. grow
any plant requires the size of at least one plant to increase) [2, 9, 3]. For this reason,
goal-as-state and abstract goal approaches do not tackle the same problem. The first targets
specific coordinates, and cannot be instructed to reach abstract goals, while the second are
not trained to reach specific states.

For these reasons, we argue that the goal-conditioned approaches that use state-based goals cannot be
easily or fairly compared to our approach IMAGINE.

19

9 Implementation details

Reward function inputs and hyperparameters. Supplementary Section 5 details the architecture
of the reward function. The following provides extra details about the inputs. The object-dependent
sub-state sobj(i) contains information about both the agent’s body and the corresponding object
i: sobj(i) =[obody,∆obody,oobj(i),∆oobj(i)] where obody and oobj(i) are body- and obji-dependent
observations, and ∆otbody = otbody−o0

body and ∆otobj(i) = otobj(i)−o0
obj(i) measure the difference

between the initial and current observations. The second input is the attention vector αg that is
integrated with sobj(i) through an Hadamard product to form the model input: xgi =sobj(i)�αg.
This attention vector is a simple mapping from g to a vector of the size of sobj(i) contained in
[0,1]size(sobj(i)). This cast is implemented by a one-layer neural network with sigmoid activations
NNcast such that αg=NNcast(g).

For the three architectures the number of hidden units of the LSTM and the sizes of the hidden layers
of fully connected networks are fixed to 100. NN parameters are initialized using He initialization [8]
and we use one-hot word encodings. The LSTM is implemented using rnn.BasicLSTMCell from
tensorflow 1.15 based on Zaremba et al. [17]. The states are initially set to zero. The LSTM’s weights
are initialized uniformly from [−0.1,0.1] and the biases initially set to zero. The LSTM use a tanh
activation function whereas the NN are using ReLU activation functions in their hidden layers and
sigmoids at there output.

Reward function training schedule. The architecture are trained via backpropagation using the
Adam Optimizer [10]. The data is fed to the model in batches of 512 examples. Each batch is
constructed so that it contains at least one instance of each goal description gNL (goals discovered so
far). We also use a modular buffer to impose a ratio of positive rewards of 0.2 for each description
in each batch. When trained in parallel of the policy, the reward function is updated once every
1200 episodes. Each update corresponds to up to 100 training epochs (100 batches). We implement
a stopping criterion based on the F1-score computed from a held-out test set uniformly sampled
from the last episodes (20% of the last 1200 episodes (2 epochs)). The update is stopped when the
F1-score on the held-out set does not improve for 10 consecutive training epochs.

RL implementation and hyperparameters. In the policy and critic architectures, we use hidden
layers of size 256 and ReLU activations. Attention vectors are cast from goal embeddings using
single-layer neural networks with sigmoid activations. We use the He initialization scheme for [8]
and train them via backpropagation using the Adam optimizer (β1 =0.9,β2 =0.999) [10].

Our learning algorithm is built on top of the OpenAI Baselines implementation of HER-DDPG.1 We
leverage a parallel implementation with 6 actors. Actors share the same policy and critic parameters
but maintain their own memory and conduct their own updates independently. Updates are then
summed to compute the next set of parameters broadcast to all actors. Each actor is updated for 50
epochs with batches of size 256 every 2 episodes of environment interactions. Using hindsight replay,
we enforce a ratio p=0.5 of transitions associated with positive rewards in each batch. We use the
same hyperparameters as Plappert et al. [14].

Computing resources. The RL experiments contain 8 conditions of 10 seeds each, and 4 conditions
with 5 seeds (SP study). Each run leverages 6 cpus (6 actors) for about 36h for a total of 2.5 cpu
years. Experiments presented in this paper requires machines with at least 6 cpu cores.

1The OpenAI Baselines implementation of HER-DDPG can be found at https://github.com/openai/baselines,
our implementation can be found at https://sites.google.com/view/imagine-drl.2

20

https://sites.google.com/view/imagine-drl

References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. In Advances in Neural Information Processing Systems, pages 5048–5058, 2017.

[2] Harris Chan, Yuhuai Wu, Jamie Kiros, Sanja Fidler, and Jimmy Ba. Actrce: Augmenting
experience via teacher’s advice for multi-goal reinforcement learning, 2019.

[3] Geoffrey Cideron, Mathieu Seurin, Florian Strub, and Olivier Pietquin. Self-educated lan-
guage agent with hindsight experience replay for instruction following. arXiv preprint
arXiv:1910.09451, 2019.

[4] Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, and Mohamed Chetouani.
CURIOUS: intrinsically motivated modular multi-goal reinforcement learning. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, pages 1331–1340, 2019.

[5] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore:
a new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[6] Sébastien Forestier and Pierre-Yves Oudeyer. Modular active curiosity-driven discovery of tool
use. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on,
pages 3965–3972. IEEE, 2016.

[7] Adele E Goldberg. Constructions: A new theoretical approach to language. Trends in cognitive
sciences, 7(5):219–224, 2003.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[9] Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as an Abstraction
for Hierarchical Deep Reinforcement Learning. In Workshop on “Structure & Priors in
Reinforcement Learning”at ICLR 2019, jun 2019. URL http://arxiv.org/abs/1906.
07343.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Daniel J. Mankowitz, Augustin Zídek, André Barreto, Dan Horgan, Matteo Hessel, John Quan,
Junhyuk Oh, Hado van Hasselt, David Silver, and Tom Schaul. Unicorn: Continual learning
with a universal, off-policy agent. CoRR, abs/1802.08294, 2018. URL http://arxiv.org/
abs/1802.08294.

[12] Ashvin Nair, Shikhar Bahl, Alexander Khazatsky, Vitchyr Pong, Glen Berseth, and Sergey
Levine. Contextual imagined goals for self-supervised robotic learning. arXiv preprint
arXiv:1910.11670, 2019.

[13] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Vi-
sual reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pages 9191–9200, 2018.

[14] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal
reinforcement learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464, 2018.

[15] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey
Levine. Skew-fit: State-covering self-supervised reinforcement learning. arXiv preprint
arXiv:1903.03698, 2019.

[16] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxi-
mators. In International Conference on Machine Learning, pages 1312–1320, 2015.

[17] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization,
2014.

21

http://arxiv.org/abs/1906.07343
http://arxiv.org/abs/1906.07343
http://arxiv.org/abs/1802.08294
http://arxiv.org/abs/1802.08294

	Complete Description of the Playground Environment and Its Language
	Focus on Generalization
	Focus on exploration
	Focus on Goal Imagination
	Focus on Architectures
	Focus on Reward Function
	Additional Visualizations
	Comparing IMAGINE to goal-as-state approaches.
	Implementation details

