Appendix

Adversarial Self-Supervised Contrastive Learning

Organization Appendix is organized as follows. In section A, we describe the experimental details, including
the descriptions of the datasets and the evaluation process. We then provide an algorithm which summarizes our
RoCL in section B. Then, we further report the RoCL results on both CIFAR-10 and CIFAR-100 against PGD
attacks and CW attacks in Section C. Finally, perform ablation studies of our RoCL in section D.

A Experimental Setup

A.1 Training detail and dataset

Training details We use ResNet18 and ResNet50 [38] as the base encoder network fy and 2-layer multi-layer
perceptron with 128 embedding dimension as the projection head g.. All models are trained by minimizing
the final loss Lota1 With a temperature of 7 = 0.5. We set the regularization parameter to A = 1/256. For the
inner maximization step of RoCL i.e., instance-wise attack, we set the perturbation ¢ = 0.0314 and step size
« = 0.007 under ¢, bound, with the number of inner maximize iteration as X = 7. For the rest, we follow
the similar optimization step of SIimCLR [12]. For optimization, we train RoCL with 1,000 epoch under LARS
optimizer [43] with weight decay of 1e—6 and momentum with 0.9. For the learning rate scheduling, we use
linear warmup [44] for early 10 epochs until learning rate of 1.0 and decay with cosine decay schedule without a
restart [45]. We use batch size of 512 for RoCL (we found out that batch size of 512 was sufficient for CIFAR-10
and CIFAR-100). Furthermore, we use global batch normalization (BN) [46], which shares the BN mean &
variance in distributed training over the GPUs.

Data augmentation details We use SimCLR augmentations: Inception crop [47], horizontal flip, color jitter,
and grayscale for random augmentations. The detailed description of the augmentations are as follows. Inception
crop: Randomly crops the area of the original image with uniform distribution 0.08 to 1.0. After the crop,
cropped image are resized to the original image size. Horizontal flip: Flips the image horizontally with 50% of
probability. Color jitter: Change the hue, brightness, and saturation of the image. We transform the RGB (red,
green, blue) channeled image into an HSV (hue, saturation, value) channeled image format and add noise to the
HSV channels. We randomly apply color jitter transformation with 80% of probability. Grayscale: Convert into
a gray scale image. We randomly apply the grayscale transformation with 20% of probability.

Dataset details For RoCL training, we use CIFAR-10 [48] and CIFAR-100 [48]. CIFAR-10 and CIFAR-100
consist of 50,000 training and 10,000 test images with 10 and 100 image classes, respectively.

A.2 Evaluation

Linear evaluation setup In the linear evaluation phase, we train the linear layer I, on the top of the frozen
encoder fo. We train the linear layer for 150 epochs with the learning rate of 0.1. The learning rate is dropped by
a factor of 10 at 30, 50, 100 epoch of the training progress. We use stochastic gradient descent (SGD) optimizer
with a momentum of 0.9, weight decay of 5e-4, and train the linear layer with the cross-entropy (CE) loss.

Robust linear evaluation setup For robust linear evaluation, we train the linear layer [y, on the top of the
frozen encoder fy, as done with linear evaluation. We train the linear layer for 150 epochs with an learning rate
of 0.02. The learning rate scheduling and the optimizer setup is the same with the setup for linear evaluation.
We use the project gradient descent (PGD) attack to generate class-wise adversarial examples. We perform o
attack with epsilon € = 0.0314 and the step size o = 0.007 for 10 steps.

Robustness evaluation setup For evaluation of adversarial robustness, we use white-box project gradient
descent (PGD) attack. We evaluate under PGD attacks with 20, 40, 100 steps. We set £, {2, 1 attacks with
€ = 0.0314,0.072 for {0, € = 0.25,0.5 for ¢2, and € = 7.84, 12 for ¢; for testing CIFAR 10 and CIFAR 100.

A.3 Transformation smoothed classifier setup

In the transformation smoothed classifer, we used same data augmentation that is used in training phase A.1. The
probability is also same with training phase, yet we used fixed sized inception crop with 0.54 scale. For Table 3,
we used 30 times iteration for all tests. For Figure 3(d) we differ the transformation iterations to 1, 10, and 100.

For the expectation of transformation (EoT), we evaluate under the perturbation e = 0.0314 and step size
a = 0.00314 under ¢, bound, with the number of inner maximize step iteration as K = 20.
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A.4 Transfer learning setup

We first briefly describe robust transfer learning and our experiments in its experimental setting. Shafahi et
al. [41] suggest that an adversarially trained model can be transferred to another model to improve upon its
robustness. They used modified WRN 32-10 to train the fully supervised adversarial model. Moreover, they
initialize the student network with an adversarially trained teacher network and utilize the distillation loss and
cross-entropy loss to train the student network’s linear layer on the top of the encoder layer. We follow the
experimental settings of Shafahi et al. [41], and train only the linear layer with cross-entropy loss. However,
we did not use the distillation loss in order to evaluate the robustness of the encoder trained with our RoCL
only (ResNet18). We train the linear model with CIFAR-100 on top of the frozen encoder, which is trained
on CIFAR-10. We also train the linear layer with CIFAR-10 on top of the frozen encoder, which is trained on
CIFAR-100. We train the linear layer for 100 epochs with a learning rate of 0.2. We use stochastic gradient
descent (SGD) for optimization.

A.5 Training efficiency of RoCL

Training efficiency of RoCL RoCL takes about 41.7 hours to train 1000 epochs with two RTX 2080 GPUs.
Moreover, ours acquires sufficiently high clean accuracy and robustness even after 500 epochs (Figure 3(c)).

Comparison to Semi-supervised learning in required dataset Recently, semi-supervised learning[16, 17]
have been shown to largely enhance the adversarial robustness of deep networks, by exploiting unlabeled data.
However, they eventually require labeled data, to generate pseudo-labels on the unlabeled samples, and to
generate class-wise adversaries. Also, they assume the availability of a larger dataset to improve robustness on
the target dataset and require extremely large computation resources.
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B Algorithm of RoCL

We present the algorithm for RoCL in Algorithm 2. During training, we generate the instance-wise adversarial
examples using contrastive loss and then train the model using two differently transformed images and their
instance-wise adversarial perturbations. We also include a regularization term that is defined as a contrastive loss
between the adversarial examples and clean transformed examples.

Algorithm 2 Robust Contrastive Learning (RoCL)

Input: Dataset D, parameter of model 6, model f, parameter of projector 7, projector g, constant A
for all iter € number of training iteration do

for all © € minibatch B = {z1,...,2,,} do
Generate adversarial examples from transformed inputs > instance-wise attacks
t(@) ™ = p ()0 (t(2)" + asign(Vi)iLeono,x (t(2)", {t' (@)}, 1(T)neg)))
end for N
Liotal = % >ope1[Lrocr,0,m T AMcon,o,x (H(2) 89, {' (@)1}, {t(2)neg })] > total loss
Optimize the weight 0, 7 over L;otq
end for

C Results of CIFAR-10 and CIFAR-100

While we only report the performance of RoCL on CIFAR-10 in the main paper as the baselines we mainly
compare against only experimented on this dataset, we further report the performance of RoCL on CIFAR-100 as
well (Table 8) and performance against CW attacks [21] (Table 9). We observe that RoCL consistently achieves
comparable performance to that of the supervised adversarial learning methods, even on the CIFAR-100 dataset.
Moreover, when employing the robust linear evaluation, RoCL acquires better robustness over the standard
linear evaluation. Finally, the transformation smoothed classifier further boosts the performance of RoCL on
both datasets.

Table 8: Experimental results with white box attacks on ResNet18 trained on the CIFAR-10 and CIFAR-100
dataset. r-LE denotes robust linear evaluation. AT denotes the supervised adversarial training[9]. All models are
trained with /o ; thus the ¢, is the seen adversarial attack and ¢2, and ¢, attacks are unseen.
CIFAR10 CIFAR100
Train seen unseen seen unseen
type Method ™ A 7 ™ A 7
Anat €8/255 16/255 025 05 7.84 12 Anat €8/255 16/255 025 0.5 7.84 12
Lex 9282 0.00 0.00 2077 1296 2847 1556 71.35 0.00 000 654 231 11.14 586
Supervised AT 81.63 4450 14.47 72.26 59.26 66.74 55.74 5397 20.09 6.19 43.08 32.29 40.43 33.18
TRADES?Z 77.03 48.01 22.55 68.07 57.93 62.93 53.79 56.63 17.94 429 44.82 33.76 43.70 37.00
SimCLR!!1Z' 9125 0.63 0.08 153 2.08 4149 2576 57.46 0.04 0.02 658 0.7 1927 121

RoCL 83.71 4027 9.55 6639 63.82 79.21 76.17 56.13 1931 430 38.65 3594 50.21 46.67
RoCL +rLE 80.43 47.69 15.53 68.30 66.19 77.31 75.05 51.82 2627 8.94 41.59 39.86 49.00 46.91

Self
-supervised

Table 9: Experimental results with white box CW attacks [21] on ResNet18 trained on the CIFAR-10. r-LE
denotes robust linear evaluation. All models are trained with £,

CIFAR-10 CIFAR-100
Train type Method Apnat  CW  Anee  CW

Self RoCL 83.71 7735 56.13 4457
-supervised RoCL+rLE 80.43 76.15 51.82 44.77
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D Ablation

In this section, we report the results of several ablation studies of our RoOCL model. For all experiments, we
train the backbone network with 500 epochs and train the linear layer with 100 epochs, which yield models with
sufficiently high clean accuracy and robustness. We first examine the effects of the target image when generating
the instance-wise adversarial examples. Along with instance-wise attacks, the regularization term in algorithm
1 can also affect the final performance of the model. To examine lambda’s effect on the transformed images,
we set lambda as A = 1/256 for CIFAR-10 and CIFAR-100. We also examine the effects of lambda A on the
CIFAR-10 dataset.

D.1 Adversarial contrastive learning

We examine the effect of the transformation function on the instance-wise attack and the regularization. For
each input instance x, we generated three transformed images t(z),t'(z), and #(z)*® and use them as the
positive set. The results in Table 10 demonstrate that using any transformed images from the same identity
for instance-wise attacks is equally effective. In contrast, for regularization, using images transformed with a
different transformation function from the one used to generate attack helps obtain improved clean accuracy and
robustness.

Instance-wise attack To generate instance-wise attacks, we can decide which identity we will use for
instance-wise attack. Since the original transformed image ¢(x) and image transformed with another transfor-
mation ¢’(z) have the same identity, we can use both of them in instance-wise attacks. To find the optimal
perturbation that maximizes the contrastive loss between adversarial examples and same identity images, we
vary X in the following equation:

t(@)" = g (i), (H(2)" + asign(Via)i Leono.x (H(@)', (X}, 1(@)aeg))) ©)
where X is either ¢'(x) and t(x).

Regularization To regularize the learning, we can calculate the contrastive loss between adversarial examples
and clean samples with the same instance-level identity. We vary Y in the regularization term to examine which
identity is the most effective, as follows:

AlLcon, 0, (H(2)7 ™, {Y}, {t(x)ncs}) (10)
where Y can be ¢’ (z) and t(z).

Table 10: Experimental results with white box attacks on ResNet18 trained on the CIFAR-10 and CIFAR-100
dataset. All models are trained with /.

instance-wise attack (X) regularization (Y) CIFAR-10 CIFAR-100

Method  t'(z) t(x) t' () t(z) Anat b Anat Lo
v - v - 82.79 36.71 55.64 17.56
RoCL v - - v 81.47 2997 53.84 14.18
- v v - 8243 3493 5561 1742
- v - v 81.96 30.99 53.76 14.74
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D.2 Lambda )\ and batch size B

We observe that A\, which controls the amount of regularization in the robust contrastive loss, and the batch
size for calculating the contrastive loss, are two important hyperparameters for our robust contrastive learning
framework. We examine the effect of two hyperparameters in Table 11, and Table 12. We observe that the

optimal lambda A is different for each batch size B.

Table 11: lambda A ablation experimental results with white box attacks on ResNet18 trained on the CIFAR-10

dataset. All models are trained with /.

l
CIFAR-10 A Anar 8/255  16/255
1/16  82.05 35.12  8.05
1/32 8225 36.02  8.68
1/64  83.00 36.26  8.19
RoCL 1/128  82.79 36.71 8.34
1/256 82.12 38.05  8.52
1/512  82.68 37.24 853

Table 12: Ablation study of the batch size B, for the white box attacks on ResNet18 trained on the CIFAR-10

dataset. All models are trained with /. attacks.

loo
CIFAR-10 B A Anat 8/255  16/255
256 1/128 82.70 37.13 898
RoCL 256  1/256 8290 36.86  8.89
512 1/256 82.12 38.05  8.52
1024 1/256 81.48 3498  7.42

17



