
A Details on Constrained Reachability

In this section we describe how program analyses can be converted to regular languages, and provide
the proofs for the statements in section 2.2.

A.1 Example: Regular Languages For Program Analyses

The following grammar defines a regular language for the LASTWRITE edge type as described by
Allamanis et al. [1], where n2 is the last write to variable n1 if there is a path from n1 to n2 whose
label sequence matches the nonterminal Last-Write. We denote node type labels with capitals, edge
type labels in lowercase, and nonterminal symbols in boldface. For simplicity we assume a single
target variable name with its own node type TargetVariable, and only consider a subset of possible
AST nodes.

All LASTWRITE edges start from a use of the target variable.
Last-Write = TargetVariable to-parent Find-Current-Statement

Once we find a statement, go backward.
Find-Current-Statement = ExprStmt Step-Backward

Assign Step-Backward
While in an expression, step out.
BinOp to-parent Find-Current-Statement
Call to-parent Find-Current-Statement

Stop if we find an assignment to the target variable.
Check-Stmt = Assign to-target TargetVariable

Skip other statements.
Assign to-target NonTargetVariable to-parent Step-Backward
ExprStmt Step-Backward
Either enter If blocks or skip them.
If to-last-child Check-Stmt
If Step-Backward
Either enter While blocks or skip them, possibly jumping back to a break.
While Step-Backward
While to-last-child Check-Stmt
While to-last-child Find-Break-A

If we have a previous statement, check it.
Step-Backward = prev-stmt Check-Stmt

If this is the first statement of an If block, exit.
from-first-child If Step-Backward
If this is the first statement of a While block, either exit or go back
to the end of the loop body.
from-first-child While Step-Backward
from-first-child While to-last-child Check-Stmt

If we find a Break, this is a possible previous loop exit point.
Find-Break-A = Break Step-Backward

Either way, keep looking for other break statements.
Break Find-Break-B
ExprStmt Find-Break-B
If to-last-child Find-Break-A
Don’t enter while loops, since break statements only affect one loop.
While Find-Break-B

Find-Break-B = prev-stmt Find-Break-A
from-first-child If Find-Break-B

The constructions for NEXTCONTROLFLOW and LASTREAD are similar. Note that for LASTREAD,
instead of skipping entire statements until finding an assignment, the path must iterate over all
expressions used within each statement and check for uses of the variable. For NEXTCONTROLFLOW,
instead of stepping backward, the path steps forward, and instead of searching for break statements
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after entering a loop, it searches for the containing loop when reaching a break statement. (This
is because NEXTCONTROLFLOW simulates program execution forward instead of in reverse. Note
that regular languages are closed under reversal [20], so such a transformation between forward and
reverse paths is possible in general; we could similarly construct a language for LASTCONTROLFLOW

if desired.)

A.2 Proof of Proposition 1

We recall proposition 1:
Proposition 1. Let G be a family of graphs annotated with node and edge types. There exists an
encoding of graphs G ∈ G into POMDPs as described in section 3.1 and a mapping from regular
languages L into finite-state policies πL such that, for any G ∈ G, there is an L-path from n0 to nT
in G if and only if p(aT = ADDEDGEANDSTOP, nT |n0, πL) > 0.

Proof. We start by defining a generic choice of POMDP conversion that depends only on the node
and edge types. Let G ∈ G be a directed graph with node typesN , edge types E , nodes N , and edges
E ⊆ N ×N ×E . We convert it to a POMDP by choosing Ωτ(n) = {(τ(n), TRUE), (τ(n), FALSE)},
Mτ(n) = E ,

p(nt+1|nt, at = (MOVE,mt)) =


1/|Amt

nt
| if nt+1 ∈ Amt

nt
,

1 if nt+1 = nt and Amt
nt

= ∅,
0 otherwise,

ω0 = (τ(n0), TRUE), and ωt+1 = (τ(nt+1), nt+1 ∈ Amt
nt

), where we let Amt
nt

=
{nt+1 | (nt, nt+1,mt) ∈ E} be the set of neighbors adjacent to nt via an edge of type mt.

Now supposeL is a regular language over sequences of node and edge types. Construct a deterministic
finite automaton M that accepts exactly the words in L (for instance, using the subset construction)
[20]. Let Q denote its state space, q0 denote its initial state, δ : Q×Σ→ Q be its transition function,
and F ⊆ Q be its set of accepting states. We choose Q as the finite state memory of our policy πL,
i.e. at each step t we assume our agent is associated with a memory state zt ∈ Q. We let z0 = q0 be
the initial memory state of πL.

Consider an arbitrary memory state zt ∈ Q and observation ωt = (τ(nt), et). We now construct a
set of possible next actions and memories Nt ⊆ At ×Q. If et = FALSE, let Nt = ∅. Otherwise,
let zt+1/2 = δ(zt, τ(nt)). If zt+1/2 ∈ F , add (ADDEDGEANDSTOP, zt+1/2) to Nt. Next, for each
m ∈ E , add ((MOVE,m), δ(zt+1/2,m)) to Nt. Finally, let

πL(at, zt+1|zt, ωt) =


1/|Nt| if (at, zt+1) ∈ Nt,
1 if Nt = ∅, at = STOP, zt+1 = zt
0 otherwise.

The et = FALSE =⇒ Nt = ∅ constraint ensures that the partial sequence of labels along any
accepting trajectory matches the sequence of node type observations and movement actions produced
by πL. Since πL starts in the same state as M , and assigns nonzero probability to exactly the
state transitions determined by δ, it follows that the memory state of the agent along any partial
trajectory [n0,m0, n1,m1, . . . , nt] corresponds to the state of M after processing the label sequence
[τ(n0),m0, τ(n1),m1, . . . , τ(nt)].

Since πL assigns nonzero probability to the ADDEDGEANDSTOP action exactly when memory state is
an accepting state from F , and M is in an accepting state from F exactly when the label sequence is
in L, we conclude that desired property holds.

Corollary. There exists an encoding of program AST graphs into POMDPs and a specific policy
πNEXT-CF with finite-state memory such that p(aT = ADDEDGEANDSTOP, nT | n0, π) > 0 if and only
if (n0, nT ) is an edge of type NEXTCONTROLFLOW in the augmented AST graph. Similarly, there are
policies πLAST-READ and πLAST-WRITE for edges of type LASTREAD and LASTWRITE, respectively.

Proof. This corollary follows directly from Proposition 1 and the existence of regular languages for
these edge types (see appendix A.1).
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Note that equivalent policies also exist for POMDPs encoded differently than the proof of proposition
1 describes. For instance, instead of having “TargetVariable” as a node type and constructing edges
for each target variable name separately, we can extend the observation ωt to contain information on
whether the current variable name matches the initial variable name and then find all edges at once,
which we do for our experiments. Additionally, if an action would cause the policy to transition into
an absorbing but non-accepting state (i.e. a failure state) in the discrete finite automaton for L, the
policy can immediately take a BACKTRACK or STOP action instead, or reallocate probability to other
states, instead of just cycling forever in that state. This allows the policy π to more evenly allocate
probability across possible answers, and we observe that the GFSA policies learn to do this in our
experiments.

B Graph to POMDP Dataset Encodings

Here we describe the encodings of graphs as POMDPs that we use for our experiments.

B.1 Python Abstract Syntax Trees

We convert all of our code samples into the unified format defined by the gast library,5 which is
a slightly-modified version of the abstract syntax tree provided with Python 3.8 that is backward-
compatible with older Python versions. We then use a generic mechanism to convert each AST node
into one or more graph nodes and corresponding POMDP states.

Each AST node type τ (such as FunctionDef, If, While, or Call) has a fixed set F of possible
field names. We categorize these fields into four categories: optional fields Fopt, exactly-one-child
fields Fone, nonempty sequence fields Fnseq, and possibly empty sequence fields Feseq. We define the
observation space at nodes of type τ as

Ωτ = {τ} × Γ×Ψτ

where Γ is a task-specific extra observation space, and Ψτ indicates the result of the previous action:

Ψτ = {(FROM, f) | f ∈ F ∪ {PARENT}} ∪ {(MISSING, f) | f ∈ Fopt ∪ Feseq}.
The (τ, γ, (FROM, f)) observations are used when the agent moves to an edge of type τ from a child
from field f (or from the parent node), and the (τ, γ, (MISSING, f)) observations are used when the
agent attempts to move to a child for field f but no such child exists. We define the movement space
as

Mτ = {GO-PARENT} ∪ {(GO, f) | f ∈ Fone ∪ Fopt}}
∪ {(x, f) | x ∈ {GO-FIRST,GO-LAST,GO-ALL}, f ∈ Fnseq ∪ Feseq}.

GO moves the agent to the single child for that field, GO-FIRST moves it to the first child,
GO-LAST moves it to the last child, and GO-ALL distributes probability evenly among all chil-
dren. GO-PARENT moves the agent to the parent node; we omit this movement action for the root
node (τ = Module).

For each sequence field f ∈ Fnseq ∪ Feseq, we also define a helper node type τf , which is used to
construct a linked list of children. This helper node has the fixed observation space

Ψτf = {FROM-PARENT, FROM-ITEM, FROM-NEXT, FROM-PREV,

MISSING-NEXT,MISSING-PREV}
and action space

Mτf = {GO-PARENT,GO-ITEM,GO-NEXT,GO-PREV}.
When encoding the AST as a graph, helper nodes of this type are inserted between the AST node of
type τ and the children for field f : the “parent” of a helper node is the original AST node, and the
“item” of the nth helper node is the nth child of the original AST node for field f .

We note that this construction differs from the construction in the proof of proposition 1, in that
movement actions are specific to the node type of the current node. When the agent takes the GO-
PARENT action, the observation for the next step informs it what field type it came from. This helps

5https://github.com/serge-sans-paille/gast/releases/tag/0.3.3
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keep the state space of the GFSA policy small, since it does not have to guess what its parent node is
and then remember the results; it can instead simply walk to the parent node and then condition its
next action on the observed field. The construction described here still allows encoding the edges
from NEXTCONTROLFLOW, LASTREAD, and LASTWRITE as policies, as we empirically demonstrate
by training the GFSA layer to replicate those edges.

B.2 Grid-world Environments

For the grid-world environments, we represent each traversable grid cell as a node, and classify the
cells into eleven node types corresponding to which movement directions (left, up, right, and down)
are possible:

N = {LU,LR,LD,UR,UD,RD,LUR,LUD,LRD,URD,LURD}
Note that in our dataset, no cell has fewer than two neighbors.

For each node type τ ∈ N the movement actionsMτ correspond exactly to the possible directions
of movement; for instance, cells of type LD haveMLD = {L,D}. We use a trivial observation space
Ωτ = {τ}, i.e. the GFSA automaton sees the type of the current node but no other information.

When converting grid-world environments into POMDPs, we remove the BACKTRACK action to
encourage the GFSA edges to match more traditional RL option sub-policies.

C GFSA Layer Implementation

Here we describe additional details about the implementation of the GFSA layer.

C.1 Parameters

We represent the parameters θ of the GFSA layer as a table indexed by feasible observation and
action pairs Φ as well as state transitions:

Φ =

( ⋃
τ∈N

Ωτ ×Aτ

)
, θ : Z × Φ× Z → R,

where Z = {0, 1, . . . , |Z|−1} is the set of memory states. We treat the elements of θ as unnormalized
log-probabilities and then set π = softmax(θ), normalizing separately across actions and new
memory states for each possible current memory state and observation.

To initialize θ, we start by defining a “base distribution” p, which chooses a movement action at
random with probability 0.95 and a special action (ADDEDGEANDSTOP, STOP, BACKTRACK) otherwise,
and which stays in the same state with probability 0.8 and changes states randomly otherwise. Next,
we sample our initial probabilities q from a Dirichlet distribution centered on p (with concentration
parameters αi = pi/β where β is a temperature parameter), and then take a (stabilized) logarithm
θi = log(qi + 0.001). This ensures that the initial policy has some initial variation, while still biasing
it toward staying in the same state and taking movement actions most of the time.

C.2 Algorithmic Details

As a preprocessing step, for each graph in the dataset, we compute the set X of all (n, ω) node-
observation pairs for the corresponding MDP. We then compute “template transition matrices”, which
specify how to convert the probability table θ into a transition matrix by associating transitionsX×X
and halting actions X × {ADDEDGEANDSTOP, STOP, BACKTRACK} with their appropriate indicies
into Φ. Then, when running the model, we retrieve blocks of θ according to those indices to construct
the transition matrix for that graph (implemented with “gather” and “scatter” operations).

Conceptually, each possible starting node n0 could produce a separate transition matrix Qn0
:

X × Z ×X × Z → R because part of the observation in each state (which we denote γ ∈ Γ and
leave out of X) may depend on the starting node or other learned parameters. We address this by
instead computing an “observation-conditioned” transition tensor

Q : Γ×X × Z ×X × Z → R
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that specifies transition probabilities for each observation γ, along with a start-node-conditioned
observation tensor

C : N ×X × Γ→ R
that specifies the probability of observing γ for a given start node n0 and current (n, ω) tuple. In
order to compute a matrix-vector product Qn0

v we can then use the tensor product∑
i,z,γ

Cn0,i,γ Qγ,i,z,i′,z′ vi,z

which can be computed efficiently without having to materialize a separate transition matrix for every
start node n0 ∈ N .

During the forward pass through the GFSA layer, to solve for the absorbing probabilities in equation
1, we iterate

x0 = δn0 , xk+1 = δn0 +Qn0xk

until a fixed number of steps K, then approximate

p(aT , nT |n0, π) = H(aT ,nT ),: (I −Qn0
)
−1
δn0
≈ H(aT ,nT ),: xK .

To efficiently compute the backwards pass without saving all of the values of xk, we use the
jax.lax.custom_linear_solve function from JAX [8], which converts the gradient equations
into a transposed matrix system (

I −QTn0

)−1
HT ∂L

∂p(·|n0, π)

that we similarly approximate with

y0 = HT ∂L
∂p(·|n0, π)

, yk+1 = HT ∂L
∂p(·|n0, π)

+QTn0
yk.

Note that both iteration procedures are guaranteed to converge because the matrix I − Qn0 is
diagonally dominant [35]. Conveniently, we implement Qn0xk using the tensor product described
above, and JAX automatically translates this into a computation of the transposed matrix-vector
product QTn0

yk using automatic differentiation.

If the GFSA policy assigns a very large probability to the BACKTRACK action, this can lead to numerical
instability when computing the final adjacency matrix, since we condition on non-backtracking
trajectories when computing our final adjacency matrix. We circumvent this issue by constraining
the policy such that a small fraction of the time (εbt-stop), if it attempts to take the BACKTRACK action,
it instead takes the STOP action; this ensures that, if the policy backtracks with high probability,
the weight of the produced edges will be low. Additionally, we attempt to mitigate floating-point
precision issues during normalization by summing over ADDEDGEANDSTOP and STOP actions instead
of computing 1− p(at = BACKTRACK| · · · ) directly.

When computing an adjacency matrix from the outputs of the GFSA layer, there are two ways to
extract multiple edge types. The first is to associate each edge type with a distinct starting state in
Z. The second way is to compute a different version of the parameter vector θ for each edge type.
For the variable misuse experiments, we use the first method, since sharing states uses less memory.
For the grid-world experiments, we use the second method, as we found that using non-shared states
gives slightly better performance and results in more interpretable learned options.

C.3 Asymptotic Complexity

We now give a brief complexity analysis for the GFSA layer implementation. Let n be the number
of nodes, e be the number of edges, z be the number of memory states, ω be the number of “static”
observations per node (such as FROM-PARENT), and γ be the number of “dynamic” observations
per node (for instance, observations conditioned on learned node embeddings).

Memory: Storing the probability of visiting each state in X × Z for a given source node takes
memory O(nωz), so storing it for all source nodes takes O(n2ωz). For a dense representation of Q
and C, Q takes O(n2ω2z2γ) memory and C takes O(n2ωγ). Since memory usage is independent of
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the number of iterations, the overall memory cost is thus O(n2ω2z2γ). We note that memory scales
proportional to the square of the number of nodes, but this is in a sense unavoidable since the output
of the GFSA layer is a dense n× n matrix even if Q is sparse.

Time: Computing the tensor product for all starting nodes requires computing n× nωz × nωz × γ
elements. Since we do this at every iteration, we end up with a time cost of O(Tmax n

3ω2z2γ). We
note that a sparse representation of Q might reduce this to O(Tmax (n2z+nez2)ωγ) (since we could
first contract with C with cost n× nω × z × γ and then iterate over edges, start nodes, observations,
and states, with cost n× e× ωz × z × γ). However, in practice we use a dense implementation to
take advantage of fast accelerator hardware.

D Experiments, Hyperparameters, and Detailed Results

Here we describe additional details for each of our experiments and the corresponding evaluation
results. For all of our experiments, we train and evaluate on TPU v2 accelerators.6 Each training job
uses 8 TPU v2 cores, evenly dividing the batch size between the cores and averaging gradients across
them at each step.

D.1 Grid-world Task

We use the LabMaze generator (https://github.com/deepmind/labmaze) from DeepMind Lab
[6] to generate our grid-world layouts. We configure it with a width and height of 19 cells, a maximum
of 6 rooms, and room sizes between 3 and 6 cells on each axis. We then convert the generated grids
into graphs, and filter out examples with more than 256 nodes or 512 node-observation tuples. We
generate 100,000 training graphs and 100,000 validation graphs. For each graph, we then pick 32
goal locations uniformly at random.

We configure the GFSA layer to use four independent policies to produce four derived edge types.
For each policy, we set the memory space to the two-element set Z = {0, 1}, where z0 = 0. We
initialize parameters using temperature β = 0.2, but use the Dirichlet sample directly as a logit, i.e.
θi = qi. (We found that applying the logarithm from appendix C during initialization yields similar
numerical performance but makes the learned policies harder to visualize.)

Since the interpretation of the edges as options requires them to be properly normalized (i.e. the
distribution p(st+1|st, at) must be well defined), we make a few modifications to the output adjacency
matrix produced by the GFSA layer. In particular, we do not use the learned adjustment parameters
described in section 3.3, instead fixing a = 1, b = 0. We also ensure that the edge weights are
normalized to 1 for each source node by assigning any missing mass to the diagonal. In other words,
if the GFSA sub-policy agent takes a STOP action or fails to take the ADDEDGEANDSTOP action before
Tmax iterations, we instead treat the option as a no-op that causes the primary agent to remain in
place. We also remove the BACKTRACK action.

At each training iteration, we sample a graph G from our training set, and in parallel compute approxi-
mate entropy-regularized optimal policies π∗ for each of the 32 goal locations for G. Mathematically,
for each goal g, we seek

π∗ = argmax
π

E(st,at)∼p(· | π)

 ∑
0≤t≤T

−1 +H(π(· | st))

∣∣∣∣∣∣ sT = g

 ,
where H(π(· | st)) denotes the entropy of the distribution over actions, and we have fixed the
reward to -1 for all timesteps. We use an entropy-regularized objective here so that the policy π∗ is
nondeterministic and thus has a useful derivative with respect to the option distribution. As described
by Haarnoja et al. [18], we can compute this optimal policy by doing soft-Q iteration using the update
equations

Qsoft(st, at)← Est+1∼p(·|st,at) [Vsoft(st+1)]− 1,

Vsoft(st)← log
∑
at

exp (Qsoft(st, at)) .

6https://cloud.google.com/tpu/
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until reaching a fixed point, and then letting

π∗(at|st) = exp(Qsoft(st, at)− Vsoft(st)).

Since our graphs are small, we can store Qsoft and Vsoft in tabular form, and directly solve for their
optimal values by iterating the above equations. In practice, we approximate the solution by using
512 iterations.

After computing Q(g)
soft, V

(g)
soft , and π∗(g) for each choice of g, we then define a minimization objective

for the full task as
L = −Es0,g

[
V

(g)
soft (s0)

]
,

i.e. we seek to maximize the soft value function across randomly chosen sources and goals, or
equivalently to minimize the expected number of steps taken by π∗(g) before reaching the goal. We
compute gradients by using implicit differentiation twice: first to differentiate through the fixed
point to the soft-Q iteration, and second to differentiate through the computation of the GFSA edges.
Implicitly differentiating through the soft-Q equations is conceptually similar to implicit MAML [32]
except that the parameters we optimize in the outer loop (the GFSA parameters) are not the same as
the parameters we optimize in the inner loop (the graph-specific tabular policy).

Note that differentiating through the soft-Q fixed point requires first linearizing the equations around
the fixed point. More specifically, if we express the fixed point equations in terms of a function
Vsoft = f(Vsoft, θ) where θ represents the GFSA parameters, we have

∂Vsoft = ∂f(Vsoft, θ) = fV (Vsoft, θ)∂Vsoft + fθ(Vsoft, θ)∂θ

(where fV (Vsoft, θ) denotes the Jacobian of f with respect to V , and similarly for fθ) and thus

∂Vsoft =
(
I − fV (Vsoft, θ)

)−1
fθ(Vsoft, θ)∂θ

which leads to gradient equations

∂L
∂θ

= fθ(Vsoft, θ)
T
(
I − fV (Vsoft, θ)

T
)−1 ∂L

∂Vsoft
.

As before, JAX makes it possible to easily express these gradient computations and automatically
handles the computation of the relevant partial derivatives and Jacobians. In this case, due to the
small number of goal locations and lack of diagonal dominance guarantees, we simply compute and
invert the matrix I − fV (Vsoft, θ)

T during the backward pass instead of using an iterative solver. (See
Liao et al. [28] for additional information about implicitly differentiating through fixed points.)

We trained the model using the Adam optimizer, with a learning rate of 0.001 and a batch size of 32
graphs with 32 goals each, for approximately 50,000 iterations, until the validation loss plateaued.
We then picked a grid from the validation set, and chose four possible starting locations manually to
give a summary of the overall learned behavior.

D.2 Static Analyses

D.2.1 Datasets

For the static analysis tasks, we first generate a dataset of random Python programs using a probabilis-
tic context free grammar. This grammar contains a variety of nonterminals and associated production
rules:

• Number: An integer or float expression. Either a variable dereference, a constant integer,
an arithmetic operation, or a function call with numeric arguments.

• Boolean: A boolean expression. Either a comparison between numbers, a constant True or
False, or a boolean combination using and or or.

• Statement: A single statement. Either an assignment, a call to print, an if, if-else, for, or
while block, or a pass statement.
• Block: A contiguous sequence of statements that may end in a return, break, or
continue, or with a normal statement; we only allow these statements at the end of a
block to avoid producing dead code.
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def generated_function(a, b):
for v2 in range(int(bar_2(a, b))):

v3 = foo_4(v2, b, bar_1(b), a) / 42
v3 = (b + 8) * foo_1((v2 * v3))
pass
v3 = b
while False:

a = v3
a = v3
v2 = 34
break

if bar_1((b * b)) != v2:
v4 = foo_4(bar_2(56, bar_1(v2)),

foo_4(b, a, a, 39) - v2,
bar_1(a), 32)

for v5 in range(int(v4)):
v6 = v4
pass
break

print(69)
v2 = v2

b = 15
b = ((a + 96) + 89) - a
v2 = foo_4(b, 21, 26, foo_4(85, a, a - b, a))
b = v2 - (a - v2)

Figure D.1: Example of a program from the “1x” program distribution.

def generated_function(a, b):
if bar_1(b) > b:

b = a
print(b)

else:
a = a + a

a = bar_1(62 - 35)
if b <= bar_1(54):

b = b
while a >= 58:

b = foo_1(a)
pass
pass

else:
a = bar_4(b, bar_1(b), bar_1(a * a), bar_1(a))

b = 88

Figure D.2: Example of a program from the “0.5x” program distribution.
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def generated_function(a, b):
v2 = b
pass
b = v2
pass
v2 = b
b = bar_1(v2)
v3 = v2
print(b)
b = bar_1(v3) + (bar_1(20) - v2)
print(56)
if (foo_2(v2 + v3, foo_1(a)) == a) or ((foo_2(b, v2) < 22) or (v2 >= a or 37 <= v3)):

v3 = b
print(v2)
print(foo_1(a))
a = v3
b = foo_1(a)
v4 = foo_1(b)
print(foo_1(v3) * bar_1(v2))
b = a
print(bar_1(v2))
v2 = v2
v4 = 67
v5 = bar_2((v4 + v2) / (a / b), b)

else:
v4 = v3
b = v4
while ((v2 + (a / v4)) * (foo_2(93, v2) + v2)) < ((a - v2) - 18):

v5 = v2
v6 = bar_2(v3, (a - v4) + v3)
a = v2 + v2
break

v5 = 71 / v2
v6 = (a + (b + 47)) - (foo_2(v2, a) / (v5 * v3))
b = v5
b = foo_2(v3, v4)
v5 = 14
v3 = v3

v4 = b * foo_1(b)
v5 = bar_4(v2, v3, v4, b)
v6 = a
v3 = v5
b = 11
v7 = foo_1(v2)
v8 = v4
v4 = foo_1(foo_1(b))
v4 = bar_1(bar_1(bar_2(32, v5)))
v5 = bar_1(bar_2(v2, v2))

Figure D.3: Example of a program from the “2x” program distribution.

We apply constraints to the generation process such that variable names are only used after they have
been defined, expressions are limited to a maximum depth, and statements continue to be generated
until reaching a target number of AST nodes. For the training dataset, we set this target number of
nodes to 150, and convert each generated AST into a graph according to B.1; we then throw out
graphs with more than 256 graph nodes or 512 node-observation tuples. For our test datasets, we use
a target AST size of 300 AST nodes and cutoffs of 512 graph nodes or 1024 node-observation tuples
for the “2x” dataset, and a target of 75 AST nodes and cutoffs of 128 graph nodes and 512 tuples for
the “0.5x” dataset. For each dataset, the graph size cutoff results in keeping approximately 95% of
the generated ASTs. Figures D.1, D.2, and D.3 show example programs from these distributions.

We generated a training dataset with 100,000 programs, a validation dataset of 1024 programs, and a
test dataset of 100,000 programs for each of the three sizes (1x, 0.5x, 2x).

D.2.2 Architectures and Hyperparameters

We configure the GFSA layer to produce a single edge type, corresponding to the target edge of
interest. For this task, we specify the the task-specific observation γ referenced in appendix B.1 such
that the agent can observe when its current node is a variable with the same identifier as the initial
node. We treat |Z| as a hyperparameter, varying between 2, 4, and 8, with a fixed starting state z0.
We additionally randomly sample the backtracking stability hyperparameter εbt-stop according to a
log-uniform distribution within the range [0.001, 0.1] (see appendix C). We initialize parameters with
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temperature β = 0.01. Since we choose an optimal threshold while computing the F1 score, we do
not use the learned adjustment parameters described in section 3.3, and instead fix a = 1, b = 0.

For the GGNN, GREAT, and RAT baselines, we evaluate with both “nodewise" and “dot-product"
heads. For the "nodewise" head, we compute outputs as

An,n′ = σ
([
fθ(Xnode + bT δn, Xedge)

]
n′

)
where the learned model fθ : Rd×|N | × Re×|N |×|N | → R|N | produces a scalar output for each node,
Xnode ∈ Rd×|N | and Xedge ∈ Re×|N |×|N | are embeddings of the node and edge features, δn is a
one-hot vector indicating the start node, and b is a learned start node embedding. For the “dot-product”
head, we instead compute

Y = fθ(Xnode, Xedge), An,n′ = σ
(
yTnWyn′ + b

)
,

where the learned model fθ : Rd×|N | × Re×|N |×|N | → Rd×|N | produces updated node embeddings
yn, W is a learned d× d matrix, and b is a learned scalar bias. Since the nodewise models require
|N | times as many more forward passes to compute edges for a single example, we keep training
time manageable by reducing the width relative to the dot-product models.

The RAT and GREAT models are both variants of a transformer applied to the nodes of a graph. Both
models use a set of attention heads, each of which compute query and key vectors qn,kn ∈ Rd for
each node n as linear transformations of the node features xn: qn = WQxn,kn = WKxn. The
RAT model computes attention logits as

y(n,n′) =
qTn
(
kn′ +WEKe(n,n′)

)
√
d

where we transform the edge features e(n,n′) into an “edge key” that can be attended to by the query
in addition to the content-based key. This corresponds to the attention equations as described by Shaw
et al. [37], but with a graph-based mechanism for choosing the pairwise key vector. The GREAT
model uses an easier-to-compute formulation

y(n,n′) =
qTnkn′ +wTe(n,n′) · 1Tkn′

√
d

where the attention logits are biased by a (learned) linear projection of the edge features, scaled
by a (fixed) linear projection of the key (1 denotes a vector of ones). In both models, the y(n,n′)

are converted to attention weights α(n,n′) using softmax, and used to compute a weighed average
of embedded values. However, in the RAT model, both nodes and edges contribute to values
(zn =

∑
n′ α(n,n′)(vn′ + WEV e(n,n′))), whereas in GREAT this sum is only over nodes (zn =∑

n′ α(n,n′)vn′ ).

For the NRI-encoder-based model, we make multiple adjustments to the formulation from Kipf et al.
[25] in order to apply it to our setting. Since we are adding edges to an existing graph, the first part
of our NRI model combines aspects from the encoder and decoder described in Kipf et al. [25]; we
express our version in terms of blocks that each compute

hi+1
(n,n′) =

∑
k

ek,(n,n′)f
i,k
e (hin,h

i
n′), hi+1

n = f iv

(∑
n′

hi+1
(n,n′)

)
.

where hin denotes the vector of node features after layer i, hi+1
(n,n′) denotes the vector of hidden

pairwise features, and ek,(n,n′) is the kth edge feature between n and n′ from the base graph. To
enable deeper models, we apply layer normalization and residual connections after each of these
blocks, as in Vaswani et al. [40]. We then compute the final output head by applying the sigmoid
activation to the final layer’s hidden pairwise feature matrix hI(n,n′) (which we constrain to have
feature dimension 1), replacing the softmax used in the original NRI encoder (since we are doing
binary classification, not computing a categorical latent variable). All versions of f are learned MLPs
with ReLU activations.

The RL agent baseline uses the same parameterization as the GFSA layer. However, instead of exactly
solving for marginals, we sample a discrete transition at every step. Given a particular start node, the
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agent gets a reward of +1 if it takes the ADDEDGEANDSTOP action at any of the correct destination
nodes, or if it takes the STOP action and there was no correct destination node. We use 20 rollouts per
start node, and train with REINFORCE and a leave-one-out control variate. During final evaluation,
we compute exact marginals as for the GFSA layer; thus, differences in evaluation results reflect
differences in the learning algorithm only.

For all of our baselines, we convert the Python AST into a graph by transforming the AST nodes
into graph nodes and the field relationships into edges. For parity with the GFSA layer, the helper
nodes defined in appendix B.1 are also used in the the baseline graph representation, and we add an
extra edge type connecting variables that use the same identifier. All edges are embedded in both
forward and reverse directions. We include hyperparameters for whether the initial node embeddings
Xnode contain positional encodings computed as in Vaswani et al. [40] according to a depth-first tree
traversal, and whether edges are embedded using a learned vector or using a one-hot encoding.

For the GGNN model, we choose a number of GGNN iterations (between 4 and 12 iterations using
the same parameters) and a hidden state dimension (from {16, 32, 128} for the nodewise models or
{128, 256, 512} for the dot-product models).

For the GREAT and RAT models, we choose a number of layers (between 4 and 12, but not
sharing parameters), a hidden state dimension (from {16, 32, 128} for the nodewise models or
{128, 256, 512} for the dot-product models), and a number of self-attention heads (from {2, 4, 8, 16}),
with query, key, and value sizes chosen so that the sum of sizes across all heads matches the hidden
state dimension.

For the NRI encoder model, we choose whether to allow communication between non-adjacent
nodes, a hidden size for node features (from {128, 256, 512}), a hidden size for intermediate pairwise
features (from {16, 32, 64}), a hidden size for initial base-graph edge features (from {16, 32, 64}), a
depth for each MLP (from 1 to 5 layers), and a number of NRI-style blocks (between 4 and 12).

D.2.3 Training and Detailed Results

For all of our models, we train using the Adam optimizer for either 500,000 iterations or 24 hours,
whichever comes first; this is enough time for all models to converge to their final accuracy. For each
model version and task, we randomly sample 32 hyperparameter settings, and then select the model
and early-stopping point with the best F1 score on a validation set of 1024 functions. In addition
to the hyperparameters described above, all models share the following hyperparameters: batch
size (either 8, 32, or 128), learning rate (log-uniform in [10−5, 10−2]), gradient clipping threshold
(log-uniform in [1, 104]), and focal-loss temperature γ (uniform in [0, 5]). Hyperparameter settings
that result in out-of-memory errors are not counted toward the 32 samples.

After selecting the best performing model for each model type and task based on performance on
the validation set, we evaluated the model on each of our test datasets. For each example size (1x,
2x, 0.5x), we partitioned the 100,000 test examples into 10 equally-sized folds. We used the first
fold to tune the final classifier threshold to maximize F1 score (using a different threshold for each
example size to account for shifts in the distribution of model outputs). We then fixed that threshold
and evaluated the F1 score on each of the other splits. We report the mean of the F1 score across
those folds, along with an approximate standard error estimate (computed by dividing the standard
deviation of the F1 score across folds by

√
9 = 3).

To assess robustness of convergence, we also compute the fraction of training runs that achieve at
least 90% accuracy on the validation set. Note that each training job has different hyperparameters
but also a different parameter initialization and a different dataset iteration order; we do not attempt
to distinguish between these sources of variation.

Table D.1 contains higher-precision results for the edge-classification tasks, along with the standard
error estimates computed as above. Additionally, figure D.4 shows precision-recall curves, computed
for a subset of the experiments that shows the most interesting variation in performance.
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Table D.1: Full-precision results on static analysis tasks. Expressed as mean F1 score (in %)
± standard error on test set. For 1x dataset size, we also report fraction of training jobs across
hyperparameter sweep that achieved 90% validation accuracy.

Task Next Control Flow

Example size 1x 2x 0.5x

100,000 training examples

RAT nw 99.9837 ± 0.0006 (25/32 @ 90%) 99.9367 ± 0.0012 99.9880 ± 0.0007
GREAT nw 99.9770 ± 0.0011 (26/32 @ 90%) 99.8709 ± 0.0013 99.9834 ± 0.0010
GGNN nw 99.9823 ± 0.0007 (31/32 @ 90%) 93.9034 ± 0.0304 97.7723 ± 0.0246

RAT dp 99.9945 ± 0.0004 (26/32 @ 90%) 92.5278 ± 0.0080 96.5901 ± 0.0150
GREAT dp 99.9941 ± 0.0006 (24/32 @ 90%) 96.3243 ± 0.0092 98.3557 ± 0.0081
GGNN dp 99.9392 ± 0.0014 (26/32 @ 90%) 62.7524 ± 0.0195 98.5104 ± 0.0176

NRI encoder 99.9765 ± 0.0010 (31/32 @ 90%) 85.9087 ± 0.0156 99.9161 ± 0.0021
RL ablation 94.2419 ± 0.0118 (02/32 @ 90%) 93.5616 ± 0.0087 94.8329 ± 0.0241

GFSA Layer (ours) 99.9972 ± 0.0001 (29/32 @ 90%) 99.9941 ± 0.0002 99.9985 ± 0.0002

100 training examples

RAT nw 98.6324 ± 0.0090 (13/32 @ 90%) 95.9320 ± 0.0092 96.3167 ± 0.0249
GREAT nw 98.2327 ± 0.0054 (13/32 @ 90%) 97.9814 ± 0.0071 98.5181 ± 0.0065
GGNN nw 99.3749 ± 0.0060 (25/32 @ 90%) 98.3590 ± 0.0050 98.6022 ± 0.0141

RAT dp 81.8068 ± 0.0296 (00/32 @ 90%) 68.4592 ± 0.0187 87.0517 ± 0.0334
GREAT dp 86.5967 ± 0.0216 (00/32 @ 90%) 62.9828 ± 0.0245 80.5810 ± 0.0192
GGNN dp 76.8530 ± 0.0388 (00/32 @ 90%) 22.9947 ± 0.0083 28.9142 ± 0.0520

NRI encoder 81.7358 ± 0.0347 (00/32 @ 90%) 69.0823 ± 0.0216 88.8749 ± 0.0452
RL ablation 91.6981 ± 0.0122 (03/32 @ 90%) 91.1424 ± 0.0120 92.2917 ± 0.0215

GFSA Layer (ours) 99.9944 ± 0.0002 (29/32 @ 90%) 99.9890 ± 0.0003 99.9971 ± 0.0004

Task Last Read

Example size 1x 2x 0.5x

100,000 training examples

RAT nw 99.8602 ± 0.0020 (11/32 @ 90%) 96.2865 ± 0.0083 99.9785 ± 0.0008
GREAT nw 99.9099 ± 0.0015 (14/32 @ 90%) 95.1157 ± 0.0100 99.9801 ± 0.0006
GGNN nw 95.5197 ± 0.0121 (04/32 @ 90%) 9.2216 ± 0.0658 86.2371 ± 0.0310

RAT dp 99.9579 ± 0.0011 (18/32 @ 90%) 42.5754 ± 0.0139 91.9595 ± 0.0325
GREAT dp 99.9869 ± 0.0005 (18/32 @ 90%) 47.0747 ± 0.0193 99.7819 ± 0.0028
GGNN dp 98.4356 ± 0.0063 (05/32 @ 90%) 0.9925 ± 0.0004 63.7686 ± 0.0940

NRI encoder 99.8306 ± 0.0024 (14/32 @ 90%) 43.4380 ± 0.0220 99.3851 ± 0.0051
RL ablation 96.6928 ± 0.0131 (02/32 @ 90%) 94.8530 ± 0.0164 97.8541 ± 0.0091

GFSA Layer (ours) 99.6561 ± 0.0030 (25/32 @ 90%) 98.9355 ± 0.0056 99.8973 ± 0.0020

100 training examples

RAT nw 80.2832 ± 0.0257 (00/32 @ 90%) 1.1217 ± 0.0021 83.4938 ± 0.0284
GREAT nw 78.8755 ± 0.0220 (00/32 @ 90%) 6.9583 ± 0.0157 60.9003 ± 0.0375
GGNN nw 79.3594 ± 0.0350 (00/32 @ 90%) 28.2760 ± 0.3023 5.6617 ± 0.0095

RAT dp 59.5289 ± 0.0174 (00/32 @ 90%) 28.9121 ± 0.0076 62.2680 ± 0.0500
GREAT dp 57.0199 ± 0.0378 (00/32 @ 90%) 27.1285 ± 0.0161 64.4819 ± 0.0339
GGNN dp 44.3653 ± 0.0182 (00/32 @ 90%) 9.6449 ± 0.0060 38.3370 ± 0.0223

NRI encoder 68.6947 ± 0.0390 (00/32 @ 90%) 26.6422 ± 0.0172 73.5216 ± 0.0312
RL ablation 98.4823 ± 0.0087 (06/32 @ 90%) 97.0341 ± 0.0141 99.1689 ± 0.0089

GFSA Layer (ours) 98.8141 ± 0.0069 (25/32 @ 90%) 97.8198 ± 0.0079 99.2172 ± 0.0048

Task Last Write

Example size 1x 2x 0.5x

100,000 training examples

RAT nw 99.8333 ± 0.0021 (22/32 @ 90%) 94.8665 ± 0.0172 99.9741 ± 0.0012
GREAT nw 99.7538 ± 0.0043 (16/32 @ 90%) 93.2187 ± 0.0181 99.9343 ± 0.0022
GGNN nw 98.8240 ± 0.0080 (09/32 @ 90%) 40.6941 ± 0.0302 88.2834 ± 0.0281

RAT dp 99.9815 ± 0.0006 (19/32 @ 90%) 68.9617 ± 0.0169 99.7626 ± 0.0045
GREAT dp 99.9868 ± 0.0007 (18/32 @ 90%) 68.4564 ± 0.0188 99.8809 ± 0.0029
GGNN dp 99.3488 ± 0.0040 (13/32 @ 90%) 38.3976 ± 0.0772 94.5246 ± 0.0576

NRI encoder 99.8710 ± 0.0019 (24/32 @ 90%) 52.7272 ± 0.0226 99.8390 ± 0.0058
RL ablation 98.0828 ± 0.0109 (03/32 @ 90%) 96.6400 ± 0.0185 98.9277 ± 0.0076

GFSA Layer (ours) 99.4653 ± 0.0040 (25/32 @ 90%) 98.7259 ± 0.0111 99.7763 ± 0.0033

100 training examples

RAT nw 79.2705 ± 0.0212 (00/32 @ 90%) 8.9069 ± 0.0165 83.7914 ± 0.0379
GREAT nw 80.1879 ± 0.0273 (00/32 @ 90%) 40.2206 ± 0.0386 84.5417 ± 0.0312
GGNN nw 91.1302 ± 0.0196 (01/32 @ 90%) 71.6216 ± 0.0163 91.7911 ± 0.0272

RAT dp 75.9944 ± 0.0352 (00/32 @ 90%) 48.0974 ± 0.0331 81.6254 ± 0.0312
GREAT dp 73.6926 ± 0.0391 (00/32 @ 90%) 46.2676 ± 0.0334 80.0267 ± 0.0511
GGNN dp 53.8178 ± 0.0282 (00/32 @ 90%) 17.8435 ± 0.0101 55.0784 ± 0.0481

NRI encoder 65.3841 ± 0.0498 (00/32 @ 90%) 36.4278 ± 0.0301 73.8556 ± 0.0106
RL ablation 98.3220 ± 0.0098 (06/32 @ 90%) 96.9613 ± 0.0150 99.0671 ± 0.0074

GFSA Layer (ours) 98.7144 ± 0.0072 (24/32 @ 90%) 96.9758 ± 0.0120 99.5543 ± 0.0068
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Figure D.4: Precision-recall curves for a subset of the static analysis experiments that reveals interest-
ing differences in performance: training on 100 examples and evaluating on the same data distribution,
and training on 100,000 examples but evaluating on examples of twice the size. Crosshatches indicate
candidate thresholds that were evaluated at test time. Best viewed in color.
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D.3 Variable Misuse

D.3.1 Dataset

We use the dataset released by Hellendoorn et al. [19], which is derived from a redistributable subset
of the ETH 150k Python dataset [33].7 For each top-level function and class definition extracted from
the original dataset, this derived dataset includes up to three modified copies introducing synthetic
variable misuse errors, along with an equal number of unmodified copies. For our experiments, we
do additional preprocessing to support the GFSA layer: we encode the examples as graphs, and throw
out examples with more than 256 nodes or 512 node-observation tuples, which leaves us with 84.5%
of the dataset from Hellendoorn et al. [19].

D.3.2 Model Architectures

As in the edge classification task, we convert the AST nodes into graph nodes, using the same
helper nodes and connectivity structure described in appendix B.1. For this task, when an AST node
has multiple children, we add extra edges specifying the index of each child; this is used only by
the attention model, not by the GFSA layer. In addition to node features based on the AST node
type, we include features based on a bag-of-subtokens representation of each AST node. We use a
10,000-token subword encoder implemented in the Tensor2Tensor library by Vaswani et al. [41],
pretrain it on GitHub Python code, and use it to tokenize the syntax for each AST node. We then
compute node features by summing over the embedding vectors of all subtokens that appear in each
node. The learned embedding vectors are of dimension 128, which we project out to 256 before using
as node features.

To ensure that we can compare results across different edge types in a fair way, we fix the sizes of
the base models. For the RAT and GREAT model families, we use a hidden dimension of 256 and 8
attention heads with a per-head query and value dimension of 32. For the GGNN model family, we
use a hidden dimension of 256 and a message dimension of 128. For all models, we use positional
embeddings for node features, and edge types embedded as 64-dimensional vectors. We embed all
edge types separately in the forward and reverse directions, including both the base AST edges as
well as any edges added by learned edge layers; for learned edges we compute new edge features
by weighting each embedding vector by the associated edge weight. For the “@ start” edge types,
the edges are all embedded at the same time, and for the “@ middle” edge types, we modify the
edge features after adding the new edges and use the modified edge features for all following model
layers. We compute our final outputs by performing a learned dot-product operation on our final node
embeddings Y and then taking a softmax transformation to obtain a distribution over node pairs:

Y = fθ(Xnode, Xedge), Z = softmax
(
{yTnWyn′}n,n′∈N

)
.

As described in Vasic et al. [39], we compute a mask that indicates the location of all local variables
that could be either bug locations or repair targets (along with the sentinel no-bug location). We
then set the entries of Zn,n′ to zero for the locations not contained in the mask, and renormalize
so that it sums to 1 across node pairs. Note that there is always exactly one correct bug location n
but there could be more than one acceptable repair location n′; we thus sum over all correct repair
locations to compute the total probability assigned to correct bug-repair pairs, and then use the
standard cross-entropy loss.

For the GFSA edges, we use an initialization temperature of β = 0.2, and fix |Z| = 4. We use a
single finite-state automaton policy to generate two edge types by computing the trajectories when
z0 = 0 as well as when z0 = 1. We set Tmax = 128.

For the NRI head edges, we use a 3-layer MLP (with hidden sizes [32, 32] and output size 2), and
take a logistic sigmoid of the outputs, interpreting it as a weighted adjacency matrix for two edge
types.

For the uniform random walk edges, we learn a single halting probability phalt = σ(θhalt) along with
adjustment parameters a, b ∈ R as defined in section 3.3. The output adjacency matrix is defined

7 Original Python corpus (from Raychev et al. [33]): https://www.sri.inf.ethz.ch/py150
Redistributable subset: https://github.com/google-research-datasets/eth_py150_open
With synthetic errors (as released by Hellendoorn et al. [19]):
https://github.com/google-research-datasets/great
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similarly to the GFSA model, but with all of the policy parameters fixed to move to a random neighbor
with probability 1−phalt and take the ADDEDGEANDSTOP action with probability phalt. For this model,
we only add a single edge type.

The RL agent uses the same parameterization as the GFSA layer, but samples a single trajectory for
each start node and uses it to add a single edge (or no edge) from each start node. The downstream
cross-entropy loss for the classification model is used as the reward for all of these trajectories. Since
simply computing this reward requires a full downstream model forward pass, we run only one rollout
per example with a learned scalar reward baseline R̂. We add an additional loss term α(R− R̂)2 so
that this learned baseline approximates the expected reward, and scale the REINFORCE gradient
term by a hyperparameter β.

The “Hand-engineered edges” baseline uses the base AST edges and adds the following edge types
from Allamanis et al. [1] and Hellendoorn et al. [19]: NextControlFlow, ComputedFrom, For-
malArgName, LastLexicalUse, LastRead, LastWrite, NextToken (connecting syntactically adjacent
nodes), Calls (connecting function calls to their definitions), and ReturnsTo (connecting return
statements to the function they return from).

D.3.3 Training and Detailed Results

For all of our models, we train using the Adam optimizer for 400,000 iterations; this is enough time
for all models to converge to their final accuracy. We use a batch size of 64 examples, grouping
examples of similar size to avoid excessive padding.

For each model, we randomly sample 32 hyperparameter settings for the learning rate (log-uniform
in [10−5, 10−2]) and gradient clipping threshold (log-uniform in [1, 104]). For the GFSA models, we
also tune εbt-stop (log-uniform in [0.001, 0.1]). For the RL ablation, we tune the weight of the relative
weights of different gradient terms: α is chosen log-uniformly in [0.00001, 0.1] and β is chosen in
[0.001, 2.0]. Over the course of training, we take a subset of approximately 7000 validation examples
and compute the top-1 accuracy of each model on this subset. We then choose the hyperparameter
settings and early-stopping point with the highest accuracy.

We evaluate the selected models on the size-filtered test set, containing 818,560 examples. For each
example and each model, we determine the predicted classification by determining whether 50% or
more probability is assigned to the no-bug location. For incorrect examples, we then find the pair of
predicted bug location and repair identifier with the highest probability (summing over all locations
for each candidate repair identifier), and check whether the bug location and replacement identifier
are correct. Note that if the model assigns >50% probability to the no-bug location, but still ranks the
true bug and replacement highest with the remaining probability mass, we count that as an incorrect
classification but a correct localization and repair.

To compute standard error estimates, we assume that predictions are independent across different
functions, but may be correlated across modified copies of the same function; we thus estimate
standard error by using the analytic variance for a binomial distribution, adjusted by a factor of 3 (for
buggy or non-buggy examples analyzed separately) or 6 (for averages across all examples) to account
for the multiple copies of each function in the dataset. Table D.2 contains higher-precision results for
the variable misuse tasks, along with standard error estimates, a breakdown of marginal localization
and repair scores (examples where the model gets one of the locations correct but possibly the other
incorrect), and an overall accuracy score capturing classification, localization, and repair.
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Table D.2: Full-precision results on variable misuse task, with additional breakdown of accuracy for
buggy examples. Expressed as accuracy (in %) ± standard error.

Example type: All No bug With bug

Classification Class & Loc & Rep Classification Classification

RAT
Base AST graph only 92.540± 0.071 88.225± 0.087 92.051± 0.073 93.030± 0.069
Base AST graph, +2 layers 92.245± 0.072 87.846± 0.088 92.455± 0.072 92.035± 0.073
Hand-engineered edges 92.704± 0.070 88.496± 0.086 92.932± 0.069 92.477± 0.071
NRI head @ start 92.880± 0.070 88.710± 0.085 92.551± 0.071 93.208± 0.068
NRI head @ middle 92.572± 0.071 88.423± 0.086 92.834± 0.070 92.310± 0.072
Random walk @ start 92.997± 0.069 88.907± 0.084 93.224± 0.068 92.770± 0.070
RL ablation @ middle 92.036± 0.073 87.278± 0.090 90.361± 0.080 93.711± 0.066
GFSA layer (ours) @ start 93.328± 0.068 89.472± 0.083 93.101± 0.069 93.555± 0.066
GFSA layer (ours) @ middle 93.456± 0.067 89.627± 0.082 92.662± 0.071 94.250± 0.063

GREAT
Base AST graph only 91.662± 0.075 86.906± 0.091 90.849± 0.078 92.475± 0.071
Base AST graph, +2 layers 92.307± 0.072 87.902± 0.087 92.711± 0.070 91.903± 0.074
Hand-engineered edges 92.287± 0.072 87.646± 0.088 92.577± 0.071 91.996± 0.073
NRI head @ start 92.061± 0.073 87.447± 0.089 91.112± 0.077 93.009± 0.069
NRI head @ middle 92.074± 0.073 87.552± 0.088 92.800± 0.070 91.347± 0.076
Random walk @ start 92.644± 0.071 88.283± 0.087 91.872± 0.074 93.417± 0.067
RL ablation @ middle 91.707± 0.075 86.939± 0.091 89.951± 0.081 93.464± 0.067
GFSA layer (ours) @ start 92.963± 0.069 88.825± 0.085 92.872± 0.070 93.055± 0.069
GFSA layer (ours) @ middle 93.019± 0.069 88.806± 0.085 92.427± 0.072 93.612± 0.066

GGNN
Base AST graph only 89.704± 0.082 83.521± 0.098 91.257± 0.076 88.152± 0.087
Base AST graph, +2 layers 90.359± 0.080 84.383± 0.098 88.795± 0.085 91.922± 0.074
Hand-engineered edges 90.874± 0.078 84.776± 0.096 90.187± 0.081 91.560± 0.075
NRI head @ start 90.433± 0.080 84.473± 0.096 91.486± 0.076 89.380± 0.083
NRI head @ middle 90.243± 0.080 84.412± 0.098 88.289± 0.087 92.198± 0.073
Random walk @ start 90.315± 0.080 84.519± 0.096 91.351± 0.076 89.278± 0.084
RL ablation @ middle 90.540± 0.079 84.959± 0.096 90.437± 0.080 90.643± 0.079
GFSA layer (ours) @ start 90.939± 0.078 85.012± 0.096 90.083± 0.081 91.796± 0.074
GFSA layer (ours) @ middle 90.394± 0.080 84.723± 0.096 90.983± 0.078 89.805± 0.082

Example type: With bug

Localization Repair Loc & Repair Class & Loc & Rep

RAT
Base AST graph only 92.936± 0.069 91.892± 0.074 88.300± 0.087 84.399± 0.098
Base AST graph, +2 layers 92.638± 0.071 91.541± 0.075 87.764± 0.089 83.238± 0.101
Hand-engineered edges 93.100± 0.069 92.007± 0.073 88.388± 0.087 84.060± 0.099
NRI head @ start 93.180± 0.068 92.304± 0.072 88.731± 0.086 84.869± 0.097
NRI head @ middle 93.013± 0.069 92.176± 0.073 88.619± 0.086 84.011± 0.099
Random walk @ start 93.227± 0.068 92.282± 0.072 88.726± 0.086 84.590± 0.098
RL ablation @ middle 92.553± 0.071 91.606± 0.075 87.730± 0.089 84.195± 0.099
GFSA layer (ours) @ start 93.820± 0.065 92.834± 0.070 89.577± 0.083 85.843± 0.094
GFSA layer (ours) @ middle 94.058± 0.064 93.083± 0.069 89.932± 0.081 86.593± 0.092

GREAT
Base AST graph only 92.030± 0.073 91.156± 0.077 87.179± 0.091 82.964± 0.102
Base AST graph, +2 layers 92.585± 0.071 91.477± 0.076 87.698± 0.089 83.093± 0.101
Hand-engineered edges 92.174± 0.073 91.287± 0.076 87.168± 0.091 82.715± 0.102
NRI head @ start 92.446± 0.072 91.520± 0.075 87.628± 0.089 83.781± 0.100
NRI head @ middle 92.213± 0.073 91.166± 0.077 87.258± 0.090 82.303± 0.103
Random walk @ start 92.849± 0.070 91.949± 0.074 88.272± 0.087 84.694± 0.097
RL ablation @ middle 92.383± 0.072 91.295± 0.076 87.486± 0.090 83.927± 0.099
GFSA layer (ours) @ start 93.466± 0.067 92.279± 0.072 88.845± 0.085 84.779± 0.097
GFSA layer (ours) @ middle 93.266± 0.068 92.394± 0.072 88.863± 0.085 85.186± 0.096

GGNN
Base AST graph only 89.243± 0.084 87.703± 0.089 81.633± 0.105 75.785± 0.116
Base AST graph, +2 layers 90.633± 0.079 88.948± 0.085 83.969± 0.099 79.972± 0.108
Hand-engineered edges 90.681± 0.079 88.770± 0.085 83.524± 0.100 79.365± 0.110
NRI head @ start 89.915± 0.082 88.151± 0.087 82.731± 0.102 77.460± 0.113
NRI head @ middle 90.352± 0.080 89.613± 0.083 84.443± 0.098 80.535± 0.107
Random walk @ start 89.729± 0.082 88.611± 0.086 82.956± 0.102 77.688± 0.113
RL ablation @ middle 90.560± 0.079 89.269± 0.084 84.301± 0.098 79.480± 0.109
GFSA layer (ours) @ start 90.939± 0.078 88.960± 0.085 83.909± 0.099 79.942± 0.108
GFSA layer (ours) @ middle 90.217± 0.080 88.886± 0.085 83.633± 0.100 78.463± 0.111
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