
We thank all reviewers for their helpful and constructive comments. We’ll further improve in the final version. Below1

we address their detailed comments.2

To R1: Thanks for acknowledging our contributions.3

To R2: We disagree on the judgement with our highest respect, due to the nontrivial technical differences and results.4

In particular, our contributions are: (1) We introduce generalization bounds of learning algorithms on various losses, i.e.5

HL, SA and HL. Besides, the inequalities between these (actual and surrogate) losses are introduced, which can help the6

analysis extend to other forms of hypothesis classes; (2) based on the theoretical analysis, we explain the phenomenon7

when in small label-space case, optimizing HL with its surrogate loss can have better performance on the SA measure8

than directly optimizing SA with its surrogate loss; and (3) the experimental results support our theoretical analysis.9

Technique differences for bounds w.r.t. many measures: The analysis techniques for multi-class classification10

cannot be trivially extended to multi-label classification because we first need to analyze the relationships between these11

measures. Besides, it’s nontrivial to analyze the relationship between HL and RL, especially for the second inequality12

(See Lemma 3 in Appendix C.1). Furthermore, as agreed by R4, our analysis can also be extended to other forms of13

hypothesis classes (e.g. neural networks [15,19]), because the inequalities among these (actual and surrogate) losses are14

independent of the hypothesis classes. More specifically, for multi-class classification, the performance of algorithms is15

often evaluated in terms of only one measure (e.g. stand zero-one loss [*1]). Hence, the generalization bound analysis16

of an algorithm is just provided for the measure [*1, *2, 17] that it aims to optimize. In comparison, for multi-label17

classification, the performance of algorithms is evaluated in terms of many measures simultaneously, such as HL, SA,18

and RL. Thus, this requires us to analyze the generalization bounds of an algorithm in terms of other measures in19

addition to the measure that it aims to optimize. We’ll add the discussions in the final version.20

Results: With the above analysis techniques, we obtain new theoretical results that are substantially different from the21

existing ones [11]. More specifically, [11] shows that SA and HL are conflicting measures — algorithms aiming to22

optimize HL would perform poorly if evaluated on SA, and vice versa. In comparison, we show that when in small23

label space case, optimizing HL with its surrogate loss can have better performance on the SA measure than directly24

optimizing SA with its surrogate loss.25

To R3: Thanks for acknowledging our novelty and sorry for the unclear parts. We’ll make the comparison and statements26

more precise in the final version. For the clarity of subsequent discussions, we distinguish two somewhat orthogonal27

approach paradigms [*3] w.r.t. a loss L0/1 for MLC: 1) one paradigm first estimates the conditional probability P (y|x)28

and gets the classifier by the optimal strategy w.r.t. L0/1; 2) the other one directly optimizes L0/1 with its surrogate loss29

to find a classifier in a constrained parametric hypothesis space. In fact, the analysis in [11] is under the first paradigm,30

while we are under the second one. Below, we discuss the pros and cons of each one in detail. We’ll add the discussions31

in the final version.32

Pros and cons of the analysis in [11]: [11] can provide much insight for the first approach paradigm although there33

is still a gap between the actual P (y|x) and its estimated one through many parametric methods (e.g., probabilistic34

classifier chains, etc). In contrast, it may offer less insight for the second paradigm (e.g., binary relevance which directly35

optimizes HL with its surrogate loss). More specifically, [11] assumes that the hypothesis space is unconstrained to36

allow P (y|x) known, and gets the Bayes-optimal classifiers w.r.t. HL (i.e. h∗
H ) and SA (i.e. h∗

s) by their corresponding37

optimal strategy. Then, it analyzes the regret (a.k.a excess risk) upper bounds of h∗
H and h∗

s in terms of SA (i.e.,38

Proposition 4) and HL (i.e., Proposition 5) respectively, and finds the bounds are large, which concludes that HL and39

SA conflict with each other.40

Pros and cons of our analysis: Our analysis can provide much insight for the second paradigm. In contrast, it may41

offer less insight for the first paradigm. More specifically, we have no assumption of the conditional independence of42

labels, and directly analyze the generalization bounds for the learning algorithms w.r.t. many measures. Although here43

we consider the kernel-based hypothesis class, which includes the linear and non-linear model by specifying different44

kernel functions, our analysis can be extended to other forms of hypothesis classes.45

To R4: Thanks for acknowledging our contributions. Indeed, the learning algorithms optimize the loss with a surrogate46

loss rather than the actual one. We’ll make this clearer and qualify the related conclusions more appropriately in the47

final version.48
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