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Abstract

As deep learning models become tasked with more and more decisions that impact1

human lives, such as hiring, criminal recidivism, and loan repayment, bias is2

becoming a growing concern. This has led to dozens of definitions of fairness, and3

numerous algorithmic techniques to improve the fairness of neural networks. Most4

debiasing algorithms require retraining a neural network from scratch, however,5

this is not feasible in many applications, especially when the model takes days to6

train or when the full training dataset is no longer available.7

In this work, we present the first study on post-hoc methods for debiasing neural8

networks. First we study the nature of the problem, showing that the difficulty9

of post-hoc debiasing is highly dependent on the initial conditions of the original10

model. Then we define three new fine-tuning techniques: random perturbation,11

layer-wise optimization, and adversarial fine-tuning. All three techniques work for12

any group fairness constraint. We give a comparison with six algorithms - three13

popular post-processing debiasing algorithms and our three proposed methods -14

across three datasets and three popular bias measures. We show that no post-hoc15

debiasing technique dominates all others, and we identify settings in which each16

algorithm performs the best.17

1 Introduction18

The last decade has seen a huge increase in applications of machine learning in a wide variety of19

domains such as credit scoring, fraud detection, hiring decisions, criminal recidivism, loan repayment,20

and so on [36, 6, 39, 2]. The outcome of these algorithms are impacting the lives of people more21

than ever. There are clear advantages in the automation of classification tasks, as machines can22

quickly process thousands of datapoints with many features. However, algorithms are susceptible23

to bias towards individuals or groups of people from a variety of sources [43, 40, 41]. For example,24

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) is a computer25

software which determines the risk of a defendant committing a future crime. United States judges26

consult the software to decide whether or not a defendant should be granted bail or pretrial release.27

It was found that this software is biased against African-Americans [17]. Due to the current social28

climate in many countries, the need to address these issues is higher than ever [3, 42].29

Motivated by these findings, the last few years has seen a huge growth in the area of fairness in30

machine learning. Dozens of formal definitions of fairness have been proposed [38], and many31

algorithmic techniques have been developed for debiasing according to these definitions [49]. While32

substantial progress has been made, the majority of techniques have been developed as pre-processing33

or in-processing methods. In other words, most techniques are developed to run before or during the34

machine learning model is trained, either as an add-on, or as a newly proposed algorithm. Only a35

handful of debiasing methods run after the training has been completed, either as fine-tuning methods36
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or post-processing methods [4]. However, as datasets become larger and training becomes more37

computationally intensive, especially in the case of neural networks, there is a growing need for38

debiasing algorithms which do not require retraining a model from scratch. Additionally, some39

applications may require debiasing an existing model without full access to the training dataset, due40

to regulatory requirements or privacy concerns. For example, this may be true any time the entities41

which build the model are different from the entities which deploy the model. Furthermore, every42

previously proposed post-processing method has been designed for its own fairness measure. Due to43

the diversity in fairness definitions, and since reduction of more than one fairness measure may be44

difficult [11], post-processing methods are not directly comparable with one another.45

In this work, we present the first formal study of post-hoc methods for debiasing neural networks.46

A post-hoc method is defined as an algorithm which has access to a trained model and a validation47

dataset, and either fine-tunes the model or performs post-processing on the model predictions. We48

start by showing that the difficulty of post-hoc debiasing is highly dependent on the initial conditions49

of the original model. In particular, given a neural network trained to optimize accuracy, the variance50

in the amount of bias in the trained model is much higher than the variance in the accuracy, with51

respect to the random seed used for initializing the weights of the original model. Therefore, even the52

initial random seed can substantially change the outcome of post-hoc debiasing algorithms.53

Next, we present three new optimization-based techniques for post-hoc debiasing of neural networks,54

each of which work for any group fairness measure. For each technique, we choose an objective55

upfront, which is a function of a fairness measure and model accuracy. We define a simple algorithm,56

random perturbation, which iteratively adds multiplicative noise to the weights of the neural network57

and then thresholds the output probabilities to minimize the objective function. Our second new58

technique is a layer-wise optimization algorithm. In this approach, we iteratively choose a layer of59

the neural network and use gradient-boosted regression trees to optimize the weights of the chosen60

layer with respect to the objective function. Our last technique is an adversarial fine-tuning algorithm.61

Adversarial trainnig is a powerful debiasing method because training a critic (discriminator) to62

predict bias effectively makes the objective function differentiable, enabling the use of first-order63

optimization techniques such as gradient descent. This has recently been proposed as an in-processing64

method for debiasing [50]. We show that using an adversarial model to fine-tune the trained neural65

network is a viable post-hoc technique.66

We compare the three above techniques with three post-processing algorithms from prior work:67

reject option classification [27], equalized odds post-processing [24], and calibrated equalized odds68

post-processing [44]. We run experiments with three popular fairness datasets and three popular69

fairness definitions. We show that certain algorithms are useful in certain scenarios. For example, the70

random perturbation algorithm is a strong post-hoc debiasing baseline. The adversarial fine-tuning71

method is more powerful for debiasing larger models, but it is more computationally intensive and72

may require hyperparameter tuning. The layer-wise fine-tuning algorithm may work well on models73

in which the bias is concentrated in one layer.74

Fairness research (and machine learning research as a whole) has seen a huge increase in popularity,75

and recent papers have highlighted the need for fair and reproducible results [47, 4]. To facilitate best76

practices, we run our experiments on the AIF360 toolkit [4] and open source all of our code.77

Our contributions. We summarize our main contributions below.78

• We study the nature of post-hoc techniques for debiasing neural networks, showing that the79

problem is sensitive to the initial conditions of the original model.80

• We present the first three measure agnostic, fine-tuning algorithms for post-hoc debiasing:81

random perturbation, layer-wise optimization, and adversarial fine-tuning. Our algorithms82

outperform all existing post-processing techniques on average.83

• We conduct a study of post-hoc techniques for debiasing neural networks, testing six84

different algorithms across three datasets and with three different fairness measures.85

2 Related Work86

Debiasing algorithms. There is a surging body of research on bias and fairness in machine learning.87

There are dozens of types of bias that can arise [34], and dozens of formal definitions of fairness88

2



have been proposed [38]. Popular definitions include statistical parity/demographic parity [16, 30],89

equal opportunity (a subset of equalized odds) [23], and average absolute odds [4]. Many bias90

mitigation techniques have been proposed, which generally fall into three categories: pre-processing,91

in-processing, and post-processsing. Post-processing debiasing techniques are performed on a92

pretrained model and do not require access to the full training set. Therefore, these techniques are93

useful in a variety of settings in which retraining is costly or impossible due to computational costs or94

data limitations. All prior work on post-processing techniques use label-flipping methods such as95

randomly flipping labels until the true/false negative rates are equal, or flipping labels in a critical96

region of predicted probabilities near 0.5 [23, 44, 27]. Currently, these techniques have only been97

established for specific fairness measures. For a full overview, see [4, 49].98

There are several pre- or in-processing optimization-based techniques for fairness. Prior work has99

used hyperparameter optimization to select parameters for training models to exhibit less bias [10].100

This approach repeatedly retrains the full model with different hyperparameters, making it impractical101

for big data applications. Other work uses global optimization theory to build regression models102

that maximize accuracy and minimize correlation of the output with sensitive attributes [29]. Bias103

reduction has also been framed as a pre-processing convex optimization problem [8]. So far, these104

techniques have only been developed for specific fairness definitions. AdaFair [25] is a modification105

of AdaBoost [19] that updates the weights of training instances based on a bias measure. Another106

work uses a variant of Lagrangian multipliers to train a model with fairness constraints [13]. Prior107

work has also used adversarial neural network approaches to debias algorithms [50]. To the best of108

our knowledge, there are no post-hoc adversarial debiasing techniques.109

3 Preliminaries110

In this section, we give notation and definitions used throughout the paper. Given a dataset split111

into three parts, D = Dtrain ∪ Dvalid ∪ Dtest, let (xxxi, Yi) ∈ D denote one datapoint, where xxxi ∈ Rd112

contains d features including one binary protected attribute A (e.g., identifying as female or not113

identifying as female), and Yi ∈ {0, 1} is the label. We denote a trained neural network by a function114

fθ : Rd → [0, 1], where θ denotes the trained weights. We often denote fθ(xxxi) = Ŷi, the output115

predicted probability for datapoint xxxi. We denote a set of labels in D by Y.116

Fairness measures. We now give an overview of group fairness measures used in this work. Given117

a dataset D and protected attribute A, we define the true positive and false positive rates as118

TPRA=a = P (Ŷ = 1 | A = a, Y = 1), and FPRA=a = P (Ŷ = 1 | A = a, Y = 0),

where the probability is over Y randomly drawn from the set of labels in a dataset D.119

Statistical Parity Difference (SPD), or demographic parity difference [16, 30], measures the difference120

in the probability of a positive outcome between the protected and unprotected groups. Formally,121

SPD(Y, Ŷ, A) = PŶ ∈Ŷ(Ŷ = 1 | A = 0)− PŶ ∈Ŷ(Ŷ = 1 | A = 1).

Equal opportunity difference (EOD) [23] measures the difference in TPR for the protected and122

unprotected groups. Equal opportunity is identical to equalized odds in the case where the protected123

feature and labels are binary. Formally, we have124

EOD(Y, Ŷ, A) = TPRA=0 − TPRA=1.

Average Odds Difference (AOD) [4] is defined as the average of the difference in the false positive125

rates and true positive rates for unprivileged and privileged groups. Formally,126

AOD(Y, Ŷ, A) = (FPRA=0 − FPRA=1) + (TPRA=0 − TPRA=1)

2
.

Optimization techniques. Zeroth order (non-differentiable) optimization is used when the objec-127

tive function is not differentiable (as is the case for most definitions of group fairness). This is128

also called black-box optimization. Given an input space W and an objective function µ, zeroth129
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order optimization seeks to compute w∗ = argminw∈W µ(w). Leading methods for zeroth order130

optimization when function queries are expensive (such as optimizing a deep network) include131

gradient-boosted regression trees (GBRT) [20, 33] and Bayesian optimization (BO) [45, 18, 48],132

however BO struggles with high-dimensional data.133

In contrast, first-order optimization is used when it is possible to take the derivative of the objective134

function. For example, gradient descent is a first-order optimization technique.135

4 Methodology136

In this section, we describe three new fine-tuning techniques for debiasing neural networks. First we137

give more notation and formally define the different types of debiasing algorithms.138

Given a neural network fθ, we sometimes drop the subscript θ when it is clear from context. We139

denote the last layer of f by f (`), and we assume that f = f (`) ◦ f ′, where f ′ is all but the last layer140

of the neural network. Our layer-wise optimization algorithm assumes that f is feed-forward, that141

is, f = f (`) ◦ · · · ◦ f (1) for functions f (1), f (2), . . . , f (`). The performance of the model is given142

by a performance measure ρ. For a set of points D′ ⊆ D, given the set of true labels Y and the set143

of predicted labels Ŷ = {f(xxxi) | (xxxi, Yi) ∈ D′}, the performance is ρ(Y, Ŷ) ∈ [0, 1]. Common144

performance measures include accuracy, precision, recall, or AUC ROC (area under the ROC curve).145

We also define a bias measure µ, given as µ(Y, Ŷ, A) ∈ [0, 1], such as one defined in Section 3.146

The goal of any debiasing algorithm is to minimize the bias µ, without sacrificing performance ρ too147

much. Many prior works have observed that fairness comes at the price of accuracy for many datasets,148

even when using large models such as deep networks [4, 49, 11], which means it is often not possible149

to achieve zero bias without significantly lowering accuracy. Therefore, a common technique is to150

minimize an objective function such as the following.151

φµ,ρ(Y, Ŷ, A) = λ · |µ(Y, Ŷ, A)|+ (1− λ)(1− ρ(Y, Ŷ)). (1)

In the expression, λ is a parameter in [0, 1] which can be tuned based on the desired bias or based on152

the level of bias in the original model.153

An in-processing debiasing algorithm takes as input the training and validation datasets and outputs154

a model f which seeks to minimize φµ,ρ. A fine-tuning algorithm takes in the validation dataset155

and a trained model f with weights θ (typically f was trained to optimize the performance ρ),156

and outputs fine-tuned weights θ′ such that fθ′ minimizes the objective φµ,ρ. A post-processing157

debiasing algorithm takes as input the validation dataset as well as a set of predictions Ŷ on the158

validation dataset (typically coming from a model f which was optimized for ρ), and outputs a159

post-processing function h : {0, 1} → {0, 1} which performs post-processing on predictions so that160

the final predictions optimize φµ,ρ. Note that fine-tuning and post-processing debiasing algorithms161

are useful in different settings. Post-processing algorithms are useful when there is no access to the162

original model. Fine-tuning algorithms are useful when there is access to the original model, or when163

the prediction is over a continuous feature. Now we present three fine-tuning techniques.164

Random perturbation. Our first algorithm is a simple iterative random procedure, random per-165

turbation. In every iteration, each weight in the neural network is multiplied by a Gaussian random166

variable with mean 1 and standard deviation 0.1. In case the model f outputs probabilities, we find167

the threshold τ such that Ŷτ = {I{Y > τ}}Y ∈Y minimizes φµ,ρ(Y, Ŷτ , A). We run T iterations and168

output the perturbed weights which minimize φµ,ρ on the validation set. See Algorithm 1. We show169

in the next section that despite its simplicity, this model performs well on many datasets and fairness170

measures, and therefore we recommend this algorithm as a baseline in future post-hoc debiasing171

applications. A natural follow-up question is whether we can do even better by using an optimization172

algorithm instead of random search. This is the motivation for our next approach.173

Layer-wise optimization. Our next method fine-tunes the model by debiasing individual layers174

using zeroth order optimization. Intuitively, an optimization procedure will be much more effective175

than random perturbations, but it is computationally expensive and does not scale as well, so we can176

only run optimization on individual layers. Given a model, assume the model can be decomposed177

into several functions f = f (`) ◦ · · · ◦ f (1) For example, a feed-forward neural network with n layers178
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Algorithm 1 Random Perturbation
1: Input: Trained model f with weights θ, validation dataset Dvalid, objective φµ,ρ
2: Set θ∗ = ∅, val∗ =∞, and τ∗ = 0
3: for i = 1 to T do
4: Sample qj ∼ N (1, 0.1) for all j ∈ {1, 2, ..., |θ|}
5: θ′j = θj · qj
6: Select threshold τ ∈ [0, 1] which minimizes the objective φµ,ρ on the validation set
7: Set val = φµ,ρ(Y, {I{fθ′(xxx) > τ} | (xxx, Y ) ∈ Dvalid}, A)
8: If val < val∗, set val∗ = val, θ∗ = θ′ and τ∗ = τ
9: end for

10: Output: θ∗, τ∗

can be decomposed in this way. We denote the trained weights of each component by θ1, . . . , θ`,179

respectively. Now assume that we have access to a zeroth order optimizer A, which takes as input a180

model f = f (`) ◦ · · · ◦ f (1), θ1, . . . , θ`, dataset Dvalid, and an index i. The optimizer returns weights181

θ′i, optimized with respect to to φµ,ρ. In Algorithm 2, we set the optimizer to be gradient-boosted182

regression trees (GBRT) [20, 33], a leading technique for black box optimization which converts183

shallow regression trees into strong learners. GBRT iteratively constructs a posterior predictive model184

using the weights to make prediction and uncertainty estimates for each potential set of weights θ. To185

trade off exploration and exploitation, the next set of weights to try is chosen using lower confidence186

bounds (LCB), a popular acquisition function (e.g., [26]). Formally, φLCB(θ) = θ̂ − βσ̂, in which187

we assume our model’s posterior predictive density follows a normal distribution with mean θ̂ and188

standard deviation σ̂. β is a tradeoff parameter that can be tuned. See Algorithm 2. Note that this189

algorithm can be easily generalized to optimize multiple layers at once, but this comes at the price of190

runtime. For example, running GBRT on the entire neural network would be strictly more powerful191

than the random permutation algorithm, but is prohibitively expensive.192

Algorithm 2 Layer-wise optimization

1: Input: Trained model f = f (`) ◦ . . . ◦ f (1) with weights θ1, . . . , θ`, objective φµ,ρ, optimizerA
2: Set θ∗ = ∅, val∗ =∞, and τ∗ = 0
3: for i = 1 to ` do
4: Run optimizer A to optimize weights θi to θ′i with respect to φµ,ρ.
5: Select threshold τ ∈ [0, 1] which minimizes objective φµ,ρ
6: Set val = φµ,ρ(Y, {I{fθ′(xxx) > τ} | (xxx, Y ) ∈ Dvalid}, A), where θ′ = {θ1, ..., θ′i, ..., θ`}
7: If val < val∗ set val∗ = val, and θ∗ = θ′.
8: end for
9: Output: θ∗, τ∗

Adversarial fine-tuning. The previous two methods rely on zeroth order optimization techniques193

because most group fairness measures such as statistical parity difference and equalized odds are194

non-differentiable. Our last technique casts the problem of debiasing as first-order optimization by195

using adversarial learning. The idea behind the adversarial method is that we train a critic model to196

predict the amount of bias in a minibatch. We sample the datapoints in a minibatch randomly and197

with replacement. This statistical bootstrapping approach to creating a minibatch means that if the198

critic can predict the bias in a minibatch accurately, then it can predict the bias in the model with199

respect to the validation set reasonably well. Therefore, the critic effectively acts as a differentiable200

proxy for bias, which makes it possible to debias the original model using gradient descent.201

The adversarial algorithm works by alternately iterating between training the critic model g using the202

predictions from f , and fine-tuning the predictive model f with respect to φµ,ρ using the bias proxy203

µ̂ from g. Note that the first layer in g concatenates the minibatch and returns a single number that204

estimates the bias of the minibatch as the final output. See Algorithm 3.205
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Algorithm 3 Adversarial Fine-Tuning
1: Input: Trained model f = f` ◦ f ′ with weights θ, validation dataset Dvalid, objective φµ,ρ

parameters λ, m, m′
2: Set g as the critic model with weights θ′.
3: for i = 0 to n do
4: for j = 0 to m do
5: Sample a minibatch (XXXk,YYYk) with replacement from Dvalid
6: Evaluate the bias in the minibatch, µ̂← µ(YYYk, f(XXXk)).
7: Update the critic model g by updating its stochastic gradient

∇θ′(µ̂− (g ◦ f ′)(XXXk))
2

8: end for
9: for j = 0 to m′ do

10: Sample a minibatch (XXXk,YYYk) with replacement from Dvalid
11: Update the original model by updating its stochastic gradient

∇θ [(1− λ) · (g ◦ f ′)(XXXk) + λ · BCELoss(YYYk, f(XXXk))]

12: end for
13: Select threshold τ ∈ [0, 1] that minimizes the objective φµ,ρ
14: end for
15: Output: Debiased model f , threshold τ

5 Experiments206

In this section, we experimentally evaluate the techniques laid out in Section 4 compared to baselines,207

on three datasets and with multiple fairness measures. To promote reproducibility, we use popular208

datasets from the AIF360 toolkit [4], and we release our code. Each dataset contains one or more209

binary protected features(s) and a binary label. We briefly describe them below.210

The COMPAS dataset is a commonly used dataset in fairness research, consisting of over 10,000211

defendants with 402 features [17]. The goal is to predict the recidivism likelihood for an individual [1].212

We run separate experiments using race and also sex as protected attributes. The Adult Census Income213

(ACI) dataset is a binary classification dataset from the 1994 USA Census bureau database in which214

the goal is to predict whether a person earns above $50,000 [15]. There are over 40,000 data points215

with 15 features. We use sex as the protected attribute. The Bank Marketing (BM) dataset is from the216

phone marketing campaign of a Portuguese bank. There are over 48,000 datapoints consisting of 17217

categorical and quantitative features. The goal is to predict whether a customer will subscribe to a218

product [35]. We use age as the protected feature.219

The need for neural networks. First, we run a quick experiment to demonstrate the need for neural220

networks on the above datasets. Deep learning has become a very popular approach in the field of221

machine learning [32], however, for tabular datasets with fewer than 20 features, it is worth checking222

whether logistic regression or random forest techniques perform as well as neural networks [37].223

We construct a neural network with 10 fully-connected layers, BatchNorm for regularization, and224

a dropout rate of 0.2, and we compare this to logistic regression and a random forest model on the225

ACI dataset. We see that a neural network achieves accuracy and area under the receiver operating226

characteristic curve (AUC ROC) scores which are 2% higher than the other models. See Appendix B227

for the full results. Therefore, for the rest of this section, we focus on using neural networks.228

Bias sensitivity to initial model conditions. Next, we run experiments to compute the amount229

of variance in the bias scores of the initial models. Neural networks have a huge number of local230

minima. Hyperparameters such as the optimizer and learning rate, and even the initial random seed,231

cause the model to converge to different local minima [32]. Techniques such as the Adam optimizer232

and early stopping with patience have been designed to allow neural networks to consistently reach233

local minima with high accuracies [28, 21]. However, there is no guarantee on the amount of bias.234

In particular, the local minima found by neural networks may have large differences in the amount235

of bias, and therefore, there may be very high variance on the amount of bias exhibited by neural236
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Table 1: Bias and accuracy of a neural network.
AOD EOD SPD accuracy

ACI (sex) -0.084 ± 0.012 -0.082 ± 0.017 -0.198 ± 0.011 0.855±0.002
BM (age) 0.011 ± 0.027 -0.009 ± 0.051 0.047 ± 0.015 0.901±0.002
COMPAS (race) 0.138 ± 0.017 0.194 ± 0.027 0.168 ± 0.016 0.669±0.006

networks just because of the random seed. Every local optima has a different set of weights. If the237

weights of the model at a specific local optimum rely heavily on the protected feature, removing238

the bias from such a model by updating the weights is harder than removing the bias from a model239

whose weights do not rely on the protected feature as heavily. Table 1 shows the mean and the240

standard deviation of three fairness measures, as well as accuracy, for training a neural network with241

10 different initial random seeds, across three datasets. We see that the standard deviation of the bias242

score is an order of magnitude higher than the standard deviation of the accuracy. In Appendix B, we243

plot the contribution of each individual weight to the bias score, for a neural network. We show that244

the contribution of the weights to the bias score are sensitive to the initial random seed.245

5.1 Post-hoc debiasing experiments246

Now we present our main experimental study by comparing our three post-hoc debiasing methods247

to three baseline methods on three datasets and with three fairness measures. Note that we do not248

compare to any in-processing debiasing algorithms, because these algorithms require the entire249

training set, yet all post-hoc methods only use the validation set. We briefly describe the baseline250

post-processing algorithms that we tested.251

The reject option classification post-processing algorithm [27] defines a critical region of points in252

the protected group whose predicted probability is near 0.5, and flips these labels. This algorithm is253

designed to minimize statistical parity difference. The equalized odds post-processing algorithm [23]254

defines a convex hull based on the bias rates of different groups, and then flips the label of data points255

that fall inside the convex hull. This algorithm is designed to minimize equal opportunity difference.256

The Calibrated equalized odds post-processing algorithm [44] defines a base rate of bias for each257

group, and then adds randomness based on the group into the classifier until the bias rates converge.258

This algorithm is designed to minimize equal opportunity difference. For all algorithms, we use the259

implementations in the AIF360 repository [4].260

Our initial model consists of a feed-forward neural network with 10 fully-connected layers of size261

32, with a BatchNorm layer between each fully-conntected layer, and a dropout fraction of 0.2. The262

model is trained with the Adam optimizer and an early-stopping patience of 100 epochs. The loss263

function is the binary cross-entropy loss. We use the validation data as the input for the post-hoc264

debiasing methods. The three post-hoc methods are set to optimize Equation 1 with λ = 0.75. We265

run each post-hoc method on 10 neural networks initialized with different random seeds. We present266

the results in Figure 1. Note that since the three post-processing baselines are only set up to minimize267

a specific fairness measure, there is only a fair comparison on their respective measures.268

Discussion. We see that the three fine-tuning methods significantly outperform the baseline meth-269

ods, sometimes even on the fairness metric for which the baseline was designed. We note that270

there are two caveats. First, the three fine-tuning methods had access to the objective function271

in Equation 1, while the post-processing methods are only designed to minimize their respective272

fairness measures. However, sometimes the fine-tuning algorithms are Pareto optimal compared to273

the baselines, with respect to accuracy and bias, as seen in the Pareto plots in Figure 1. Second,274

fine-tuning methods are more powerful than post-processing methods, since post-processing methods275

do not modify the weights of the original model, although it comes at the price of computation time276

(See Table 2). Post-processing methods are more appropriate when the model weights are unavailable277

or when computation time is constrained, and fine-tuning methods are more appropriate when higher278

performance is desired. We see that random perturbation is a very strong fine-tuning technique,279

performing the best in nearly every setting. Layer-wise optimization performs well in most settings,280

but is sometimes susceptible to the initial conditions of the original model which makes intuitive281

sense given the discussion earlier in this section on bias sensitivity to initial model conditions. There282
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Table 2: Runtime for every post-hoc algorithm for every dataset in seconds
ACI (sex) BM (age) COMPAS (sex) COMPAS (race)

ROC 29.836 20.637 9.979 10.532
EqOdds 0.015 0.012 0.011 0.011
CalibEqOdds 0.144 0.064 0.049 0.054
Random 156.848 113.529 61.937 63.540
Adversarial 32.889 36.128 36.156 34.432
LayerwiseOpt 186.480 146.760 79.800 79.800
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Figure 1: Results for post-hoc techniques. A lower objective score is better.

is only one setting in which adversarial fine-tuning outperformed random perturbation. This is likely283

due to the fact that adversarial fine-tuning is the most complex technique (training a neural network284

as a subroutine), but most of our datasets have at most 20 features. We hypothesize that adversarial285

fine-tuning will outperform random perturbation on more complex datasets, such as debiasing image286

datasets. In Appendix B, we run experiments with different types of initial neural networks.287

6 Conclusion288

In this work, we present the first study on post-hoc methods for debiasing neural networks. We289

present the first three measure-agnostic fine-tuning algorithms for debiasing neural networks: random290

perturbation, adversarial fine-tuning, and layer-wise optimization. First we show that the problem of291

post-hoc debiasing is sensitive to the initial conditions of the original neural network. Then we give an292

extensive study of post-hoc debiasing of neural networks by comparing our three new algorithms with293

three baseline post-processing algorithms on three popular fairness datasets and with three popular294

fairness measures. We show that each fine-tuning algorithm performs well for different datasets and295

different fairness metrics.296
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7 Broader Impact297

Deep learning algorithms are becoming more prevalent than ever before. The technology is becoming298

more and more integrated into society. There are countless examples of machine learning, from299

recommender systems (every time you browse Netflix, Amazon, YouTube, Facebook, etc.) to300

self-driving cars, to life-impacting events such as criminal recidivism, loan repayment, and hiring301

decisions. It is also becoming increasingly more evident that all of these algorithms are biased from302

various sources [43, 40, 41]. Using technology for life-changing events which makes racist, sexist,303

and prejudiced decisions will only deepen the divides that exist in society. In the current social304

climate in countries such as the United States, this is not acceptable.305

Our work seeks to decrease the negative effects that biased deep learning algorithms have on306

society. Our post-hoc methods, which work for any group fairness measure, will be immediately307

applicable to even large deep learning frameworks, since the models need not be retrained from308

scratch. Furthermore, we present simple techniques (random perturbation) as well as more complex309

and strong techniques (adversarial fine-tuning). For these reasons, we believe that our work has the310

potential to have an immediate impact in mitigating the bias in society. Furthermore, since we study311

the nature of post-hoc debiasing and present a study comparing prior work to our algorithms, our312

work may facilitate future work in post-hoc debiasing techniques.313

7.1 Impact on bias in judicial applications314

We briefly focus on how post-hoc methods for debiasing could help in judicial contexts. While,315

unfortunately, there may be innate human rights and legal issues in using machine learning appli-316

cations in criminal justice contexts [46, 22], such applications are now widely deployed in many317

jurisdictions. Studies and investigations such as [31] have found that many of the algorithms used in318

judicial contexts have some form of bias. Moreover, different entities using the same model might319

prefer to use different fairness measures and some of these measures might be incompatible [12].320

Glencora et al. [7] show that even social media monitoring tools used by law enforcement might be321

racially biased.322

Generally, the entities that build and use the applications are not the same. Therefore, due to legal and323

licensing issues, the entity using the application may not have access to the training dataset for the324

model. This precludes the use of pre-processing and in-processing methods for debiasing. The entity325

using the model usually has its own dataset available (e.g. a local court tracking their recidivism326

rates). This makes post-hoc processing the only viable method for debiasing.327
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A Related Work Continued451

In this section, we give a more detailed description of the related work from Section 2.452

Debiasing overview. There is a surging body of research on bias and fairness in machine learning.453

There are dozens of types of bias that can arise [34], and dozens of formal definitions of fairness454

have been proposed [38]. Popular definitions include statistical parity/demographic parity [16, 30],455

equal opportunity (a subset of equalized odds) [23], and average absolute odds [4]. Many bias456

mitigation techniques have been proposed, which generally fall into three categories: pre-processing,457

in-processing, and post-processsing. Post-processing debiasing techniques are performed on a458

pretrained model and do not require access to the full training set. Therefore, these techniques are459

useful in a variety of settings in which retraining is costly or impossible due to computational costs or460

data limitations.461

Post-processing methods All prior work on post-processing techniques use label-flipping methods462

such as randomly flipping labels until the true/false negative rates are equal, or flipping labels in a463

critical region of predicted probabilities near 0.5 [23, 44, 27]. Currently, these techniques have only464

been established for specific fairness measures. For a full overview, see [4, 49].465

We gave brief descriptions of three post-processing debiasing techniques in Section 5, which we466

restate here for convenience. In reject option classification, a critical region of points in the protected467

group is defined, whose predicted probability is near 0.5, and these labels are then flipped [27]. The468

equalized odds post-processing algorithm defines a convex hull based on the false and true positive469

rates of different groups, and then flip the label of data points that fall into the convex hull [23]. In470

the calibrated equalized odds post-processing algorithm, a base rate of false negatives is defined471

for each group, and then randomness is added based on the group into the classifier until the false472

negative rates are equal [44]. Currently, these techniques have only been established for specific473

fairness measures.474

Hyperparameter optimization for fairness There is a wide variety of work on in-processing475

debiasing algorithms which are similar in spirit to our optimization methods. We mention a few of476

them here. However, none of them explicitly present a post-hoc debiasing algorithm. Recently, a meta-477

algorithm was developed for in-processing debiasing by reducing many fairness measures to convex478

problems [9]. Another work treats debiasing as an empirical risk minimization problem [14]. Yet479

another work adds the fairness constraints as regularizers in the machine learning models [5]. Other480

prior work has used hyperparameter optimization to select parameters for training models to exhibit481

less bias [10]. This approach repeatedly retrains the full model with different hyperparameters, making482

it impractical for big data applications. Other work uses global optimization theory to build regression483

models that maximize accuracy and minimize correlation of the output with sensitive attributes [29].484

Bias reduction has also been framed as a pre-processing convex optimization problem [8]. The last485

two techniques have only been developed for specific fairness definitions.486

AdaFair [25] is a modification of AdaBoost [19] that updates the weights of training instances based487

on a bias measure. Another work uses a variant of Lagrangian multipliers to train a model with488

fairness constraints [13]. Prior work has also used adversarial neural network approaches to debias489

algorithms [50]. To the best of our knowledge, there are no post-hoc adversarial debiasing techniques.490

B Additional Experiments and Details491

In this section, we give additional details from the experiments in Section 5, as well as additional492

experiments.493

The need for neural networks. We start by comparing the performance of neural networks to494

logistic regression and gradient-boosted regression trees (GBRT) on the datasets we used, to demon-495

strate the need for neural networks. This experiment is described at the start of Section 5. For496

convenience, we restate the details here. We construct a neural network with 10 fully-connected497

layers of size 32, BatchNorm for regularization, and a dropout rate of 0.2, and we compare this to498

logistic regression and GBRT on the ACI, BM, and COMPAS datasets. See Table 3. We see that the499
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Table 3: Comparison between models. mean ± standard deviation
logistic regression neural network random forest

ACI accuracy 0.852 ± 0.000 0.855 ± 0.002 0.844 ± 0.002
roc_auc 0.904 ± 0.000 0.908 ± 0.001 0.889 ± 0.000

BM accuracy 0.901 ± 0.000 0.901 ± 0.002 0.899 ± 0.001
roc_auc 0.930 ± 0.000 0.934 ± 0.001 0.932 ± 0.001

COMPAS accuracy 0.677 ± 0.000 0.641 ± 0.061 0.652 ± 0.006
roc_auc 0.725 ± 0.000 0.679 ± 0.088 0.695 ± 0.002
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Figure 2: Results for coefficient analysis.

neural network achieves better accuracy and ROC AUC on all datasets except COMPAS, which is500

within one standard deviation of the optimal performance.501

Bias sensitivity to initial model conditions. Next, we study the sensitivity of bias to initial model502

conditions. Recall that in Table 1, we computed the mean and standard deviation of three fairness503

measures, as well as accuracy, for training a neural network with respect to different initial random504

seeds. We see that standard deviation of the bias is an order of magnitude higher than the standard505

deviation of the accuracy. Now we run more experiments to show that the contribution of the weights506

to the bias score are sensitive to the initial random seed.507

For this experiment, we trained 10 neural networks with the same architecture as described in the508

main body of the paper. We wanted to identify which parameters of the network contributed most509

to the bias. To identify these parameters, we created 1000 random delta vectors with mean 1 and510

standard deviation 0.1 for each of the neural networks. We then took the Hadamard product of511

each random delta vector with the parameters of the corresponding network. We then evaluated the512

bias (SPD) on the test set for the networks with the new perturbed parameters. To identify which513

parameters contributed most to the bias, we trained a linear model for each of the 10 neural networks514

to predict the bias from the random delta vectors and analyzed the coefficients of the corresponding515

linear models. The linear models were successfully able to predict the bias based on the random delta516

vectors with an R2 score of 0.861 ± 0.090. Figure-2 (left) shows that only a small fraction of the517

parameters contribute to the majority of the bias.518

Now we want to identify how similar the coefficients of the linear models are across all 10 neural net-519

works. To identify this we stacked the normalized coefficients for the linear models and decomposed520

the stacked matrix with singular value decomposition. The singular values of the matrix measured521

the degree of linear independence between the coefficients for the 10 linear models. As we see from522

Figure-2 (right) the singular values are all close to 1. This indicates that the coefficients are relatively523

different from each other. This means that the parameters of the 10 neural networks that correspond524

to the bias are different for each network indicating that each time we train a model – even if it has525

the same architecture – the parameters that contribute to bias are different.526

Additional debiasing experiments To show the robustness of our fine-tuning methods to variations527

in model architecture we run a suite of debiasing experiments on the Adult Census Income dataset.528

We train four variations of our initial model and run all debiasing experiments on all four variations.529

For the first variation we trained a model with dropout rate = 0.3, hidden layer width = 32, and530

number of stacked fully connected layers = 2. For the second variation we trained a model with531
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Figure 3: Results from running variations of neural network architecture.

dropout rate = 0.5, hidden layer width = 16, and number of stacked fully connected layers = 10. For532

the third variation we trained a model with dropout rate = 0.5, hidden layer width = 128, and number533

of stacked fully connected layers = 2. For the fourth variation we trained a model with dropout rate =534

0.2, hidden layer width = 64, and number of stacked fully connected layers = 15. We run 10 trials of535

each neural network, which involves training the neural network with a new random seed, and then536

applying all post-hoc debiasing methods. We average all 40 trials across the 4 neural networks, and537

give the results in Figure 3.538
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