
Supplementary Material for

Unsupervised object-centric video generation

and decomposition in 3D

S1 Baselines

In this section, we discuss our baseline experiments using MONet [3], GENE-
SIS [7] and SCALOR [12] in more detail. For MONet, we used the reimple-
mentation from the authors of [7]; note that this uses a di�erent loss compared
with the original. For GENESIS and SCALOR, we used the authors' original
implementations. These methods operate on images of size 64×64. Rather than
modifying their architectures to suit our larger images, we instead downscale our
images, using bicubic interpolation. We also tuned their hyperparameters�for
MONet and GENESIS, the number of mixture components, and for SCALOR,
the number of grid cells, and ranges of the object size and aspect ratio param-
eters. We trained MONet and GENESIS for 2M iterations, and SCALOR for
1.5M iterations on (rooms) and 500K iterations on (traffic).

Qualitative results. We show examples of frames/videos generated by MONet
(Figure S1 and Figure S2), GENESIS (Figure S3 and Figure S4) and SCALOR
(Figure S5 and Figure S6) trained on our datasets. We see that GENESIS
achieves high-quality generations on (rooms), surpassing even our method�
but, it can only generate isolated frames, not complete videos. MONet also
generates only frames, and moreover, its lack of a scene-level prior causes them
to be fragmentary and incoherent (as also noted by [7]). SCALOR can generate
full videos, and these often have reasonable backgrounds�but again, the lack of
prior on foreground objects results in implausible appearances. On (traffic),
all three methods produce slightly poorer results, but GENESIS again yields
the best samples.

S2 Datasets

S2.1 (rooms)

This dataset is based on the rooms_ring_camera dataset of [8]. Their dataset
is publicly-available, but does not include 3D annotations, which are important



Figure S1: Frames generated by MONet [3], trained on our dataset (rooms)

Figure S2: Frames generated by MONet [3], trained on our dataset (traffic)

Figure S3: Frames generated by GENESIS [7], trained on our dataset (rooms)

Figure S4: Frames generated by GENESIS [7], trained on our dataset (traffic)



Figure S5: Videos generated by SCALOR [12], trained on our dataset (rooms).
Each column is a di�erent episode. While the model can generate plausible
backgrounds, the foreground objects are fragmentary and incoherent.

Figure S6: Videos generated by SCALOR [12], trained on our dataset (traf-
fic). Each column is a di�erent episode. While the model can generate plausible
backgrounds, the foreground objects are fragmentary and incoherent.



to validate our method. We therefore generated a similar dataset ourselves, by
adapting the code at https://github.com/musyoku/gqn-dataset-renderer.
We record short, six-frame videos; each shows a room of �xed size, with 1�4 ob-
jects placed at random locations, without intersections. There are �ve textures
for the walls and three for the �oor; these are randomly selected. Each object
has one of �ve di�erent shapes (cube, sphere, capsule, cylinder, icosahedron)
and six colors, sampled independently. The camera starts at a random azimuth
and distance from the center of the room, then moves around it at constant
rate, rotating so it always faces the center. As input to our model, we randomly
sample contiguous three-frame sub-sequences from each six-frame video. Note
that because the objects are static, shorter videos make for a harder learning
problem, as the 3D structure is more ambiguous. For more details and sampling
parameters, see the publicly-available code.

S2.2 (traffic)

This dataset is generated using the CARLA driving simulator [5], which pro-
duces realistic videos of road scenes, using detailed models and physically-
principled shading. We use their map Town02, and create 4�5 cars of random
models and colors, at random positions along a road. The cars then move
according to simulated driving, with di�erent speeds; however, we manually in-
crease the probability that multiple cars follow each other closely (to increase
the number of episodes with more than one object). The camera follows one
of the cars (chosen at random), moving on an elliptical path around it, at ran-
dom radius and speed. We capture frames at 4 FPS, taking around 80 frames
per video; we extract contiguous six-frame sub-sequences to use as input to our
model. The simulator outputs only semantic segmentations, not the instance
segmentations we require for evaluation. To construct instance segmentations,
we project the ground-truth 3D bounding-boxes back into the frames, and in-
tersect these with the semantic segmentation mask for `car'. Each pixel of the
`car' mask is only allowed to belong to one instance, with the nearer one taking
precedence. Visually, this gives a very accurate instance segmentations for the
majority of cases; however, there are occasionally slight errors when one car
strongly occludes another. For more details and sampling parameters, see the
publicly-available code.

S3 Evaluation metrics

S3.1 Segmentation

We report �ve segmentation metrics. These all operate on binary masks, which
we generate from our reconstructed scenes. For O3V-voxel, we render each
object individually over a black background with its color set to white, but
using the predicted presence and opacity values. This yields a soft, amodal
segmentation mask for each object and each frame. To produce a single, modal



instance segmentation for a frame, we binarize these by thresholding them,
then stack the resulting masks in depth order, allowing nearer object masks to
occlude farther ones. For O3V-mesh, we render the silhouette of each object,
and stack these in depth order, discarding any with presence below a threshold.
Our metrics are then calculated based on the resulting instance segmentations.

The foreground intersection-over-union (fg-IOU) considers only the assign-
ment of pixels to foreground versus background, regardless of object identity.
For (rooms), we treat the objects as foreground, and the room (walls and �oor)
and sky as background. For (traffic), we treat cars as foreground, and every-
thing else as background. We calculate the IOU per-frame, then take a mean
over frames.

The segmentation covering (SC) and mean segmentation covering (mSC)
metrics were proposed by [7]. These match each ground-truth foreground object
to one predicted by the model, and evaluate their mean IOU [1]. SC weights
objects according to their area, whereas mSC weights them equally. Unlike
fg-IOU, a method must correctly separate individual object instances to score
highly. Our �rst variant of these metrics, per-frame, treats frames independently
(taking a mean over them). We refer the reader to the calculations described in
[7]; we use the inferred instance segmentation described above as the predicted
input. Our second variant requires objects to be correctly tracked over time; we
achieve this by using the same metric, but treating the entire video as a single
large image�so the IOU calculation reduces over time as well as space.

S3.2 Depth prediction

We report two metrics for depth prediction, used by [6] and numerous earlier
works on classical stereo depth prediction. MRE is the mean absolute relative
error in predicted depths. frac<1.25 is the fraction of pixels whose predicted
depth is within a factor of 1.25 of the true depth; this particular factor is chosen
because it re�ects the accuracy with which humans can judge depths in images.
We also implemented several other similar metrics, but found them to be well-
correlated with those we report.

These metrics both require a predicted depth-map as input. However, our
reconstructions contain partially-opaque objects when the presence indicators
are not exactly zero or one. We therefore render depth-maps for the background
and each object, then combine these by alpha-blending according to the object
presences�the same as when we render the �nal frames.

S3.3 3D object detection

To measure the quality of object detection, we use a variant of the 3D AP metric
from the KITTI dataset [10]. We assign a 3D bounding box and a score to each
predicted object in each frame, then match these to ground-truth bounding
boxes, penalizing multiple detections of the same instance. Speci�cally, for
O3V-voxel, for each object and frame, we �nd the axis-aligned bounding box
in view-space (AABB) of those voxels with higher than threshold opacity; the



score is set to the maximum opacity multiplied by the presence indicator. For
O3V-mesh, we similarly �nd the AABB of the vertices, and set the score equal
to the presence indicator. Then, for each ground-truth object, we �nd the
most-overlapping predicted object with IOU > 0.3 (i.e. roughly 2/3 overlap
along each axis) and de�ne this as a true-positive; all others (included repeated
detections of the same ground-truth) are false-positives. The true-positives and
false-positives are ranked by the scores, and the area under the interpolated
precision-recall curve calculated to give the average precision (AP) [9].

S3.4 Video generation

Evaluating image and video generation is notoriously di�cult. We adopt three
standard metrics that aim to measure how close a distribution of generated
videos is to that of (held-out) ground-truth videos:

• Fréchet video distance (FVD) [13] measures similarity of the logits of the
I3D action-recognition network [4]. The architecture of I3D limits the
minimum supported video length; where our videos are too short, we ex-
tend them by `ping-ponging', i.e. concatenating the video with its reverse.
This avoids discontinuities caused by simply repeating the frames from
the start.

• Fréchet Inception distance (FID) [11] is more widely adopted than FVD,
but considers images rather than videos. We therefore apply it indepen-
dently to each frame, following the standard protocol, then take a mean
over frames.

• Kernel Inception distance (KID) [2] is an alternative to FID, that has
a simple unbiased estimator. Again we apply it per-frame and take the
mean.



S4 Hyperparameters

(rooms) (traffic)
O3V-voxel O3V-mesh O3V-voxel O3V-mesh

Model

scene dimensionality d 32 32 64 64
camera dimensionality c 128 128 128 128
object dimensionality e 16 16 16 16
background vertices N ×M 24× 64 24× 64 24× 64 24× 64
background o�set scale γ 1 1 1 1
grid dimensions G 6× 1× 7 6× 1× 7 5× 1× 7 5× 1× 7
object vertices S × T � 8× 16 � 8× 16
object o�set scale γ � 0.2 � 0.2
object velocity bias v̂ (0, 0, 0) (0, 0, 0) (−1, 0, 0) (−1, 0, 0)

Loss

scale-space pyramid depth 4 5 4 5
initial KL weight β 1 0.5 0.5 0.5
�nal KL weight β 1 2 2 0.5
L1 velocity strength 1 1 1 1
presence hinge strength � 100 � 10
L2 Laplacian strength (obj) � 7.5 � 100
L1 crease strength (bg) 10 10 50 50
L1 edge-length variance (bg) 10 10 10 10
edge-matching strength 0 0 10 0
edge-matching ζ � � 10 �
Optimization

batch size 64 32 12 12
learning rate 10−4 10−4 10−4 10−4

S5 Network architectures

This speci�es describes the encoder and decoder network architectures for each
component of our model. Unspeci�ed parameters are assumed to take Keras
defaults.



S5.1 Video encoder

Conv3D(32, kernel size=[1, 7, 7], strides=[1, 2, 2], activation=relu)
GroupNormalization(groups=4)
Conv3D(64, kernel size=[1, 3, 3], strides=[1, 2, 2], activation=relu)
Residual(Conv3D(64, kernel_size=[1, 3, 3], activation=relu, padding=SAME))
GroupNormalization(groups=4)
Conv3D(96, kernel size=[2, 1, 1], activation=relu)
GroupNormalization(groups=6)
Conv3D(128, kernel size=[1, 3, 3], strides=[1, 2, 2], activation=relu)
Residual(Conv3D(128, kernel size=[1, 3, 3], activation=relu, padding=SAME))
GroupNormalization(groups=4)
Conv3D(192, kernel size=[2, 1, 1], activation=relu)
GroupNormalization(groups=6)
Conv3D(256, kernel size=[1, 3, 3], activation=relu)
Flatten
LayerNormalization
Dense(1024, activation=relu)
Residual(Dense(activation=relu))

S5.2 Camera parameter encoder F cam

Dense(128, activation=elu)
LayerNormalization
Residual(Dense(activation=elu))
LayerNormalization
Residual(Dense(activation=elu))
LayerNormalization

S5.3 Background decoder (shape) Dbg
shape

The �rst three layers are shared with Dbg
tex.



Dense(128, activation=elu)
Residual(Dense(activation=elu))
Dense(12)
Dense(4)
Dense(480, activation=elu)
Reshape([3, 8, -1])
Conv2D(96, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=96, kernel size=1, activation=elu))
UpSampling2D
Conv2D(64, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=64, kernel size=1, activation=elu))
UpSampling2D
Conv2D(48, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=48, kernel size=1, activation=elu))
UpSampling2D
Conv2D(32, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=32, kernel size=1, activation=elu))
Conv2D(4, kernel size=[3, 3], padding=SAME)

S5.4 Background decoder (texture) Dbg
tex

The �rst three layers are shared with Dbg
shape.



Dense(128, activation=elu)
Residual(Dense(activation=elu))
Dense(12)
Dense(64)
Dense(720, activation=elu)
Reshape([6, 12, -1])
Conv2D(128, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=128, kernel size=1, activation=elu))
UpSampling2D
Conv2D(96, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=96, kernel size=1, activation=elu))
UpSampling2D
Conv2D(64, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=64, kernel size=1, activation=elu))
UpSampling2D
Conv2D(48, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=48, kernel size=1, activation=elu))
UpSampling2D
Conv2D(32, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=32, kernel size=1, activation=elu))
UpSampling2D
Conv2D(24, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=24, kernel size=1, activation=elu))
Conv2D(3, kernel size=[3, 3])

S5.5 Object parameter decoder F obj

Dense(128, activation=elu)
Residual(Dense(activation=elu))
Dense(G× (e+ 8 + 2(L− 1)))



S5.6 Object appearance decoder (voxels) Dobj
voxels

Dense(3× 3× 64, activation=elu)
Reshape([3, 3, 64])
UpSampling2D
Conv2D(64, kernel size=3, padding=SAME, activation=elu)
UpSampling2D
Conv2D(48, kernel size=3, padding=SAME, activation=elu)
UpSampling2D
Conv2D(32, kernel size=3, padding=SAME, activation=elu)
Conv2D(24× 4, kernel size=4, padding=SAME, activation=None)
Reshape([24, 24, 24, 4])
Permute([3, 1, 2, 4])

S5.7 Object appearance decoder (mesh shape) Dobj
shape

Dense(128, activation=elu)
Reshape([2, 4, -1])
Conv2D(96, kernel size=[2, 2], activation=elu, padding=SAME)
UpSampling2D
Conv2D(64, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=64, kernel size=1, activation=elu))
UpSampling2D
Conv2D(48, kernel size=[3, 3], activation=elu, padding=SAME)
Conv2D(4, kernel size=1, kernel initializer=ZEROS)

S5.8 Object appearance decoder (mesh texture) Dobj
tex

Dense(180, activation=elu)
Reshape([3, 6, -1])
Conv2D(96, kernel size=[2, 2], activation=elu, padding=SAME)
Residual(Conv2D(�lters=96, kernel size=1, activation=elu))
UpSampling2D
Conv2D(64, kernel size=[3, 3], activation=elu, padding=SAME)
Residual(Conv2D(�lters=64, kernel size=1, activation=elu))
UpSampling2D(size=4, interpolation=BILINEAR)
Conv2D(24, kernel size=[3, 3], activation=elu, padding=SAME)
Conv2D(3, kernel size=1)



S6 Longer sequences

In this section, we present qualitative results from O3V-voxel when run on
signi�cantly longer sequences for (rooms)�12 frames instead of three frames.
To control memory usage so the model can still be trained on a single GPU, we
only render six frames per training episode�however we unroll the full 12 steps
in latent space for all sequences, and generate/reconstruct full sequences at test
time. We also add an extra downsampling layer at the start of the encoder
CNN. This dataset required slightly modi�ed hyperparameters; in particular,
we found it bene�cial to adjust the translation and scale of the background
vertices. Without these changes, the larger range of camera motion in the
longer sequences results in undesirable local optima where the camera passes
through the background surface early in training. This is not recoverable by
the optimisation process, as the camera passing through the surface produces a
discontinuous change in the pixels, so there is no gradient signal.

Generation results are shown in Figure S7; decomposition in Figure S8. We
see that the model still performs reasonably well in this more-challenging setting.
In particular, the reconstructions are faithful, with good foreground-background
segmentation. However, the depth-maps indicate that the corners between walls
are less crisply predicted than for shorter sequences. Generations su�er from
some blurring in the background texture, but the scenes are still coherent, and
most objects recognisable.

S7 Additional qualitative results

In this section, we present further qualitative results from our method. These
�gures are extended versions of those in the main paper, with larger images
and more examples. Videos of the same sequences may be seen at http:

//pmh47.net/o3v/. Figure S9, Figure S10, Figure S11 and Figure S12 show
decomposition results. Figure S13, Figure S14, Figure S15, Figure S16 and
Figure S17 show generated samples. Figure S18 shows selected examples on
(traffic) where our model fails, and samples independently-moving pieces of
cars.



Figure S7: Generation results from O3V-voxel for 12-frame sequences from
(rooms). Each group of three rows shows one video; within each group, the
rows are generated frames, generated foreground only, and depth-maps.



Figure S8: Decomposition results from O3V-voxel for 12-frame sequences from
(rooms). Each group of four rows shows one video; within each group, the
rows are original frames, reconstructed frames, reconstructed foreground only,
and predicted depth-maps.



Figure S9: Videos from (rooms) decomposed by O3V-voxel. In each block, the
three rows are di�erent frames. The columns are (left to right): input frame, re-
constructed frame, reconstructed background, reconstructed foreground objects
and 3D bounding boxes, ground-truth and predicted instance segmentation, and
ground-truth and predicted depth.



Figure S10: Videos from (rooms) decomposed by O3V-mesh. In each block, the
three rows are di�erent frames. The columns are (left to right): input frame, re-
constructed frame, reconstructed background, reconstructed foreground objects
and 3D bounding boxes, ground-truth and predicted instance segmentation, and
ground-truth and predicted depth.



Figure S11: Videos from (traffic) decomposed by O3V-voxel (columns are as
in Figure S9). Cars are accurately segmented, though sometimes split into two
parts. Depths are accurate in nearby areas, but less so in the far distance and
sky.



Figure S12: Continuation of Figure S11



Figure S13: Videos generated by O3V-voxel trained on (rooms). In each block,
the three rows are di�erent frames. The columns are (left to right): generated
frame, background, foreground objects with their 3D bounding boxes, instance
segmentation, and depth.



Figure S14: Videos generated by O3V-mesh trained on (rooms). In each block,
the three rows are di�erent frames. The columns are (left to right): generated
frame, background, foreground objects with their 3D bounding boxes, instance
segmentation, and depth.



Figure S15: Videos generated by O3V-voxel trained on (traffic) (columns as
in Figure S13).



Figure S16: Continuation of Figure S15



Figure S17: Continuation of Figure S15



Figure S18: Selected examples of failures from O3V-voxel trained on (traffic)
(columns as in Figure S13). In all these examples, our method incorrectly
samples several independently-moving partial cars.
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