Supplemental Material for “What Neural Networks Memorize and Why”

A Proof of Lemma 2.1

Proof. Observe that, by linearity of expectation, we have:
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By definition, the distribution of I U {4} for I sampled from P([n] \ {¢ } 1) is the same as the

distribution of J sampled from P([n], m) and conditioned on the index i bemg included in the set of
indices J. As a result, the first term that we need to estimate is equal to
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This implies that instead of sampling from P([n] \ {¢}, m — 1) for every i separately, we can use
samples from P([n], m), select the samples for which .J contains ¢ and evaluate this term on them.

Specifically, given Ji,...,J;/o sampled randomly from P([n],m) we use A to train models
hi,...,hy/o on each of the dataset Saiseny SJW. Now for every ¢, we can estimate «; ; as
iy = {kelt/2] : i€ I, hp(z) =1y}
" Hkel[t/2] : i€ i} ’

or set y; 1 = 1/2 if the denominator is equal to 0.

Similarly, the distribution of I sampled from P([n] \ {i},m — 1) is the same as the distribution of .J
sampled from P([n],m — 1) and conditioned on the index 7 being excluded from .J. Therefore the
second term that we need to estimate is equal to:

i,2 INP([n]\{i},mfl)7 h<—A(SI)[ (.’L’) y] JNP([n],m—ll)‘7 h<—A(SJ)[ (l’) y ‘ ! € }
This means that we can estimate the second term analogously by sampling J; /241, ..., J; from
P([n],m — 1), using A to train models h;/21,...,hs on each of the resulting subsets and then

estimating the second term as

{t/2+1<k<t:idJy, hi(z) =y}
{t/2+1<k<t:idJp} ’

or set u; o = 1/2 if the denominator is equal to 0. The final estimator is defined for every ¢ € [n] as
Hi = i1 — Hi2-

We now compute the expected squared error of each of the terms of this estimator. For p; 1 we
consider two cases. The case in which the denominator [{k € [t/2] : i € J}}|is equal to at least 7
and the case in which the denominator is less than 7 mt n the first case we are effectively estlmatlng
the mean of a Bernoulli random variable using the empirical mean of least 7% 1ndependent samples.
The expectation of each of the random variables is exactly equal to a;; ; and thus the squared error is

exactly the variance of the empirical mean. For a Bernoulli random variable this means that it is equal
dno 1 (1—a;,1) <

Hi2 =

to at most prees . For the second case, note that for every k, ¢ € Ji, with probability
m/n. Therefore the multlphcatwe form of the Chernoff bound for the sum of t /2 independent
Bernoulli random variables implies that the probablhty of this case is at most e~ 6x . Also note that
in this case we are either estimating the mean using ¢ < mt - independent samples or using the fixed
value 1/2. In both cases the squared error is at most 1/4. Thus
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An analogous argument for the second term gives
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By combining these estimates we obtain that
E[(infl,,(A, S, 2) — 1:)?] < El(in — pi1)?] + Bl(ai2 — pi2)?]
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where we used that p = min(m/n,1 — m/n). O

Remark A.1. In practice, models trained on random subsets of size m — 1 are essentially identical
to models trained on random subsets of size m. Thus, in our implementation we improve the efficiency
by a factor of 2 by only training models on subsets of size m. Our estimator also benefits from the
fact that for most examples, the variance of each sample c; 1(1 — a; 1) (or ae1(1 — «a.1)) is much
smaller than 1/4. Finally, it is easy to see that the estimator is also strongly concentrated around
infl,,(A, S, 1, z) and the concentration result follows immediately from the concentration of sums
of independent Bernoulli random variables.

B Details of the Experimental Setup

We implement our algorithms with Tensorflow [1]. We use single NVidia® Tesla P100 GPU to
for most of the training jobs, except for ImageNet, where we use 8 P100 GPUs with single-node
multi-GPU data parallelization.

We use ResNet50 [15] in both ImageNet and CIFAR-100 experiments, which is a Residual Network
architecture widely used in the computer vision community [15]. Because CIFAR-100 images
(32 x 32) are smaller than ImageNet images (224 x 224), for CIFAR-100 we replace the first two
layers (a convolution layer with 7 x 7 kernel and 2 x 2 stride, and a max pooling layer with 3 x 3
kernel and 2 x 2 stride) with a single convolution layer with 3 x 3 kernel and 1 x 1 stride. We use data
augmentation with random padded (4 pixels for CIFAR-100 and 32 pixels for ImageNet) cropping
and random left-right flipping during training. For MNIST, we use a simplified Inception [27] model
as described in [31].

We use stochastic gradient descent (SGD) with momentum 0.9 to train the models. For ImageNet,
we use batch size 896 and base learning rate 0.7. During the 100 training epochs, the learning rate is
scheduled to grow linearly from 0 to the maximum value (the base learning rate) during the first 15
epochs, then it remains piecewise constant, with a 10x decay at epoch 30, 60 and 90, respectively.
Our implementation achieves =~ 73% top-1 accuracy when trained on the full training set.

We also use SGD with momentum 0.9 for CIFAR-100 training. To achieve faster training, we use
slightly larger batch size (512) and base learning rate (0.4) than usual. During the 160 training epochs,
the learning rate is scheduled to grow linearly from O to the maximum value (base learning rate) in the
first 15% iterations, and then decay linearly back to 0 in the remaining iterations. Our implementation
achieves =~ 76% top-1 accuracy when trained on the full training set. In the experiment on the
estimation consistency, we also trained CIFAR-100 on a number of different architectures. ResNet18
and Inception are trained using exactly the same hyper-parameter configuration as described above.
For DenseNet, we halved the batch size and learning rate due to higher memory load of the architecture.
The linear models on pre-computed hidden representations are also trained using the same hyper-
parameter as ResNet50, except they train for only 40 epochs due to fast convergence.

For MNIST, we use SGD with momentum 0.9 and the same learning rate scheduler as the CIFAR-100
experiment, with base learning rate 0.1. We train the models for 30 epochs with batch size 256.

Our ImageNet training jobs takes about half an hour for each training epoch. On CIFAR-100, the
training time per epoch is about: 1 minute and 30 seconds for ResNet50, 17 seconds for ResNet18,
45 seconds for DenseNet100, 14 seconds for Inception, and 0.5 second for Linear models on pre-
computed hidden representations. Our training time on MNIST is about 7 seconds per epoch.

13



count

count

48
2620192411 121010 4 7 7 5 6

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
influence influence influence

(a) ImageNet (b) CIFAR-100 (c) MNIST

Figure C.1: Histogram of the influence estimates for all the pairs from the ImageNet, CIFAR-100 and
MNIST datasets that were selected according to Algorithm 1 and criteria described in Sec. 2.

Our architectures and training algorithms are not state-of-the-art since state-of-the-art training is
significantly more computationally intensive and it would not be feasible for us to train 2000 models.

C Additional Experimental Results

Influence histograms: We plot the histograms of influence estimates obtained on the MNIST,
CIFAR-100 and the ImageNet datasets in Fig. C.1. In these pairs in MNIST 31/2 test examples are
influenced by 1/2 training examples, respectively. For CIFAR-100 we have 774/101/13 test examples
are influenced by 1/2/3 training examples, respectively and in ImageNet 1298/150/13/1 test examples
are influenced by 1/2/3/4 training examples, respectively.

Marginal utility of examples in high-influence pairs: Denote the set of all the unique training and
testing examples in the high-influence pairs by S;, C S and Sj, C ', respectively. To evaluate
the marginal utility of the high-influence training examples S},, we train a ResNet50 model on the
CIFAR-100 full training set S, and on S \ Sj, respectively. Over 100 random runs, the two settings
result in 76.06 + 0.28% and 73.52 + 0.25% accuracy on the test set, respectively, giving 2.54 +0.2%
difference. When restricted to the set of highly-influenced test examples S} , the two settings have
72.14 + 1.32% and 45.38 + 1.45% accuracy, respectively. Note that the difference in accuracy on
these examples contributes 2.38 + 0.17% to the total difference in accuracy. This difference is within
one standard deviation of the entire difference in accuracy which means that the high influences that
we detected capture the marginal utility of .S;,. This shows that there is a large number of memorized
training examples for which the only benefit of memorization is the large increase in accuracy on
individual test examples. This is well aligned with modeling used in the long tail theory where the
label memorization on representatives of rare subpopulations significantly increases the accuracy on
those subpopulations [13].

Estimation consistency and comparison of different architectures: We study the consistency of
our estimation of memorization and influence under subset resampling (and randomness of the training
algorithm) and also across different neural network architectures on CIFAR-100. All estimates
are based on 2000 trials. To measure the consistency we consider Jaccard similarity coefficient
of the sets of examples that have memorization/influence estimate above a certain threshold and
also average difference in estimates of examples in these sets. In particular, for memorization
estimates mem,, (A, S,7) and mem,,(A’, S,%), where A and A’ are training algorithms using two
neural network architectures, we compare the estimates at each threshold ;¢ in the following way:
let Tnen(Onen) := {7 : mem,, (A, S, %) > Ouen}s Lhon(Onen) := {7 : mem,,, (A, S, %) > Open }, then

Dmem(amem) = meaniGImem(Hmem)UInﬁem(Omam) |ﬁl€rﬁm (A7 57 7’) - ﬁlglﬁm(A/, S7 Z)| (4)

measures the difference in memorization estimates between A and A’ at 0,¢,. Similarly, the discrep-

ancy for influence estimation at f;,¢1 is measured by comparing infl,, (A, S,i) and infl,, (A", S,i)
over the union of the two subsets:

Iinfl(ainfl) = {(Za]) : i/I-l\ﬁ-m,(-Aa 5727]) Z einflaﬁér/nm(Av sz) Z 025} and

Loy (Osne1) := {(i,5) : infl,, (A, S,i,5) > Oiner, memy, (A', S ) > 0.25}.
Note we have an extra constraints of memorization estimate being above 0.25, which is used when
we select high-influence pairs.
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Figure C.2: Consistency of the estimation of memorization (top) and influence (bottom) across
different architectures on CIFAR-100. In the average estimation difference we plot Dyep(Onen) and
Dins1(0ins1). Jaccard similarity plots are for Jyen(6nen) and Jins1 (fing1 ). All the architectures are
compared to ResNet50 — with the “ResNet50” entry being comparison between two independent
runs of the same architecture. The numbers in the legend indicate the number of high-influence
pairs selected by each architecture according to 65,57 = 0.15 and 0,e, = 0.25, and the average test
accuracy (with 70% training set), respectively.

Jaccard similarity coefficient for these sets is defined as:

|Imem(0mem) N Irflem (omem) |
mem omem =
FronOeen) 3 ] Baen) U Lo )

and similarly,

Jint1 (Bsner) = [Ting1 (Osne1) N I g1 (Oins1)|
inf inf - .
! ' [Ting1 (Oine1) U Iper (Qing1)|

We compare ResNet50 with ResNet50 (independent runs with the same architecture), ResNet18,
Inception [27], and DenseNet100 [16] in Fig. C.2. The results show consistency in the estimation of
both memorization and influence across different architectures.

We first note that comparison of two different runs of the same architecture gives a sense of the
accuracy of our estimates and the effect of selection bias. For memorization, the high consistency
and almost non-existent selection bias are apparent. (Jaccard similarity is not very reliable when sets
are relatively small and, as a result, we see a drop near threshold 1.0 even though there is almost no
difference in the estimates). For influence estimates there is a clear drop in accuracy and consistency
around threshold 0.1 which appears to be primarily due to the selection bias. At the same time, the
average difference in estimates is still below 0.015. Our choice of influence threshold being 0.15 was
in part guided by ensuring that Jaccard similarity for the chosen threshold is sufficiently high (above
0.7).

The plots also show high similarity between memorized examples and high-influence pairs computed
for the different architectures. The difference in the produced estimates appears to be closely
correlated with the difference in the accuracy of the architectures. This is expected since both
memorization and influence estimates rely directly on the accuracy of the models. This suggests that
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Figure C.3: Consistency of the estimation of influence between ResNet50 and linear models trained
on the penultimate layer representations computed on the entire CIFAR-100 dataset.

our memorization estimates may not be very sensitive to variations in the architectures as long as
they achieve similar accuracy.

Comparison with training of the last layer only: We also compare the influence estimates based
on 4000 trials of ResNet50 with the estimates from 4000 trials of the algorithm that trains a linear
model on the representations created using the entire dataset (as described in Sec. 3). For the linear
model only 38 examples have memorization estimates above 0.25 and therefore, Jaccard similarity
and average difference are not informative. In Fig. C.3 we compare the influence estimates using the
same notions as before but without the additional constraint of having memorization value above
0.25. The plot demonstrates the large difference in the estimates obtained via these two approaches.

D Additional Examples of Memorization and Influence Estimates

Here we include some additional examples of memorization and influence estimates. For our influence
figures, to avoid cherry-picking, we select the training examples to include as follows. We first sort
the training examples in the selected high-influence pairs by the highest influence they have on a test
example. We then pick 3 consecutive sets each of 5 training examples with indices spread evenly in
the sorted order. The exact Python code is included below.

n_copies = 3
n_egs =5
idx_sort_selected = np.argsort(-max_infl_of_train_selected)

base_idxs = np.linspace(@, len(idx_train_selected) - n_copies, n_egs).astype(np.int)
for i_copy in range(n_copies):
idxs_to_depict = [idx_train_selected[idx_sort_selected[x + i_copy]]
for x in base_idxs]
visualize_tr_examples_and_influence(idxs_to_depict, n_test_egs=4)
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Figure D.4: Additional examples of memorization values from ImageNet class “black swan”, CIFAR-
100 class “beaver” and MNIST class 0, 1,4, 7, 8 and 9.
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Figure D.5: Examples of influence estimates for memorized examples from MNIST. Left column
is the memorized examples in the training set and their memorization estimates (above). For each
training example 4 most influenced examples in the test set are given together with the influence
estimates (above each image).
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Figure D.6: Additional examples of influence estimates for memorized examples from CIFAR-100.
Format is as in Fig.D.5.
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Figure D.7: Additional examples of influence estimates for memorized examples from ImageNet.
Format is as in Fig.D.5.
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Figure D.8: The same contents as Figure 3a, but in higher resolution.
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Figure D.9: Additional examples of influence estimates for memorized examples from ImageNet.
Format is as in Fig.D.5.
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