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A Lower Bounds for the Exponential Mechanism1

In this section, we prove Theorems 3.2 and 3.3.2

Proof of Theorem 3.2. Fix a soft-max function 𝑓 : R𝑑 → ∆𝑑 that is 𝛿-approximate. It is well3

known that the Rényi Divergence of order 𝛼 is a non-decreasing function of 𝛼 for 𝛼 ≥ 1. Hence it4

suffices to prove the statement of Theorem 3.2 for 𝛼 = 1 where D𝛼 become the KL-divergence DKL.5

Observe also that without loss of generality we can assume that 𝑓 is permutation invariant, i.e., for6

every permutation 𝜋 of {1, . . . , 𝑑} and every 𝑥 ∈ R𝑑, 𝑓(𝜋(𝑥)) = 𝜋(𝑓(𝑥)), where 𝜋(𝑥) denotes the7

vector (𝑥𝜋(1), . . . , 𝑥𝜋(𝑑)). If this is not the case then we can define the function 𝑓 ′ which outputs8

the expectation of 𝑓 over a random permutation of the coordinates of 𝑥. It is easy to see then that9

𝑓 ′ has the same approximation and smoothness properties as 𝑓 and is permutation invariant. Hence10

we assume that 𝑓 is permutation invariant.11

Let 𝑎 ∈ R+. We define the vector 𝑥𝑎 = (𝑎, 𝑎, . . . , 𝑎)𝑇 . For any 𝑎 because of the permutation12

invariance of 𝑓 we have that 𝑓(𝑥𝑎) = (1/𝑑, . . . , 1/𝑑). We define the vector 𝑦(𝑎,𝑏) to be equal to 𝑥13

in all coordinates but 1 and equal to 𝑏 > 𝑎 at the 1st coordinate. That is14

𝑦
(𝑎,𝑏)
𝑗 = 𝑎 for 𝑗 ̸= 1

and 𝑦
(𝑎,𝑏)
1 = 𝑏

From the approximation guarantee at 𝑦(𝑎,𝑏) we have that15 ⃦⃦⃦
𝑦(𝑎,𝑏)

⃦⃦⃦
∞
− ⟨𝑓

(︁
𝑦(𝑎,𝑏)

)︁
,𝑦(𝑎,𝑏)⟩ ≤ 𝛿 =⇒

𝑏− 𝑏𝑓1

(︁
𝑦(𝑎,𝑏)

)︁
− 𝑎

(︁
1− 𝑓1

(︁
𝑦(𝑎,𝑏)

)︁)︁
≤ 𝛿

Let 𝑞 = 𝑓1
(︀
𝑦(𝑎,𝑏)

)︀
. Then we have16

(𝑏− 𝑎)(1− 𝑞) ≤ 𝛿.

This implies17

𝑞 ≥ 1− 𝛿

𝑏− 𝑎
. (A.1)
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Also observe that because of the permutation invariance of 𝑓 it holds that 𝑓𝑖(𝑦(𝑎,𝑏)) = (1−𝑞)/(𝑑−1)18

for any 𝑖 > 1. Now we bound the KL-divergence of 𝑓 when applied to the vectors 𝑥𝑎 and 𝑦(𝑎,𝑏):19

DKL

(︁
𝑓
(︁
𝑦(𝑎,𝑏)

)︁
‖𝑓(𝑥𝑎)

)︁
=

𝑑∑︁
𝑖=1

𝑓𝑖(𝑦
(𝑎,𝑏)) log

(︂
𝑓𝑖(𝑦

(𝑎,𝑏))

𝑓𝑖(𝑥𝑎)

)︂
= 𝑞 log (𝑑𝑞) + (1− 𝑞) log

(︂
(1− 𝑞)

𝑑

𝑑− 1

)︂
≥ 𝑞 log (𝑑)− 1,

where the last inequality follows from the fact that the binary entropy function 𝐻(𝑞) = −𝑞 log(𝑞)−
(1− 𝑞) log(1− 𝑞) is upper bounded by 1 and the fact that log(𝑑) ≥ log(𝑑− 1). Using also A.1 we
get that20

DKL

(︁
𝑓
(︁
𝑦(𝑎,𝑏)

)︁
‖𝑓(𝑥𝑎)

)︁
≥
(︂

1− 𝛿

𝑏− 𝑎

)︂
log (𝑑)− 1.

If we now set 𝑏− 𝑎 = 2𝛿 then we get
⃦⃦
𝑦(𝑎,𝑏) − 𝑥𝑎

⃦⃦
𝑝

= 2𝛿 and21

DKL

(︁
𝑓
(︁
𝑦(𝑎,𝑏)

)︁
‖𝑓(𝑥𝑎)

)︁
≥ 1

2
log (𝑑)− 1.

Therefore,22

DKL

(︀
𝑓
(︀
𝑦(𝑎,𝑏)

)︀
‖𝑓(𝑥𝑎)

)︀⃦⃦
𝑦(𝑎,𝑏) − 𝑥𝑎

⃦⃦
𝑝

≥ log (𝑑)− 2

4𝛿

and the theorem follows.23

Proof of Theorem 3.3. Let 𝛿 > 0 and for the sake of contradiction assume that there exists a softmax24

function 𝑓 that is both 𝛿-approximate in the worst-case and satisfies (ℓ𝑝,D𝛼)-Lischitzness. We25

define 𝑥 = (2𝛿, 0, 0, . . . , 0) and 𝑦 = (0, 2𝛿, 0, . . . , 0) from the worst-case approximation guarantees26

of 𝑓 we have that 𝑓(𝑥) = (1, 0, . . . , 0), whereas 𝑓(𝑦) = (0, 1, 0, . . . , 0). It is easy to see that for27

any 𝛼 ≥ 1 it holds that D𝛼 (𝑓(𝑥)‖𝑓(𝑥)) = ∞ but ‖𝑓(𝑥)− 𝑓(𝑦)‖𝑝 ≤ 2. The later contradicts the28

(ℓ𝑝,D𝛼)-Lipschitzness of 𝑓 and hence the theorem follows.29

B The Construction of PLSOFTMAX30

We first give an intuitive explanation of the proof of the construction. One notion that will be useful31

for this purpose in the following.32

Vector and Matrix Norms. We define the (𝛼, 𝛽)-subordinate norm of a matrix 𝐴 ∈ R𝑑×ℓ to be33

‖𝐴‖𝛼,𝛽 = max
𝑥∈Rℓ,𝑥 ̸=0

‖𝐴𝑥‖𝛽 / ‖𝑥‖𝛼 .

The computation of ‖𝐴‖𝛼,𝛽 is in general NP-hard and even hard to approximate, see [28, 16].34

Notation. We use 𝐸𝑖,𝑗 to refer to the all zero matrix with one 1 at the (𝑖, 𝑗) entry.35

The construction of PLSOFTMAX begins with the observation that for any 𝑔 : R𝑑 → R𝑑 and any36

𝑝, 𝑞 ≥ 1, it holds that37

‖𝑔(𝑥)− 𝑔(𝑦)‖𝑞 ≤
(︂

max
𝜉∈R𝑑

‖𝐽𝑔(𝜉)‖𝑝,𝑞

)︂
‖𝑥− 𝑦‖𝑝

where 𝐽𝑔(𝜉) is the Jacobian matrix of 𝑔 at the point 𝜉 ∈ R𝑑. Hence our goal is to construct a38

function 𝑔 that does not violate the worst-case approximation conditions and for which we can also39

bound ‖𝐽𝑔(𝜉)‖𝑝,𝑞 . To achieve this we carefully analyze the approximation conditions. Based on40

them we split the space R𝑑 into small convex polytopes 𝑃𝑖 such that in each 𝑃𝑖, the approximation41

conditions do not change. Since, as we will see, the approximation condition is a linear condition,42

we choose our function 𝑔 in 𝑃𝑖 to be a linear function that satisfies the approximation condition43
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inside the polytope 𝑃𝑖. Then we have to make sure that on the boundaries of 𝑃𝑖 the function is44

continuous and that the (𝑝, 𝑞)-subordinate norm of the matrices that we used in each 𝑃𝑖 is bounded45

by some constant.46

One important observation is that in each 𝑃𝑖, if some of the [𝑑] alternatives have low values, the47

approximation constraint imposes that we cannot use at all any of these alternatives. Hence the48

dimension of 𝑃𝑖 effectively becomes less than 𝑑. In these cases, we reduce the construction in 𝑃𝑖 to49

a smaller dimensional construction that is solved inductively. We express this inductive argument as50

a recursive relation over the matrices that is stated in Lemma B.4. Finally, one important theorem51

that enables us to prove a precise bound on ‖𝐽𝑔(𝜉)‖𝑝,1 is Theorem B.6. This is a generalization of52

Theorem 1 of [10] which might be of independent interest.53

Now that we described the high level idea of our construction, we dive in to the technical details.54

The function 𝑓 that we are going to construct is a piece-wise linear function. So we first define the55

notion of a piece-wise linear function in 𝑑 dimensions.56

Definition B.1 (PIECE-WISE LINEAR FUNCTIONS). A function 𝑓 : R𝑑 → R𝑑 is piece-wise linear57

if there exist a finite partition 𝒫𝑓 = {𝑃1, . . . , 𝑃𝐿} of R𝑑 such that 𝑃𝑖 is a convex polytope, for any58

𝑖 and any 𝑥 ∈ 𝑃𝑖 there exists a unique matrix 𝐴𝑖 ∈ R𝑑×𝑑 and a unique vector 𝑏𝑖 ∈ R𝑑 such that59

𝑓(𝑥) = 𝐴𝑖𝑥 + 𝑏𝑖.

We use 𝒜𝑓 to refer to the set of matrices {𝐴1, . . . ,𝐴𝐿}.60

Our construction proceeds in the following steps:61

1. define the partition 𝒫𝑓 of R𝑑, the matrix 𝐴𝑖, and vector 𝑏𝑖 that we use for every 𝑃𝑖 ∈ 𝒫𝑓 ,62

2. describe the set 𝒜𝑓 and its properties,63

3. prove that the defined 𝑓 is continuous on the boundaries of 𝑃𝑖’s,64

4. prove that it has small absolute approximation loss, and65

5. prove that ‖𝐴𝑖‖𝑝,1 is small and hence using Lemma B.2 conclude that 𝑓 is has small66

Lipschitz constant.67

For simplicity of the proof we will use 𝑓 to refer to PLSOFTMAX𝛿 within the scope of this section.68

B.1 Piece-wise linear functions69

For piece-wise linear functions 𝑓 , we use the following lemma to establish the Lipschitz property.70

Lemma B.2. Let 𝑓 : R𝑑 → R𝑑 be a continuous and piece-wise linear function and let 𝑝, 𝑞 ≥ 1,71

then72

‖𝑓(𝑥)− 𝑓(𝑦)‖𝑞 ≤
(︂

max
𝐴∈𝒜𝑓

‖𝐴‖𝑝,𝑞

)︂
· ‖𝑥− 𝑦‖𝑝 ∀𝑥,𝑦 ∈ R𝑑

Proof. We first prove the single variable case, that is, we prove that for any continuous piece-wise73

linear function 𝑔 : R→ R𝑑 and if 𝑐 = max𝐴∈𝒜𝑔 ‖𝐴‖𝑝,𝑞 then for any 𝑥, 𝑦 ∈ R74

‖𝑔(𝑥)− 𝑔(𝑦)‖𝑞 ≤ 𝑐 |𝑥− 𝑦| .

Without loss of generality assume that 𝑥 > 𝑦. Since 𝑔 is piece-wise linear, we have a sequence 𝑦 =75

𝑥1 < 𝑥2 < · · · < 𝑥𝐿 = 𝑥 such that for any 𝑧 ∈ [𝑥𝑖, 𝑥𝑖+1] : 𝑔(𝑧) = 𝑎𝑖𝑧 + 𝑏𝑖 for some 𝑎𝑖, 𝑏𝑖 ∈ R𝑑.76

Also notice that since 𝑎𝑖 is a vector, by definition of subordinate norms, ‖𝑎𝑖‖𝑝,𝑞 = ‖𝑎𝑖‖𝑞 . Now77

because of the continuity of 𝑔78

‖𝑔(𝑥)− 𝑔(𝑦)‖𝑞 ≤
𝐿−1∑︁
𝑖=1

‖𝑔(𝑥𝑖+1)− 𝑔(𝑥𝑖)‖𝑞 =

𝐿−1∑︁
𝑖=1

‖𝑎𝑖(𝑥𝑖+1 − 𝑥𝑖)‖𝑞 =

𝐿−1∑︁
𝑖=1

‖𝑎𝑖‖𝑞 (𝑥𝑖+1 − 𝑥𝑖)

≤ 𝑐

(︃
𝐿−1∑︁
𝑖=1

(𝑥𝑖+1 − 𝑥𝑖)

)︃
= 𝑐(𝑥− 𝑦).
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For the general case, let 𝑐 = max𝐴∈𝒜𝑓
‖𝐴‖𝑝,𝑞 and 𝑥,𝑦 ∈ R𝑑. We define the following function79

ℎ : [0, 1]→ R𝑑 which is easy to verify that is also continuous and piece-wise linear:80

ℎ(𝑡) = 𝑓 (𝑡𝑥 + (1− 𝑡)𝑦) .

There exists a sequence 0 = 𝑡1 < 𝑡2 < · · · < 𝑡𝐿 = 1, such that for every 𝑖, the function 𝑓 has a
linear form 𝑓(𝑢) = 𝐴𝑖𝑢 + 𝑏𝑖 on the set {𝑡𝑥 + (1 − 𝑡)𝑦 : 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1]}. Therefore, for every
𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], by the definition of ℎ,

ℎ(𝑡) = 𝐴𝑖(𝑡𝑥 + (1− 𝑡)𝑦) + 𝑏𝑖 = 𝐴𝑖(𝑥− 𝑦)𝑡 + 𝑏𝑖 + 𝐴𝑖𝑦.

Therefore, on 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], the function ℎ has the linear form ℎ(𝑡) = 𝑣𝑖𝑡+𝑤𝑖 for 𝑣𝑖 = 𝐴𝑖(𝑥−𝑦)81

and 𝑤𝑖 = 𝐴𝑖𝑦 + 𝑏𝑖. Hence by the definition of the subordinate matrix norm we have that82

‖𝑣𝑖‖𝑞 = ‖𝐴𝑖(𝑥− 𝑦)‖𝑞 ≤ ‖𝐴𝑖‖𝑝,𝑞 ‖𝑥− 𝑦‖𝑝 ≤ 𝑐 ‖𝑥− 𝑦‖𝑝 .

Since 𝑖 was arbitrary we have that 𝑐′ = max𝐴∈𝒜ℎ
‖𝐴‖𝑝,𝑞 ≤ 𝑐 ‖𝑥− 𝑦‖𝑝. Finally using the state-83

ment of the lemma for the single variable case that we already proved, we have that84

‖𝑓(𝑥)− 𝑓(𝑦)‖𝑞 = ‖ℎ(1)− ℎ(0)‖𝑞 ≤ 𝑐′(1− 0) ≤ 𝑐 ‖𝑥− 𝑦‖𝑝 .

85

B.2 Properties of the Soft-Max Matrices86

Recall the definition of the soft max matrices in Section 4.87

Definition B.3 (SOFT-MAX MATRICES). The soft max matrix 𝑆𝑀 (𝑘,𝑑) = (𝑚𝑖𝑗) ∈ R𝑑×𝑑 with88

parameters 𝑘, 𝑑 is defined as follows89

𝑚11 =
𝑘 − 1

𝑘
(B.1)

𝑚𝑖𝑖 =
1

𝑖
∀𝑖 ∈ [2, 𝑘] (B.2)

𝑚𝑖1 = −1

𝑘
∀𝑖 ∈ [2, 𝑘] (B.3)

𝑚𝑖𝑗 =
1

𝑗
− 1

𝑗 − 1
∀𝑗 > 𝑖, 𝑗 ∈ [2, 𝑘] (B.4)

𝑚𝑖𝑗 = 0 ∀𝑖, 𝑗 s.t. (𝑖 ∈ [𝑘 + 1, 𝑑]) ∨ (𝑗 ∈ [𝑘 + 1, 𝑑]) (B.5)

Schematically we have90

𝑆𝑀 (𝑘,𝑑) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘−1
𝑘 − 1

2 − 1
6 · · · − 1

𝑘(𝑘−1) 0 · · · 0

− 1
𝑘

1
2 − 1

6 · · · − 1
𝑘(𝑘−1) 0 · · · 0

− 1
𝑘 0 1

3 · · · − 1
𝑘(𝑘−1) 0 · · · 0

− 1
𝑘 0 0 · · · − 1

𝑘(𝑘−1) 0 · · · 0
...

...
...

. . .
...

...
. . .

...
− 1

𝑘 0 0 · · · 1
𝑘 0 · · · 0

0 0 0 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We also define the columns and the rows of the soft max matrices as follows91

𝑆𝑀 (𝑘,𝑑) =

⎛⎝ | | | | |
𝑚

(𝑘,𝑑)
1 𝑚

(𝑘,𝑑)
2 · · · 𝑚

(𝑘,𝑑)
𝑘 0 · · · 0

| | | | |

⎞⎠ (B.6)
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𝑆𝑀 (𝑘,𝑑) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

—
(︁
𝑠
(𝑘,𝑑)
1

)︁𝑇
—

—
(︁
𝑠
(𝑘,𝑑)
2

)︁𝑇
—

...

—
(︁
𝑠
(𝑘,𝑑)
𝑘

)︁𝑇
—

— 0 —
...

— 0 —

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.7)

Below are some examples for 𝑑 = 4.92

𝑆𝑀 (1,4) =

⎛⎜⎝0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠ 𝑆𝑀 (2,4) =

⎛⎜⎝
1
2 − 1

2 0 0
− 1

2
1
2 0 0

0 0 0 0
0 0 0 0

⎞⎟⎠

𝑆𝑀 (3,4) =

⎛⎜⎜⎝
2
3 − 1

2 − 1
6 0

− 1
3

1
2 − 1

6 0
− 1

3 0 1
3 0

0 0 0 0

⎞⎟⎟⎠ 𝑆𝑀 (4,4) =

⎛⎜⎜⎝
3
4 − 1

2 − 1
6 − 1

12
− 1

4
1
2 − 1

6 − 1
12

− 1
4 0 1

3 − 1
12

− 1
4 0 0 1

4

⎞⎟⎟⎠
Now we prove some properties of the soft max matrices, that will help us latex prove the continuity93

and the smoothness of PLSOFTMAX.94

Lemma B.4. For any 𝑑 ∈ N and 𝑘 ∈ [𝑑] the following recursive relation holds95

𝑆𝑀 (𝑘−1,𝑑) = 𝑆𝑀 (𝑘,𝑑) (𝐼 + 𝐸𝑘,1 −𝐸𝑘,𝑘)

Proof. From (B.6) we have that96

𝑆𝑀 (𝑘,𝑑) (𝐼 + 𝐸𝑘,1 −𝐸𝑘,𝑘) =

⎛⎝ | | | | |
𝑚

(𝑘,𝑑)
1 + 𝑚

(𝑘,𝑑)
𝑘 𝑚

(𝑘,𝑑)
2 · · · 𝑚

(𝑘,𝑑)
𝑘−1 0 · · · 0

| | | | |

⎞⎠ .

We now observe by the definition of the soft max matrices that for any 𝑑 ∈ N, 𝑘, 𝑘′ ∈ [𝑑] and97

𝑗 ∈ [2,min{𝑘, 𝑘′}] it holds that 𝑚(𝑘,𝑑)
𝑗 = 𝑚

(𝑘′,𝑑)
𝑗 . Hence we only have to prove that98

𝑚
(𝑘−1,𝑑)
1 = 𝑚

(𝑘,𝑑)
1 + 𝑚

(𝑘,𝑑)
𝑘

and the lemma follows. For this we have that99

𝑚
(𝑘,𝑑)
11 + 𝑚

(𝑘,𝑑)
1𝑘 =

𝑘 − 1

𝑘
− 1

𝑘(𝑘 − 1)
=

(𝑘 − 1)2 − 1

𝑘(𝑘 − 1)
=

𝑘 − 2

𝑘 − 1
= 𝑚

(𝑘−1,𝑑)
11

also for 𝑖 ∈ [2, 𝑘 − 1] we have that100

𝑚
(𝑘,𝑑)
𝑖1 + 𝑚

(𝑘,𝑑)
𝑖𝑘 = −1

𝑘
− 1

𝑘(𝑘 − 1)
= − 1

𝑘 − 1
= 𝑚

(𝑘−1,𝑑)
𝑖1

and finally101

𝑚
(𝑘,𝑑)
𝑘1 + 𝑚

(𝑘,𝑑)
𝑘𝑘 = −1

𝑘
+

1

𝑘
= 0 = 𝑚

(𝑘−1,𝑑)
𝑘1

and the lemma follows.102

Lemma B.5. Let 𝑟, 𝑡 ∈ [𝑑] with 𝑟 > 𝑡 and 𝑥 ∈ R𝑑 be a vector with the property that 𝑥𝑖 = 𝑥𝑗 = 𝑥103

for any 𝑖, 𝑗 ∈ [𝑟, 𝑡] then the vector 𝑦 ∈ R𝑑 with104

𝑦 = 𝑆𝑀 (𝑘,𝑑)𝑥

has also the property 𝑦𝑖 = 𝑦𝑗 for any 𝑖, 𝑗 ∈ [𝑟, 𝑡].105
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Proof. From (B.7) we have that106

𝑦 = 𝑆𝑀 (𝑘,𝑑)𝑥 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑠𝑇1 𝑥
𝑠𝑇2 𝑥

...
𝑠𝑇𝑘 𝑥

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where for simplicity we dropped the indicators (𝑘, 𝑑) from the row vectors 𝑠𝑖 since we keep 𝑘, 𝑑107

constant through the proof. Therefore we have that108

⎛⎜⎜⎝
𝑦𝑟

𝑦𝑟+1

...
𝑦𝑡

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

∑︀𝑟−1
𝑗=1 𝑠𝑟𝑗𝑥𝑗 +

(︁∑︀𝑡
𝑗=𝑟 𝑠𝑟𝑗

)︁
𝑥 +

∑︀𝑑
𝑗=𝑡+1 𝑠𝑟𝑗𝑥𝑗∑︀𝑟−1

𝑗=1 𝑠(𝑟+1)𝑗𝑥𝑗 +
(︁∑︀𝑡

𝑗=𝑟 𝑠(𝑟+1)𝑗

)︁
𝑥 +

∑︀𝑑
𝑗=𝑡+1 𝑠(𝑟+1)𝑗𝑥𝑗

...∑︀𝑟−1
𝑗=1 𝑠𝑡𝑗𝑥𝑗 +

(︁∑︀𝑡
𝑗=𝑟 𝑠𝑡𝑗

)︁
𝑥 +

∑︀𝑑
𝑗=𝑡+1 𝑠𝑡𝑗𝑥𝑗

⎞⎟⎟⎟⎟⎟⎟⎠
but by the definition of the soft max matrices we can easily see that for any 𝑖, 𝑖′ ∈ [𝑟, 𝑡] and 𝑗 < 𝑟109

or 𝑗 > 𝑡 it holds that 𝑠𝑖𝑗 = 𝑠𝑖′𝑗 . This observation together with the above calculations imply that it110

suffices to prove that for any 𝑖, 𝑖′ ∈ [𝑟, 𝑡] it holds that111

𝑡∑︁
𝑗=𝑟

𝑠𝑖𝑗 =

𝑡∑︁
𝑗=𝑟

𝑠𝑖′𝑗 (B.8)

also because of the symmetry of the zero entries of soft max matrices for 𝑡 > 𝑘 it suffices to prove112

this statement for 𝑡 ≤ 𝑘. We also consider two case 𝑟 = 1 and 𝑟 > 1.113

r = 1. For 𝑖 = 1 we have that114

𝑡∑︁
𝑗=𝑟

𝑠1𝑗 = 𝑠11 +

𝑡∑︁
𝑗=2

𝑠1𝑗 =
𝑘 − 1

𝑘
−

𝑡∑︁
𝑗=2

1

𝑗(𝑗 − 1)

and using the following relation115

𝑚∑︁
𝑗=𝑛

1

𝑗(𝑗 − 1)
=

𝑚∑︁
𝑗=𝑛

(︂
1

𝑗 − 1
− 1

𝑗

)︂
=

1

𝑚− 1
− 1

𝑛
(B.9)

we get that116
𝑡∑︁

𝑗=𝑟

𝑠1𝑗 =
𝑘 − 1

𝑘
−
(︂

1− 1

𝑡

)︂
=

1

𝑡
− 1

𝑘
.

For 𝑖 > 1 we have that117

𝑡∑︁
𝑗=𝑟

𝑠𝑖𝑗 = 𝑠𝑖1 + 𝑠𝑖𝑖 +

𝑡∑︁
𝑗=𝑖+1

𝑠𝑖𝑗 = −1

𝑘
+

1

𝑖
−

𝑡∑︁
𝑗=𝑖+1

1

𝑗(𝑗 − 1)

(B.9)
= = −1

𝑘
+

1

𝑖
−
(︂

1

𝑖
− 1

𝑡

)︂
=

1

𝑡
− 1

𝑘
.

Hence the sum
∑︀𝑡

𝑗=1 𝑠𝑖𝑗 does not depend on 𝑖 and the property (B.8) holds for 𝑟 = 1.118

r > 1. For any 𝑖 ∈ [𝑟, 𝑡] we have that119

𝑡∑︁
𝑗=𝑟

𝑠𝑖𝑗 = 𝑠𝑖𝑖 +

𝑡∑︁
𝑗=𝑖+1

𝑠𝑖𝑗 =
1

𝑖
−

𝑡∑︁
𝑗=𝑖+1

1

𝑗(𝑗 − 1)

(B.9)
=

1

𝑖
−
(︂

1

𝑖
− 1

𝑡

)︂
=

1

𝑡

and again we observe that the sum
∑︀𝑡

𝑗=𝑟 𝑠𝑖𝑗 does not depend on 𝑖 and the property (B.8) holds for120

any 𝑟 > 1, 𝑟 ≤ 𝑡. This implies 𝑦𝑟 = · · · = 𝑦𝑡 and the lemma follows.121
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Finally our goal is to bound
⃦⃦
𝑆𝑀 (𝑘,𝑑)

⃦⃦
𝑝,𝑞

for any 𝑝, 𝑞 ∈ [1,∞]. Before that we give a proof of a122

general property of the subordinate norm ‖·‖𝑝,1. This corresponds to the following generalization of123

Theorem 1 in [10]. Drakakis and Pearlmutter [10] only state the result for the ‖·‖2,1 norm although124

their proof generalizes.125

Theorem B.6 (Generalization of Theorem 1 [10]). Let 𝐴 ∈ R𝑡×𝑑 and 𝑝 ∈ 2N+, then126

‖𝐴‖𝑝,1 = max
𝑠∈{−1,1}𝑡

⃦⃦
𝑠𝑇𝐴

⃦⃦
𝑟

where 𝑟 =
𝑝

𝑝− 1
.

In particular the ℓ𝑟 norm is the dual norm of the ℓ𝑝 norm.127

Proof of Theorem B.6. Let 𝑎𝑇
𝑖 be the 𝑖 th row of the matrix 𝐴. By the definition of the subordinate128

norm we have that129

‖𝐴‖𝑝,1 = max
𝑥∈R𝑑,‖𝑥‖𝑝=1

‖𝐴𝑥‖1 .

We first prove that the maximum of the above optimization problem lies in a region of the space130

where 𝑎𝑇
𝑖 𝑥 ̸= 0 for all 𝑖 ∈ [𝑡]. This implies that we can find the maximum in a subspace of the131

space where both the objective and the constraint are differentiable and hence we can use first order132

conditions to determine the maximum. This is described in the following claim.133

Claim B.7. Let134

𝑥 = arg max
𝑦∈R𝑑,‖𝑦‖𝑝=1

‖𝐴𝑦‖1

then for every 𝑖 ∈ [𝑡] holds that 𝑎𝑇
𝑖 𝑥 ̸= 0.135

Proof. We prove this claim by contradiction. Let’s assume without loss of generality that for 𝑖 =136

1, . . . , ℓ its true that 𝑎𝑇
𝑖 𝑥 = 0, where ℓ ∈ [𝑡]. Then we define the vector 𝑧 as137

𝑧 =
𝑥 + 𝜂𝑎1

‖𝑥 + 𝜂𝑎1‖𝑝

with 𝜂 that can be either positive or negative and is small enough so that sign(𝑎𝑇
𝑖 𝑥) = sign(𝑎𝑇

𝑖 𝑧).138

We define the following real valued function ℎ : R → R as ℎ(𝜂) = 1/ ‖𝑥 + 𝜂𝑎1‖𝑝. It is easy to139

see that the first and the second derivative of ℎ for 𝜂 in the interval [−1, 1] are bounded. Hence by140

Taylor’s theorem we have that141

ℎ(𝜂) = ℎ(0) + ℎ′(0)𝜂 + 𝑂(𝜂2).

By simple calculations it is also easy to see that ℎ(0) = 1 and ℎ′(0) =
∑︀𝑡

𝑖=1 𝑎1𝑖𝑥
𝑝−1
𝑖 . Let also142

𝑠𝑖 = sign(𝑎𝑇
𝑖 𝑥). This implies143

𝑡∑︁
𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑧
⃒⃒

=

(︃
𝑡∑︁

𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑥
⃒⃒

+ |𝜂|
ℓ∑︁

𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑎1

⃒⃒
+ 𝜂

𝑡∑︁
𝑖=ℓ+1

𝑠𝑖𝑎
𝑇
𝑖 𝑎1

)︃(︀
ℎ(0) + ℎ′(0)𝜂 + 𝑂(𝜂2)

)︀
=

𝑡∑︁
𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑥
⃒⃒

+ |𝜂|
ℓ∑︁

𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑎1

⃒⃒
+

(︃
𝑡∑︁

𝑖=ℓ+1

𝑠𝑖𝑎
𝑇
𝑖 𝑎1 +

𝑡∑︁
𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑥
⃒⃒)︃

𝜂 + 𝑂(𝜂2)

=

𝑡∑︁
𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑥
⃒⃒

+ 𝐶1 |𝜂|+ 𝐶2𝜂 + 𝑂(𝜂2)

Now without loss of generality we can assume that 𝑎1 ̸= 0 and hence 𝐶1 > 0. Also choosing the144

correct sign for 𝜂 we can have 𝐶2𝜂 ≥ 0. Finally we can make 𝜂 small enough so that 𝐶1 |𝜂|+𝐶2𝜂+145

𝑂(𝜂2) > 0 and hence
∑︀𝑡

𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑧
⃒⃒
>
∑︀𝑡

𝑖=1

⃒⃒
𝑎𝑇
𝑖 𝑥
⃒⃒

which contradicts the assumption that 𝑥 was the146

maximum and the claim follows.147

Using Claim B.7 we can see that the maximum of the program
(︁

max𝑥∈R𝑑,‖𝑥‖𝑝=1 ‖𝐴𝑥‖1
)︁

is148

achieved for a vector that belongs to an open subset of the space where both the constraint and149
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the objective function are differentiable. Notice that the differentiability of the constraint follows150

from the fact that 𝑝 is an even number.151

Using Langragian multipliers we can find the solution to this optimization problem using first order152

conditions on the following function153

𝑔(𝑥, 𝜆) =

𝑡∑︁
𝑖=1

⃒⃒⃒⃒
⃒⃒ 𝑑∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗

⃒⃒⃒⃒
⃒⃒+ 𝜆

(︁
‖𝑥‖𝑝 − 1

)︁
which using the definition 𝑠𝑖 = sign(𝑎𝑇

𝑖 𝑥) takes the form154

𝑔(𝑥, 𝜆) =

𝑡∑︁
𝑖=1

𝑠𝑖

𝑑∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗 + 𝜆
(︁
‖𝑥‖𝑝 − 1

)︁
.

We now compute the partial derivative of 𝑔 with respect to 𝑥𝑘 for some 𝑘 ∈ [𝑑].155

𝜕𝑔

𝜕𝑥𝑘
=

𝑡∑︁
𝑖=1

𝑠𝑖𝑎𝑖𝑘 + 𝜆
𝑥𝑝−1
𝑘

‖𝑥‖𝑝−1
𝑝

=

𝑡∑︁
𝑖=1

𝑠𝑖𝑎𝑖𝑘 + 𝜆𝑥𝑝−1
𝑘

hence 𝜕𝑔
𝜕𝑥𝑘

= 0 implies156

𝑥𝑘 = − 1

𝜆1/(𝑝−1)

(︃
𝑡∑︁

𝑖=1

𝑠𝑖𝑎𝑖𝑘

)︃1/(𝑝−1)

(B.10)

and therefore157

‖𝑥‖𝑝 =
1

|𝜆|1/(𝑝−1)

⃦⃦
𝑠𝑇𝐴

⃦⃦1/(𝑝−1)

𝑝/(𝑝−1)
.

From the constraint 𝜕𝑔
𝜕𝜆 = 0 we get that158

|𝜆| =
⃦⃦
𝑠𝑇𝐴

⃦⃦
𝑝/(𝑝−1)

.

Using (B.10) and the definition of the function 𝑔 we have that159

𝑔(𝑥, 𝜆) =

𝑡∑︁
𝑖=1

𝑠𝑖

𝑑∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗 =

𝑑∑︁
𝑗=1

(︃
𝑡∑︁

𝑖=1

𝑠𝑖𝑎𝑖𝑗

)︃
𝑥𝑗

(B.10)
=

𝑑∑︁
𝑗=1

(︁
−𝜆𝑥𝑝−1

𝑗

)︁
𝑥𝑗

= −𝜆
𝑑∑︁

𝑗=1

𝑥𝑝
𝑗 =

⃦⃦
𝑠𝑇𝐴

⃦⃦
𝑟

where 𝑟 = 𝑝
𝑝−1 , and the theorem follows.160

Lemma B.8. For any 𝑑 ∈ N, 𝑘 ∈ [𝑑] and 𝑝, 𝑞 ∈ [1,∞] we have that161 ⃦⃦
𝑆𝑀 (𝑘,𝑑)

⃦⃦
𝑝,𝑞
≤ 2 min

{︂
𝑝 + 1,

𝑞

𝑞 − 1
, log(𝑘)

}︂
.

Proof. It is easy to see from the definition that
⃦⃦
𝑆𝑀 (𝑘,𝑑)

⃦⃦
𝑝,𝑞

=
⃦⃦
𝑆𝑀 (𝑘,𝑘)

⃦⃦
𝑝,𝑞

. Hence we can162

restrict our attention to the matrices 𝑆𝑀 (𝑘,𝑘) which for simplicity we call 𝑆𝑀𝑘.163

Our first goal is to prove for even 𝑝 that ‖𝑆𝑀𝑘‖𝑝,1 ≤ 2𝑝 and since ‖𝑥‖𝑝−1 ≥ ‖𝑥‖𝑝 we can164

conclude that ‖𝑆𝑀𝑘‖𝑝−1,1 ≤ ‖𝑆𝑀𝑘‖𝑝,1 ≤ 2𝑝. This implies ‖𝑆𝑀𝑘‖𝑝,1 ≤ 2(𝑝 + 1) for any 𝑝.165

Claim B.9. It holds that ‖𝑆𝑀𝑘‖𝑝,1 ≤ 2(𝑝 + 1) for any 𝑝 ∈ [1,∞].166
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Proof. Using the Theorem B.6 and setting 𝑟 = 𝑝/(𝑝− 1) we have that167

‖𝑆𝑀𝑘‖𝑝,1 = max
𝑧∈{−1,1}𝑘

⃦⃦
𝑧𝑇𝑆𝑀𝑘

⃦⃦
𝑝
.

Now for every column 𝑚𝑖 of 𝑆𝑀𝑘 we observe that the sum of the coordinates is zero, that is168 ∑︀𝑘
𝑗=1 𝑚𝑗𝑖 = 0. Also all the element except the diagonal elements are non-positive and hence it is169

true that170
𝑘∑︁

𝑗=1

|𝑚𝑗𝑖| = 2𝑚𝑖𝑖.

But obviously
⃒⃒
𝑧𝑇𝑚𝑖

⃒⃒
≤
∑︀𝑘

𝑗=1 |𝑚𝑗𝑖| for all 𝑧 ∈ {−1, 1}𝑘. This implies that
⃒⃒
𝑧𝑇𝑚𝑖

⃒⃒
≤ 2𝑚𝑖𝑖 =171

2/𝑖. Therefore for any 𝑧 ∈ {−1, 1}𝑘 we have that172

⃦⃦
𝑧𝑇𝑆𝑀𝑘

⃦⃦
𝑟

=

(︃
𝑘∑︁

𝑖=1

⃒⃒
𝑧𝑇𝑚𝑖

⃒⃒𝑟)︃1/𝑟

≤ 2

(︃
𝑘∑︁

𝑖=1

1

𝑖𝑟

)︃1/𝑟

≤ 2 (𝜁(𝑟))
1/𝑟 (B.11)

where 𝜁(𝑥) is the Riemann zeta function evaluated at 𝑥. Now we use the formula (2.1.16) of Chapter173

2.1 of [31] and we get that174

𝜁

(︂
𝑝

𝑝− 1

)︂
≤ 𝑝.

This implies that175 ⃦⃦
𝑧𝑇𝑆𝑀𝑘

⃦⃦
𝑟
≤ 2𝑝(𝑝−1)/𝑝 ≤ 2𝑝.

This holds for any even 𝑝 since only in this case we can use Theorem B.6, and this implies that for176

any 𝑝177 ⃦⃦
𝑧𝑇𝑆𝑀𝑘

⃦⃦
𝑟
≤ 2𝑝(𝑝−1)/𝑝 ≤ 2(𝑝 + 1)

as we argued in the beginning of the proof.178

Now it is obvious that ‖·‖𝑝,𝑞 ≤ ‖·‖𝑝,1 and hence we have that
⃦⃦
𝑆𝑀 (𝑘,𝑑)

⃦⃦
𝑝,𝑞
≤ 2(𝑝 + 1).179

Also, for any 𝑝 and any vector 𝑣 ∈ R𝑑, we have max𝑥:‖𝑥‖𝑝=1

⃒⃒
𝑣𝑇𝑥

⃒⃒
= ‖𝑣‖𝑞/(𝑞−1). Applying this180

on rows of any matrix 𝐴, we get181

‖𝐴‖𝑝,𝑞 ≤

(︃∑︁
𝑖

‖𝑎𝑖‖𝑞𝑝/(𝑝−1)

)︃1/𝑞

.

Therefore, for every 𝑞 > 1, and using the formula (2.1.16) of Chapter 2.1 of [31] and we get that182

⃦⃦
𝑆𝑀 (𝑘,𝑑)

⃦⃦
𝑝,𝑞
≤

(︃
𝑘∑︁

𝑖=1

1

𝑖𝑞

)︃1/𝑞

< 𝜁(𝑞)1/𝑞 <
𝑞

𝑞 − 1
.

Finally we can use (B.11) and see that for any 𝑞, 𝑝183 ⃦⃦
𝑧𝑇𝑆𝑀𝑘

⃦⃦
𝑞
≤ 2

(︃
𝑘∑︁

𝑖=1

1

𝑖

)︃
≤ 2 log 𝑘

and this completes the proof of the lemma.184

B.3 Proof of Theorem 4.3185

We first prove that 𝑓 is continuous and that its output is always a probability distribution over the 𝑑186

coordinates, i.e. that its output belongs to ∆𝑑−1.187

Continuity of 𝑓 . From the definition of 𝑓 is easy to see that 𝑓 is piecewise linear, since it remains188

linear for all the regions where the order of the coordinates of 𝑥 is fixed and 𝑘𝑥 is fixed. It is easy to189

see that the set of these regions is a finite set and each region is a convex set. More formaly190

𝒫𝑓 =
{︀{︀

𝑥 |
(︀
𝑥𝜋(1) ≥ 𝑥𝜋(2) ≥ · · · ≥ 𝑥𝜋(𝑑)

)︀
∧
(︀
𝑥𝜋(1) − 𝑥𝜋(𝑘) ≤ 𝛿

)︀}︀
| 𝜋 : [𝑑]→ [𝑑], 𝑘 ∈ [𝑑]

}︀
9



where 𝜋 has to be a permutation. Also the set of matrices that 𝑓 uses is the following191

𝒜𝑓 =

{︂
1

𝛿
𝑃 𝑇𝑆𝑀 (𝑘,𝑑)𝑃 | 𝑘 ∈ N,𝑃 permutation matrix

}︂
.

So its is clear that 𝑓 is piecewise linear, but it is not clear that it should be continuous. To prove the192

continuity of 𝑓 we will use the Lemmas B.4, B.5. Since 𝑓 is piecewise linear the only regions where193

𝑓 might not be continuous are the boundaries of the regions 𝑃𝑖 ∈ 𝒫𝑓 . There are two types of such194

boundaries one because of the change of the value 𝑘𝑥 and because the ordering in 𝑥 changes. First195

consider the boundaries because of the change of 𝑘𝑥 which for simplicity we call 𝑘 for the proof.196

At the boundaries where 𝑘 decreases we have that 𝑥1 − 𝑥𝑘 = 𝛿 which implies 𝑥𝑘 = 𝑥1 − 𝛿. If we197

apply this in the definition of 𝑓 , then we get198

𝑓(𝑥) =
1

𝛿
𝑆𝑀 (𝑘,𝑑) · 𝑥 + 𝑢𝑘 =

1

𝛿

(︀
𝑆𝑀 (𝑘,𝑑) (𝐼𝑑 + 𝐸𝑘,1 −𝐸𝑘,𝑘)

)︀
𝑥 +

1

𝛿
𝛿𝑚

(𝑘,𝑑)
𝑘 + 𝑢𝑘

=
1

𝛿
𝑆𝑀 (𝑘−1,𝑑) · 𝑥 + 𝑚

(𝑘,𝑑)
𝑘 + 𝑢𝑘

=
1

𝛿
𝑆𝑀 (𝑘−1,𝑑) · 𝑥 + 𝑢𝑘−1

where at the second step we used Lemma B.4. This implies that at these boundaries the function199

remains continuous. The transition for 𝑘 to higher 𝑘 can be proved exactly the same way. Now we200

consider the case where the ordering of 𝑥 changes. In this case we will have that for any two indices201

𝑖, 𝑗 ∈ [𝑑] that are changing order it is true that 𝑥𝑖 = 𝑥𝑗 . But from B.5 and the definition of 𝑓(𝑥) we202

have that 𝑓𝑖(𝑥) = 𝑓𝑗(𝑥). This implies that the relative order of 𝑥𝑖 and 𝑥𝑗 does not change the value203

of 𝑓 . Hence in the boundaries where the coordinates of 𝑥 change order 𝑓 is continuous. Finally in204

any boundary that combines a change in 𝑘 and a change in the ordering of the coordinates of 𝑥 we205

can combine the above arguments and prove that 𝑓 is continous at these boundaries too.206

Output of 𝑓 in ∆𝑑−1. We fix 𝑘𝑥 to be 𝑘 and we consider without loss of generality a vector 𝑥 that207

satisfies208

𝑥1 ≥ 𝑥2 ≥ · · · ≥ 𝑥𝑑. (B.12)

Therefore209

𝑓(𝑥) =
1

𝛿
𝑆𝑀 (𝑘,𝑑) · 𝑥 + 𝑢𝑘.

From the definition of softmax matrices we have that for any column 𝑚𝑗 of 𝑆𝑀 (𝑘,𝑑),
∑︀𝑑

𝑖=1 𝑚𝑖𝑗 =210

0 and since
∑︀𝑑

𝑖=1 𝑢𝑘𝑖 = 1 we have that for any 𝑥 ∈ R𝑑,
∑︀𝑑

𝑖=1 𝑓𝑖(𝑥) = 1. Hence it remains to211

prove that 𝑓𝑖(𝑥) ≥ 0.212

Let 𝑠𝑇𝑖 be the 𝑖th row of 𝑆𝑀 (𝑘,𝑑). For 𝑖 > 𝑘 we have 𝑠𝑇𝑖 = 0𝑇 and 𝑢𝑘𝑖 = 0, hence 𝑓𝑖(𝑥) = 0. On213

the other hand, if 𝑖 ≤ 𝑘, we have that for214

𝑓𝑖(𝑥) =
1

𝛿

𝑑∑︁
𝑗=1

𝑠𝑖𝑗𝑥𝑗 +
1

𝑘
= − 1

𝛿𝑘
𝑥1 +

1

𝛿𝑖
𝑥𝑖 +

1

𝛿

𝑘∑︁
𝑗=𝑖+1

𝑠𝑖𝑗𝑥𝑗 +
1

𝑘

but for 𝑗 > 𝑖 𝑠𝑖𝑗 ≤ 0 and because of (B.12) we have that215

𝑓𝑖(𝑥) ≥ − 1

𝛿𝑘
𝑥1+

1

𝛿

⎛⎝1

𝑖
+

𝑘∑︁
𝑗=𝑖+1

𝑠𝑖𝑗

⎞⎠𝑥2+
1

𝑘
= − 1

𝛿𝑘
𝑥1+

1

𝛿

⎛⎝ 𝑘∑︁
𝑗=𝑖

𝑠𝑖𝑗

⎞⎠𝑥2 = − 1

𝛿𝑘
(𝑥1−𝑥2)+

1

𝑘

now by the definition of 𝑘 we have that −(𝑥1 − 𝑥2) ≥ −𝛿 and hence216

𝑓𝑖(𝑥) ≥ − 1

𝛿𝑘
𝛿 +

1

𝑘
= 0.

This finishes the proof that 𝑓(𝑥) is a probability distribution.217

We are now ready to prove the two parts of Theorem 4.3.218
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Proof of 1. Without loss of generality we can again assume that 𝑥 satisfies (B.12) and we again fix219

𝑘 = 𝑘𝑥. In this case the condition ‖𝑥‖∞ − 𝑥𝑖 > 𝛿 translates to 𝑖 > 𝑘. Then by the definition of 𝑓220

we have that221

𝑓𝑖(𝑥) = 𝑠𝑇𝑖 𝑥 + 𝑢𝑘𝑖

but by the definition of 𝑆𝑀 (𝑘,𝑑) we have that 𝑠𝑇𝑖 = 0𝑇 and 𝑢𝑘𝑖 = 0. These two imply 𝑓𝑖(𝑥) = 0.222

Proof of 2. Since 𝑓 is continuous and piecewise linear we can use Lemma B.2 and we get223

‖𝑓(𝑥)− 𝑓(𝑦)‖𝑞 ≤
(︂

max
𝐴∈𝒜𝑓

‖𝐴‖𝑝,𝑞

)︂
· ‖𝑥− 𝑦‖𝑝 ∀𝑥,𝑦 ∈ R𝑑.

Now we have that the set 𝒜𝑓 is the following224

𝒜𝑓 =

{︂
1

𝛿
𝑃 𝑇𝑆𝑀 (𝑘,𝑑)𝑃 | 𝑘 ∈ N,𝑃 permutation matrix

}︂
and since 𝑃 is a permutation matrix we have that225 ⃦⃦⃦

𝑃 𝑇𝑆𝑀 (𝑘,𝑑)𝑃
⃦⃦⃦
𝑝,𝑞

=
⃦⃦
𝑆𝑀 (𝑘,𝑑)

⃦⃦
𝑝,𝑞

which implies226

‖𝑓(𝑥)− 𝑓(𝑦)‖𝑞 ≤
1

𝛿

(︂
max
𝑘∈[𝑑]

⃦⃦
𝑆𝑀 (𝑘,𝑑)

⃦⃦
𝑝,𝑞

)︂
· ‖𝑥− 𝑦‖𝑝 ∀𝑥,𝑦 ∈ R𝑑.

Finally using Lemma B.8 we have that227

‖𝑓(𝑥)− 𝑓(𝑦)‖𝑞 ≤
2 min

{︁
𝑞

𝑞−1 , 𝑝 + 1, log 𝑑
}︁

𝛿
‖𝑥− 𝑦‖𝑝 ∀𝑥,𝑦 ∈ R𝑑.

This completes the proof of the theorem.228

C Proofs of Lower Bounds in Section 4.2229

In this section we provide the proofs of Theorem 4.4 and Theorem 4.5.230

C.1 Proof of Theorem 4.4231

We will show our proof of all the dimensions 𝑑 of the form 𝑑 = 22𝑘, 𝑘 ∈ N+. Then we can deduce232

that asymptotically our lower bound holds. We use an induction argument with base case 𝑑 = 2 and233

inductive step from 𝑑 to 𝑑2.234

Induction Base, 𝑑 = 2. In this case we have that 𝑓(𝑥) = (𝑓1(𝑥1, 𝑥2), 1 − 𝑓1(𝑥1, 𝑥2)) and for235

simplicity we use the notation 𝑓 to refer to 𝑓1. We will prove that the ℓ∞ to ℓ1 Lipschitz constant236

of 𝑓 is at least 1/𝛿 even in the restricted subregion where 𝑥1 + 𝑥2 = 𝑎 for some 𝑎 ∈ R+. In this237

region the problem becomes single dimensional since 𝑓(𝑥) = (𝑓1(𝑥1, 𝑎− 𝑥1), 1− 𝑓1(𝑥1, 𝑎− 𝑥1))238

and the only freedom of 𝑓 is to decide the single dimensional function 𝑓(𝑥) = 𝑓1(𝑥, 𝑎 − 𝑥). The239

approximation constraint implies that240

max{𝑥, 𝑎− 𝑥} − 𝑥𝑓(𝑥)− (𝑎− 𝑥)(1− 𝑓(𝑥)) ≤ 𝛿 ⇔
241

⇔ (𝑎− 2𝑥)𝑓(𝑥) ≤ 𝛿 −max{𝑥, 𝑎− 𝑥}+ 𝑎− 𝑥.

The last inequality implies that there are two regions of [0, 𝑎]× [0, 1] where (𝑥, 𝑓(𝑥)) cannot be in.242

The first is for 𝑥 ≤ 𝑎/2 where (𝐸1) : 𝑓(𝑥) ≤ 𝛿/(𝑎 − 2𝑥) and the second is for 𝑥 > 𝑎/2 where243

(𝐸2) : 𝑓(𝑥) ≥ 1 + 𝛿/(𝑎 − 2𝑥). Every 𝑓 that satisfies the approximation conditions has to avoid244

the regions (𝐸1) and (𝐸2). Since we our goal is to minimize the Lipschitz constant of 𝑓 in this one245

dimensional projection of 𝑓 we want to see what is the minimum 𝑑𝑓/𝑑𝑥 that we can achieve while246

𝑓 avoids (𝐸1) and (𝐸2) and it is defined in the whole interval [0, 𝑎]. The forbitten regions (𝐸1) and247

(𝐸2) together with the optimal such 𝑓 are shown in the next figure.248

In it is not difficult to see that the any function 𝑓 : [0, 𝑎] → [0, 1] that avoids (𝐸1) and (𝐸2) has249

to have at some point 𝜉 ∈ [0, 𝑎] a slope 𝑓 ′(𝜉) that is at least the slope of the green line in Figure 2250
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Figure 2: The forbitten regions (𝐸1), (𝐸2) and the optimal function 𝑓 for 𝑎 = 2, 𝛿 = 1/10.

which represents the line that is both targent to the boundary of (𝐸1) and to the boundary of (𝐸2).251

This target line can we computed in a closed form and its slope can be shown to be greater than252

1/8𝛿. We leave the precise calculation as an exercise to the reader.253

Inductive Step, from 𝑑 to 𝑑2. We assume by inductive hypothesis that for any soft maximum254

function 𝑓 in 𝑑 dimensions, with Lipschitz constant at most log(𝑑)/8𝛿 has expected approximation255

loss at least 𝛿. We will then prove that for any soft maximum function 𝑓 in 𝑑2 dimensions with256

Lipschitz constant at most log(𝑑)/8𝛿 has expected approximation loss at least 2 · 𝛿. This in turn257

implies that if 𝑓 has Lipschitz constant at most 2 log(𝑑)/8𝛿 then 𝑓 has expected approximation loss258

at least 𝛿.259

Consider any soft maximum function 𝑓 : R𝑑2

+ → ∆𝑑2−1 and let260

𝛿* = max
𝑧∈R𝑑2

+

‖𝑧‖∞ − ⟨𝑓(𝑧), 𝑧⟩.

We restrict our attention to a subspace of R𝑑2

+ that is produced by
(︀
R𝑑

+

)︀2
by the following map261

𝑔 :
(︀
R𝑑

+

)︀2 → R𝑑2

+ defined as262

𝑔ℓ(𝑥,𝑦) = 𝑥ℓ mod 𝑑 + 𝑦ℓ div 𝑑.

We also define263

𝛿 = max
𝑥,𝑦∈R𝑑

+

‖𝑔(𝑥,𝑦)‖∞ − ⟨𝑓(𝑔(𝑥,𝑦)), 𝑔(𝑥,𝑦)⟩.

On these instances of R𝑑2

we want to view the space of alternatives [𝑑2] as a product space [𝑑]⊗ [𝑑]264

and that’s what the mapping 𝑔 is capturing. We also want to view the output distribution as a product265

distribution over [𝑑] ⊗ [𝑑] but since we cannot assume independence we only define the marginal266

distributions of 𝑓(𝑧) to the coordinates ℓ that have index with the same value ℓ mod 𝑑, and the267

coordinates ℓ that have the same value ℓ div 𝑑. We will call 𝑞 : R𝑑2

+ → ∆𝑑 the marginal distribution268

to the coordinates ℓ that have index with the same value ℓ div 𝑑 and 𝑟 : R𝑑2

+ → ∆𝑑 the marginal269

distribution to the coordinates ℓ that have the same value ℓ mod 𝑑. More formally270

𝑞𝑖(𝑧) =

𝑑∑︁
𝑗=1

𝑓𝑖𝑑+𝑗(𝑧)

and 𝑟𝑗(𝑧) =

𝑑∑︁
𝑖=1

𝑓𝑖𝑑+𝑗(𝑧).

Now it is easy to observe that271

‖𝑔(𝑥,𝑦)‖∞ = ‖𝑥‖∞ + ‖𝑦‖∞
and ⟨𝑓(𝑔(𝑥,𝑦)), 𝑔(𝑥,𝑦)⟩ = ⟨𝑞(𝑔(𝑥,𝑦)),𝑥⟩+ ⟨𝑟(𝑔(𝑥,𝑦)),𝑦⟩.
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Hence272

‖𝑔(𝑥,𝑦)‖∞ − ⟨𝑓(𝑔(𝑥,𝑦)), 𝑔(𝑥,𝑦)⟩ = ‖𝑥‖∞ − ⟨𝑞(𝑔(𝑥,𝑦)),𝑥⟩⏟  ⏞  
𝛿1(𝑥,𝑦)

+ ‖𝑦‖∞ − ⟨𝑟(𝑔(𝑥,𝑦)),𝑦⟩⏟  ⏞  
𝛿2(𝑥,𝑦)

We now define a continuous two game with the following players:273

1. the first player picks a strategy 𝑥 ∈ R𝑑 and has utility function equal to 𝛿1(𝑥,𝑦), and274

2. the second player picks a strategy 𝑦 ∈ R𝑑 and has utility function equal to 𝛿2(𝑥,𝑦).275

It is easy to see that since 𝑓 is Lipschitz continuous, both 𝑞 and 𝑟 are continuous and this implies276

that 𝛿1 and 𝛿2 are continuous. It is well known then from the theory of continuous games that there277

exists a mixed Nash Equilibrium in the game that we described above [33]. This means that there278

exists a pair of distributions 𝒟𝑥, 𝒟𝑦 in R𝑑 such that279

1. for every 𝑥⋆ in the support of 𝒟𝑥 it holds that 𝑥⋆ = argmax𝑥∈R𝑑 E𝑦∼𝒟𝑦 [𝛿1(𝑥,𝑦)], and280

2. for every 𝑦⋆ in the support of 𝒟𝑦 it holds that 𝑦⋆ = argmax𝑦∈R𝑑 E𝑥∼𝒟𝑥
[𝛿2(𝑥,𝑦)].281

Let us know define the following functions282

∙ �̄�(𝑥) = E𝑦∼𝒟𝑦
[𝑞(𝑔(𝑥,𝑦))],283

∙ 𝑟(𝑦) = E𝑥∼𝒟𝑥 [𝑟(𝑔(𝑥,𝑦))],284

∙ 𝛿1(𝑥) = E𝑦∼𝒟𝑦 [𝛿1(𝑥,𝑦)] = ‖𝑥‖∞ − ⟨�̄�(𝑥),𝑥⟩, and285

∙ 𝛿2(𝑦) = E𝑥∼𝒟𝑥
[𝛿2(𝑥,𝑦)] = ‖𝑦‖∞ − ⟨𝑟(𝑦),𝑦⟩286

where in the definition of the last two functions we have used the linearity of expectation. Form the287

existence of the Nash Equilibrium in the aforementioned continuous game we have that288

E
𝑥∼𝒟𝑥,𝑦∼𝒟𝑦

[𝛿1(𝑥,𝑦) + 𝛿2(𝑥,𝑦)] = max
𝑥∈R𝑑

{︀
𝛿1(𝑥)

}︀
+ max

𝑦∼R𝑑

{︀ ¯𝛿2(𝑦)
}︀

which in turn implies the following289

max
𝑥,𝑦∈R𝑑

{𝛿1(𝑥,𝑦) + 𝛿2(𝑥,𝑦)} ≥ max
𝑥∈R𝑑

{︀
𝛿1(𝑥)

}︀
+ max

𝑦∼R𝑑

{︀ ¯𝛿2(𝑦)
}︀
. (C.1)

Next our goal is to relate the Lipschitzness of 𝑓 with the Lipschitzness of �̄� and 𝑟. Observe that290

‖𝑔(𝑥,𝑦)− 𝑔(𝑥′,𝑦′)‖∞ = ‖𝑥− 𝑥′‖∞ + ‖𝑦 − 𝑦′‖∞ (C.2)

‖𝑞(𝑔(𝑥,𝑦))− 𝑞(𝑔(𝑥′,𝑦′))‖1 ≤ ‖𝑓(𝑔(𝑥,𝑦))− 𝑓(𝑔(𝑥′,𝑦′))‖1 (C.3)

‖𝑟(𝑔(𝑥,𝑦))− 𝑟(𝑔(𝑥′,𝑦′))‖1 ≤ ‖𝑓(𝑔(𝑥,𝑦))− 𝑓(𝑔(𝑥′,𝑦′))‖1 (C.4)

where the first equality follows from simple calculations and the second and third inequality follow291

from the known fact that the total variation distance of a distribution is lower bounded by the total292

variation of its marginals.293

Now we remind that we have assumed that 𝑓 has (ℓ∞, ℓ1)-Lipschitz constant that is at most 𝐿 =294

log(𝑑)/8𝛿. Using the fact that the ℓ1 norm is a convex function and using the Jensen inequality we295

have that296

‖�̄�(𝑥)− �̄�(𝑥′)‖1 ≤ E
𝑦∼𝒟𝑦

[‖𝑞(𝑥,𝑦)− 𝑞(𝑥′,𝑦)‖1]

≤ E
𝑦∼𝒟𝑦

[‖𝑓(𝑔(𝑥,𝑦))− 𝑓(𝑔(𝑥′,𝑦))‖1] ≤ 𝐿 · ‖𝑥− 𝑥′‖∞ (C.5)

where the first inequality is due to Jensen, the second inequality follows from (C.3) and the last297

inequality follows from the (ℓ∞, ℓ1)-Lipschitz constant of 𝑓 and (C.2). The same way we can prove298

the following299

‖𝑟(𝑦)− 𝑟(𝑦′)‖1 ≤ 𝐿 · ‖𝑦 − 𝑦′‖∞ . (C.6)

13



It hence follows that both �̄� and 𝑟 are softmax functions in 𝑑 dimensions with Lipschitz constant at300

most 𝐿 = log(𝑑)/8𝛿. Hence from our inductive hypothesis we have that the approximation error of301

both �̄�, 𝑟 is at least 𝛿, of more formally302

max
𝑥∈R𝑑

𝛿1(𝑥) ≥ 𝛿 and max
𝑦∈R𝑑

𝛿2(𝑦) ≥ 𝛿.

Now putting the above inequalities together with (C.1) we get that the approximation error of 𝑓 is at303

least 2𝛿. Formally max𝑥,𝑦∈R𝑑 {𝛿1(𝑥,𝑦) + 𝛿2(𝑥,𝑦)} ≥ 2𝛿. This concludes the inductive step and304

proves our theorem.305

C.2 Proof of Theorem 4.5306

We set 𝑥 = (𝑥, 0, . . . , 0)𝑇 and 𝑦 = (𝑦, 0, . . . , 0)𝑇 , with 𝑦 > 𝑥. Then we have307

EXP(𝑥) =

(︂
𝑒𝛼𝑥

𝑒𝛼𝑥 + (𝑑− 1)
,

1

𝑒𝛼𝑥 + (𝑑− 1)
, · · · , 1

𝑒𝛼𝑥 + (𝑑− 1)

)︂𝑇
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EXP(𝑦) =

(︂
𝑒𝛼𝑦

𝑒𝛼𝑥 + (𝑑− 1)
,

1

𝑒𝛼𝑦 + (𝑑− 1)
, · · · , 1

𝑒𝛼𝑦 + (𝑑− 1)

)︂𝑇

.

Since 𝑦 > 𝑥, we compute309

‖EXP(𝑥)− EXP(𝑦)‖1 =

(︂
𝑒𝛼𝑦

𝑒𝛼𝑦 + (𝑑− 1)
− 𝑒𝛼𝑥

𝑒𝛼𝑥 + (𝑑− 1)

)︂
− (𝑑− 1)

(︂
1

𝑒𝛼𝑦 + (𝑑− 1)
− 1

𝑒𝛼𝑥 + (𝑑− 1)

)︂
and ‖𝑥− 𝑦‖𝑝 = 𝑦 − 𝑥. Now let310

ℎ(𝑧) =
𝑒𝛼𝑧

𝑒𝛼𝑧 + (𝑑− 1)
− (𝑑− 1)

1

𝑒𝛼𝑦 + (𝑑− 1)
=

𝑒𝛼𝑧 − (𝑑− 1)

𝑒𝛼𝑧 + (𝑑− 1)

our goal to maximize, with respect to 𝑥, 𝑦 ∈ R+ with 𝑦 ≥ 𝑥, the ratio311

‖EXP(𝑥)− EXP(𝑦)‖1
‖𝑥− 𝑦‖𝑝

=
ℎ(𝑦)− ℎ(𝑥)

𝑦 − 𝑥
.

Because of the mean value theorem this is equivalent with maximum with respect to 𝑧 ∈ R+ the312

derivative of ℎ, ℎ′(𝑧). But we have313

ℎ′(𝑧) =
𝛼𝑒𝛼𝑧 (𝑒𝛼𝑧 + (𝑑− 1))− 𝛼𝑒𝛼𝑧 (𝑒𝛼𝑧 − (𝑑− 1))

(𝑒𝛼𝑧 + (𝑑− 1))
2 = 2𝛼

𝑒𝛼𝑧(𝑑− 1)

(𝑒𝛼𝑧 + (𝑑− 1))
2 .

Now we set 𝑧 = log 𝑑
𝛼 and we get for 𝑑 > 10314

ℎ′
(︂

log 𝑑

𝛼

)︂
= 2𝛼

𝑑(𝑑− 1)

(2𝑑− 1)2
≤ 𝛼

2
.

Finally since the absolute approximation error of the exponential mechanism with parameter 𝛼 is315

log 𝑑/𝛼, to get 𝛿 absolute error we have to set 𝛼 = log 𝑑/𝛿 and hence for this regime316

𝑐 ≥ log 𝑑

2𝛿

and the proof of the theorem is completed.317

D Application to Mechanism Design318

In this section we show how to design a digital auction with limited supply and worst case guaran-319

tees. As we will see to do so we need to relax the incentive compatibility constraints to approximate320

incentive compatibility in the framework as in [22]. In this setting we fix an anonymous price for321
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all the agents regardless of whether their values follow the same distribution of not. In this case we322

show that we can extract almost the optimal revenue among all the fixed price auctions.323

Compared to the results of [22] and [1] our mechanism can interpolate between both of the results.324

Most importantly our results, in contrast to both [22] and [1] achieves a worst case guarantee instead325

of a guarantee in expectation or with high probability. Another improvement of our result is that it326

holds even if we do not assume unlimited supply but we only have finite supply of the item to sell.327

We start with the next Section D.1 with the basic definitions and formulation of the mechanism and328

auction design problem.329

D.1 Definitions and Preliminaries330

We first give some necessary basic definitions of design auctions for selling 𝑘 identical items to 𝑛331

independent bidders with unit demand valuations.332

Items. We have 𝑘 identical items for sell.333

Bidders. We have 𝑛 independent bidders with unit demand valuations over the 𝑘 item to sell. The334

bidders are clustered in 𝑡 classes and let 𝑡(𝑖) be the class of bidder 𝑖. The value of bidder 𝑖 ∈ [𝑛]335

for any of the items is 𝑣𝑖 ∈ [0, 𝐻] where 𝐻 is the maximum possible value that we assume to be336

known. We also assume that 𝑣𝑖 it is drawn from a distribution ℱ𝑡(𝑖). We assume that all the random337

variables 𝑣𝑖 are independent from each other.338

Mechanism. A mechanism 𝑀 is a function 𝑀 : R𝑛
+ → ∆𝑘

𝑛 × R𝑛
+ that takes as input the bid339

of the players and outputs 𝑘 probability distributions 𝐴 = (𝑎1, . . . ,𝑎𝑘) ∈ ∆𝑘
𝑛 over the bidders340

that determines the probability that each bidder is going to receive the item 𝑗, together with a non-341

negative value 𝑝𝑖 for every bidder 𝑖 that determines the money bidder 𝑖 will pay. We write 𝑀(𝑣) =342

(𝐴,𝑝) and we call 𝐴 ∈ ∆𝑘
𝑛 the allocation rule of the mechanism 𝑀 and 𝑝 the payment rule of 𝑀 .343

Bidders Utility. We assume that the bidders are unit-demand and they have quasi-linear utility, i.e.344

that the utility function 𝑢𝑖 : ∆𝑛×R𝑛
+ → R of each bidder is equal to 𝑢𝑖(𝐴,𝑝) = max𝑗(𝑎𝑖𝑗𝑣𝑖)−𝑝𝑖.345

Revenue Objective. For every mechanism 𝑀 the revenue REV(𝑀,𝑣) the designer gets in input 𝑣346

is equal to REV(𝑀,𝑣) =
∑︀

𝑖∈[𝑛] 𝑝𝑖 where 𝑝 is the vector of prices that the mechanism 𝑀 assigns347

to the agents in input 𝑣. By REV(𝑀) we denote the expected value of the mechanism 𝑀 when the348

values 𝑣 are drawn from their distributions, i.e. REV(𝑀) = E [REV(𝑀,𝑣)].349

Incentive Compatibility. A mechanism 𝑀 is called dominant strategy incentive compatible (DSIC)350

or simply incentive compatible (IC) if the bidders cannot increase their revenue by misreporting their351

bids. More precisely we say that 𝑀 satisfies incentive compatibility if for every bidder 𝑖352

𝑢𝑖(𝑀(𝑣𝑖,𝑣−𝑖)) ≥ 𝑢𝑖(𝑀(𝑣′𝑖,𝑣−𝑖)) ∀ 𝑣𝑖, 𝑣′𝑖,𝑣−𝑖. (D.1)

Also we say that 𝑀 is 𝜀-incentive compatible if for every bidder 𝑖353

𝑢𝑖(𝑀(𝑣𝑖,𝑣−𝑖)) ≥ ·𝑢𝑖(𝑀(𝑣′𝑖,𝑣−𝑖))− 𝜀 ∀ 𝑣𝑖, 𝑣′𝑖,𝑣−𝑖. (D.2)

Individual Rationality. We say that a mechanism 𝑀 satisfies individual rationality if for every354

bidder 𝑖 𝑢𝑖(𝑀(𝑣)) ≥ 0 for all 𝑣 ∈ R𝑛
+.355

Optimal Revenue over a Ground Set. Let ℳ = {𝑀1, . . . ,𝑀𝑑} be a set of mechanisms which356

we call ground set, we define the maximum revenue of ℳ at input 𝑣 as OPTREV(ℳ,𝑣) =357

max𝑀∈ℳ REV(𝑀,𝑣). Also we define maximum expected revenue achievable by any mechanism358

inℳ to be OPTREV(ℳ) = max𝑀∈ℳ REV(𝑀).359

The mechanisms that we describe in this section involve a smooth selection of a mechanism among360

the mechanisms in a carefully chosen ground set of incentive compatible and individual rational361

mechanismsℳ.362

Soft Maximizer Mechanism. Let ℳ = {𝑀1, . . . ,𝑀𝑑} be a ground set of incentive compatible363

and individually rational mechanism. We define the mechanism 𝑄[ℳ,𝑓 ] to be the mechanism that364

chooses one of the mechanisms in [𝑑] randomly from the probability distribution that output the soft365

maximum function 𝑓 with input the vector 𝑥 = (REV(𝑀1,𝑣), . . . , REV(𝑀𝑑,𝑣)).366
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The following lemma proves the incentive compatibility properties of the mechanism 𝑄[ℳ,𝑓 ] when367

the 𝑓 satisfies some stability properties. For a proof of this lemma we refer to the proof of Lemma368

3 in McSherry and Talwar [22].369

Lemma D.1. Let the bidders valuations come from the interval [0, 𝐻], let alsoℳ = {𝑀1, . . . ,𝑀𝑑}370

be a ground set of incentive compatible and individually rational mechanism and 𝑓 be a soft max-371

imum function that is (ℓ𝑝, ℓ1)-Lipschitz with Lipschitz constant 𝐿 = 𝜀/𝑆𝜒(REV). Then the mecha-372

nism 𝑄[ℳ,𝑓 ] is individually rational and 𝜀-incentive compatible.373

D.2 Selling Digital Goods with Anonymous Price374

The single parameter auctions are arguably the most classical setting in the mechanism design lit-375

erature. Myerson, in his seminal work [27], proved that among all the possible auction designs376

the revenue is maximized by a second price auction with reserve price. The basic assumptions of377

his framework though is the assumption that the auctioneer has a prior belief for the values of the378

different bidders and she tries to maximize her expected revenue in this Bayesian setting. This as-379

sumption is the major milestone in applying the Myerson’s auction in practice. Trying to relax this380

assumption, a line of theoretical computer science work studied the maximization of revenue when381

we only have access to samples that come from the bidders distribution and not access to the entire382

distribution [29, 9, 6, 25, 8, 5]. Although these works make a very good progress on understanding383

the optimal auctions and make them more practical there are still some drawbacks that make these384

auctions not applicable in practice.385

1. Buyers may strategize in the collection of samples. If the buyers know that the seller is386

going to collect samples to estimate the optimal auction to run then they have incentives to387

strategize so that the seller chooses lower prices and hence they get more utility.388

2. Constant approximation is not always a satisfying guarantee. The constant approxima-389

tion is a worst case guarantee and hence the constant approximation mechanisms might fail390

to get almost optimal revenue even in the instances where this is easy. A popular alternative391

in practical applications of mechanism design is to choose the optimal from a set of simple392

mechanisms.393

Because of these reasons, 1. and 2., the implementation and the theoretical guarantees of the mech-394

anism 𝑄[ℳ,𝑓 ] becomes a relevant problem. The ground set of mechanisms that we consider in this395

section is a subset of the second price selling separately auctions with a single reserved price, which396

we call set of anonymous auctions and we denote by ℳ𝐴. We are now ready to prove the main397

result of this section.398

Theorem D.2. Consider a 𝑘 identical item auction instance with unit demand bidder’s and values399

in the range [0, 𝐻]. Then there exists a ground set of mechanisms ℳ̂ ⊆ ℳ𝐴 such that for all400

𝑣 ∈ [0, 𝐻]𝑛 and for any of the possible outputs of 𝑄
[︁
ℳ̂, PLSOFTMAX𝜂

]︁
with input 𝑣 it holds that401

REV(𝑄
[︁
ℳ̂, PLSOFTMAX𝜂

]︁
,𝑣) ≥ (1− 𝛿)OPTREV(ℳ𝐴,𝑣)− 4

(︂
1

𝛿
− 1

)︂
𝐻

𝜀

where PLSOFTMAX𝜂 is the soft maximum function defined in (4.1) with parameter such that402

PLSOFTMAX is 𝜀-Lipschitz in Total Variation Distance. Moreover 𝑄[ℳ̂, PLSOFTMAX] is indi-403

vidually rational and 𝜀 ·𝐻-incentive compatible.404

Proof. Let [0, 𝐻] be the range of prices for the single item auction. We fix a positive real number 𝛿405

and we use the discretization 𝒫 of [0, 𝐻], where 𝒫 = {𝑝1, . . . , 𝑝𝑑} and 𝑝𝑖 = 𝐻 · (1− 𝛿)𝑖. Let also406

𝛼 = 𝑝𝑑. We are now ready to define the ground set of mechanisms ℳ̂ = {𝑀1, . . . ,𝑀𝑑} where 𝑀𝑖407

is the second price auction with reserved price equal to 𝑝𝑖. The size of ℳ̂ is408

𝑑 = log
(︁ 𝛼

𝐻

)︁
/ log(1− 𝛿) ≤ 2 log

(︂
𝐻

𝛼

)︂
/𝛿

where the last inequality follows assuming that 𝛿 ≤ 1/2. As we described, we will run our409

mechanism PLSOFTMAX, with objective function REV. In order to be able to apply our main410
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theorem about the PLSOFTMAX mechanism we will bound the ℓ1-sensitivity of the vector 𝑥 =411

(REV(𝑀1,𝑣), . . . , REV(𝑀𝑑,𝑣)) with respect the change of the bid of one agent. Hence we need to412

bound the quantity413

𝑑∑︁
𝑖=1

|REV(𝑀𝑖, (𝑣𝑖,𝑣−𝑖))− REV(𝑀𝑖, (𝑣
′
𝑖,𝑣−𝑖))| ≤ (1− 𝛿)

𝐻

𝛿
.

This inequality holds because for every agent 𝑖 the total change that agent 𝑖 can make in the revenue414

objective of all the alternatives is at most415

𝑑∑︁
𝑖=1

(1− 𝛿)𝑖𝐻 ≤
(︂

1

𝛿
− 1

)︂
𝐻,

which implies that for our setting 𝑆1(REV) ≤
(︀
1
𝛿 − 1

)︀
𝐻 .416

The approximation loss of our mechanism has three components: (1) we loose 𝛿OPT because of the417

discretization of the price of every item, (2) we loose 𝛼 from every item because we need the ground418

set to be finite and (3) we loose 𝜂 because we use the soft maximization algorithm PLSOFTMAX𝜂 .419

For the last part and since we need PLSOFTMAX𝜂 to be 𝜀-Lipschitz in total variation distance we420

have that421

𝜀 =
4

𝜂
𝑆1(REV) ≤ 4

𝜂

(︂
1

𝛿
− 1

)︂
𝐻 =⇒ 𝜂 ≤ 4

𝜀

(︂
1

𝛿
− 1

)︂
𝐻.

Finally applying Theorem 4.3 the theorem follows.422

If we assume that 𝐻 = 𝑂(1) then by setting 𝛿 ← 1√
OPT

and 𝜀← 𝜀 ·𝐻 we recover the result of [1],423

with relaxed incentive compatibility, but even in the case of limited supply and having a worst case424

guarantee.425

Corollary D.3. Consider a 𝑘 identical item auction instance with unit demand bidder’s and values426

in the range [0, 𝐻]. If we fix 𝐻 then there exists a mechanism 𝑀 such that for any 𝑣 ∈ [0, 𝐻]𝑛, for427

all 𝑣 ∈ [0, 𝐻]𝑛 and for any of the possible outputs of 𝑀 with input 𝑣 it holds that428

REV(𝑀,𝑣) ≥ OPTREV(ℳ𝐴)−𝑂

(︂
1

𝜀

√︀
OPTREV(ℳ𝐴)

)︂
where 𝑀 is individually rational and 𝜀-incentive compatible.429

Another corollary can be directly derived by applying a discretized version of the Theorem 9 of [22]430

but replacing the exponential mechanism with the PLSOFTMAX mechanism. Then as we explained431

in Section 4 the guarantees will hold in the worst case and not in expectation.432

Corollary D.4. Consider a 𝑘 identical item auction instance with unit demand bidder’s and values433

in the range [0, 𝐻]. If we fix 𝐻 then there exists a mechanism 𝑀 such that for any 𝑣 ∈ [0, 𝐻]𝑛, for434

all 𝑣 ∈ [0, 𝐻]𝑛 and for any of the possible outputs of 𝑀 with input 𝑣 it holds that435

REV(𝑀,𝑣) ≥ OPTREV(ℳ𝐴)−𝑂

(︂
1

𝜀
log (OPTREV(ℳ𝐴) · 𝑘)

)︂
where 𝑀 is individually rational and 𝜀-incentive compatible.436

As we can see Corollary D.3 and Corollary D.4 are not directly comparable since in Corollary D.4437

the log(𝑘) factor in the approximation error appears that misses from Corollary D.3.438

E Maximization of Submodular Functions439

In this section we consider the problem of differential privately maximizing a submodular function,440

under cardinality constraints. For this problem we apply the power mechanism and we compare our441

results with the state of the art work of Mitrovic et al. [24]. We observe that when the input data set442

is only 𝑂(1)-multiplicative insensitive power mechanism has an error that is asymptotically smaller443

than the corresponding error from the state of the art algorithm of Mitrovic et al. [24]. This result is444

formally stated in Corollary 6.6.445
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As discussed in Section 6.2.1, to solve the submodular maximization under cardinality constraints446

we use the Algorithm 1 of [24], where we replace the exponential mechanism in the soft maximiza-447

tion step with the power mechanism.448

Algorithm 1 (Algorithm 1 of [24]):449

Input: submodular function ℎ, soft maximization function 𝑔, 𝑘 ∈ N.450

Output: 𝑆 ⊆ 𝒟 such that |𝑆| = 𝑘.451

1. Initialize 𝑆𝑜 = ∅. Let |𝒟| = 𝑑 and 𝒟 = {𝑣1, . . . , 𝑣𝑑}.452

2. For 𝑖 ∈ [𝑘]:453

a. Define 𝑞𝑖 : 𝒟 ∖ 𝑆𝑖−1 → R as454

𝑞𝑖(𝑣) = ℎ(𝑆𝑖−1 ∪ {𝑣})− 𝑓(𝑆𝑖−1).

b. Pick 𝑢𝑖 ∈ 𝒟 from the probability distribution455

𝑔 (𝑞𝑖(𝑣1), . . . , 𝑞𝑖(𝑣𝑑)) .

c. 𝑆𝑖 ← 𝑆𝑖 ∪ {𝑢𝑖}.456

3. Return 𝑆𝑘.457

To analyze Algorithm 1 we need the following result for compositions of differentially private algo-458

rithms.459

Composition of Differentially Private Algorithms. An algorithm 𝐴 is a composition of 𝑘 algo-460

rithms 𝐴1, . . . , 𝐴𝑘 if the output of 𝐴(𝑣) is a function only of the outputs 𝐴1(𝑣), . . . , 𝐴𝑘(𝑣).461

The following theorem bounds the privacy of 𝐴(𝑣) as a function of the privacy of 𝐴1(𝑣), . . . , 𝐴𝑘(𝑣).462

Theorem E.1 ([12]). Let 𝐴1, . . . , 𝐴𝑘 be differentially private algorithms with parameters (𝜀′, 𝛿′).463

Let also 𝐴 a composition of 𝐴1, . . . , 𝐴𝑘. Then, 𝐴 satisfies (𝜀, 𝛿)-differential privacy with464

1. 𝜀 = 𝑘𝜀′ and 𝛿 = 𝑘𝛿′,465

2. 𝜀 = 1
2𝑘

2𝜀′2 +
√︀

2 log(1/𝜂)𝜀′ and 𝛿 = 𝜂 + 𝑘𝛿′ for any 𝜂 > 0.466

We are now ready to prove Theorem 6.4.467

Proof of Theorem 6.4. The privacy guarantee easily follows from the composition properties of dif-468

ferentially private mechanisms that we present in Theorem E.1.469

Let 𝑆* be the set of the optimal solution, 𝑆𝑖 be the set that the algorithm has in the 𝑖th iteration and470

𝑣𝑖 the 𝑖th element that our algorithm chose. We have that471

E[ℎ(𝑆𝑖 ∪ {𝑣𝑖})− ℎ(𝑆𝑖)] =

=
1

1 + 𝛿
max

𝑣∈𝒟∖𝑆𝑖−1

(ℎ(𝑆𝑖 ∪ {𝑣})− ℎ(𝑆𝑖))

≥ 1

1 + 𝛿

1

𝑘

(︃∑︁
𝑣∈𝑆*

(ℎ(𝑆𝑖 ∪ {𝑣})− ℎ(𝑆𝑖))

)︃

≥ 1

1 + 𝛿

1

𝑘
(ℎ(𝑆* ∪ 𝑆𝑖−1)− ℎ(𝑆𝑖−1))

≥ 1

1 + 𝛿

1

𝑘
(OPT− ℎ(𝑆𝑖−1)).

Therefore472

OPT− E[ℎ(𝑆𝑖)] ≤
(︂

1− 1

1 + 𝛿

1

𝑘

)︂𝑖

OPT.

From which we conclude473

E[ℎ(𝑆𝑘)] ≥

(︃
1−

(︂
1− 1

1 + 𝛿

1

𝑘

)︂𝑘
)︃

OPT

≥
(︂

1− 1

exp(1/(1 + 𝛿))

)︂
OPT.

18



and hence the theorem follows.474

Next our goal is to compare Theorem 8 of [24] with Theorem 6.4. We illustrate the difference be-475

tween power and exponential mechanism showing an improvement over the state of the art algorithm476

of [24].477

Lemma E.2. Let 𝛿POW be the approximation loss of POW assuming that the input data set is 𝑡-478

multiplicative insensitive, then 𝛿POW ≤ min
{︁

1
𝑒 + 2

√
𝑘 log 𝑑
𝑡𝜀

𝑆∞(ℎ)
OPT , 1

}︁
.479

Proof. From Theorem 6.4 we have that480

𝛿POW = min

⎧⎨⎩exp

⎛⎝−(︂1− 𝑆∞(ℎ)

OPT

)︂ 2
√

𝑘 log 𝑑
𝜀

⎞⎠ , 1

⎫⎬⎭
≤ min

{︃
exp

(︃
−

(︃
1− 2

√
𝑘 log 𝑑

𝜀

𝑆∞(ℎ)

OPT

)︃)︃
, 1

}︃

=
1

𝑒
min

{︃
exp

(︃
2
√
𝑘 log 𝑑

𝜀

𝑆∞(ℎ)

OPT

)︃
, 𝑒

}︃

Now if 2
√
𝑘 log 𝑑
𝜀

𝑆∞(ℎ)
OPT ≥ 1 then 𝛿POW = 1 and hence, we can assume that 2

√
𝑘 log 𝑑
𝜀

𝑆∞(ℎ)
OPT ≤ 1. But481

for any 𝑧 ≤ 1 it is easy to see that 𝑒𝑧 ≤ 1 + 𝑒𝑧 and hence482

𝛿POW ≤
1

𝑒
min

{︃
1 + 𝑒

2
√
𝑘 log 𝑑

𝜀

𝑆∞(ℎ)

OPT
, 𝑒

}︃
and the lemma follows.483

Now combining Theorem 6.4 and Lemma E.2 we can prove Corollary 6.6 which clearly illustrates484

the comparison of the performance of power and exponential mechanism. From Corollary 6.6 we485

observe that the approximation loss using the exponential mechanism is a 𝑂(
√
𝑘) factor larger than486

the approximation loss using the power mechanism. Hence Corollary 6.6 improves over the state of487

the art differentially private algorithms for submodular optimization.488

We can use the same ideas as in Theorem 6.4 and Corollary 6.6 to improve the results for maximiza-489

tion of submodular functions with more general matroid constraints of [24].490

F Experiments on Large Real-World Data Sets491

Remark. In the main part we accidentally refer to Appendix F both for the theoretical and the492

practical results about differentially private submodular maximization. Please look at the Appendix493

E for the details on the theoretical part and in this section for the details in the experiments part.494

We now empirically validate our results for submodular maximization. In our experiments we used495

a publicly available data-set to create a max-k-coverage instance similarly to prior work [13]. In a496

coverage instance we are given a family 𝑁 of sets over a ground set 𝑈 and we want to find 𝑘 sets497

from 𝑁 with maximum size of their union (which is a monotone submodular maximization prob-498

lem under cardinality constraint). We created the coverage instance from the DBLP co-authorship499

network of computer scientists by extracting, for each author, the set of her coauthors. The ground500

set is the set of all authors in DBLP. There are∼ 300 thousands sets over∼ 300 thousands elements501

for a total sum of sizes of all sets of 1.0 million. Then we ran the (non-private) greedy submodular502

maximization algorithm to obtain a (baseline) upperbound on the solution (notice that computing503

the actual optimum is NP-Hard). Then we compared the objective value obtained by private greedy504

algorithm for submodular maximization using the exponential mechanism (as described in Algo-505

rithm 1 in [24]) and using the power mechanism as soft-max, for different values of the parameter 𝛼506

in the two methods. We used 𝑘 = 10 as the cardinality of the output in our experiment.507

To evaluate empirically the smoothness of the mechanism we performed a manipulation test on the508

data. We manipulated the coverage instance removing, independently, each element of the ground509
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Figure 3: Robustness vs objective value in the submodular maximization with cardinality constraint
𝑘 = 10. The y-axis shows the ration of the average objective obtained vs the (non-private) greedy
algorithm. The x-axis represent the sensitivity to the manipulation test of the value of the first
element selected.

set with probability 1/1000. Then, for a fixed mechanism and parameter setting, we compared510

the probability distribution of the first set selected by the algorithm in the manipulated instance511

vs in the original instance (we used the ℓ1 and ℓ∞ distance of the distributions)2. Finally, we ran512

each configuration of the experiment (i.e., a mechanism and a parameter) 100 times and reported513

the average objective in the original dataset (over the objective of non-private greedy) and average514

distance between the distributions obtained over the original and manipulated datasets. Figures 3a515

and 3b report the results for 𝑘 = 10 in the DBLP instance. Notice that we observe that for the516

same level of sensitivity to manipulation (both in 𝑙1 and 𝑙∞ norm) the power mechanism obtains517

significantly more objective value in this problem as well (y-axis reports the average ratio of the518

objective obtained vs that of the non-private algorithm). This confirms our theoretical results for519

submodular maximization.520

G Loss Function For Multi-class Classification521

Before presenting our loss function that can be used for multi-class classification we present a proof522

of Lemma 6.7. Due to a minor typo in the presentation of the Lemma in the main part of the paper523

we restate the Lemma here corrected.524

Lemma G.1 (Lemma 6.7). Let ℎ(·) = sparsegen-lin(·) be the generalization of sparsemax(·)525

function, then there exist 𝑥,𝑦 ∈ R𝑑 such that ‖ℎ(𝑥)− ℎ(𝑦)‖1 ≥
1
2𝑑

1−1/𝑞 ‖𝑥− 𝑦‖𝑞 .526

Proof of Lemma 6.7. We set 𝑥 = 0 and 𝑦 such that 𝑦𝑖 = 2/𝑑 for 𝑖 ≤ 𝑑/2 and 𝑦𝑖 = 0 otherwise.527

Doing simple calculations we get that ℎ(𝑥) = (1/𝑑) · 1, whereas ℎ𝑖(𝑦) = 2/𝑑 for 𝑖 ≤ 𝑑/2 and528

ℎ𝑖(𝑦) = 0 otherwise. Hence we have ‖ℎ(𝑥)− ℎ(𝑦)‖1 = 1 and529

‖𝑥− 𝑦‖𝑞 = (2/𝑑)1−1/𝑞 ≤ 2/𝑑1−1/𝑞

and the lemma follows.530

In this section, we show how our mechanism can be used in multi-class classification by proposing531

the corresponding loss function.532

First, we note that the ℒsparsegen-lin,hinge loss function defined in [21] can be used as a loss function533

for any soft-max function that satisfies: (1) permutation invariance, (2) 𝛿-worst-case approximation534

additive loss, where we have to set 𝛿 = 1 − 𝜆. The main issue of this loss function is that it does535

not take into account specific structural properties of the softmax function used. For this reason, we536

propose an alternative loss function.537

2Ideally one would like to compare the distribution of the output value of the algorithm for the actual 𝑘.
However, computing or even approximating well the distribution of value of the output is computationally hard,
so we resort to computing exactly the distribution of the first item selected.
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A loss function that corresponds to PLSOFTMAX with parameter 𝛿 is a function 𝐿 : R𝑑×∆𝑑 → R+538

such that for any 𝑥 ∈ R𝑑 and 𝑞 ∈ ∆𝑑, it holds that 𝐿(𝑥; 𝑞) = 0 ⇔ PLSOFTMAX𝛿(𝑥) = 𝑞. Our539

loss function has three components: (1) 𝐿𝑜𝑟𝑑 is minimized only when the ordering of 𝑥 is the same540

as the ordering of 𝑞, (2) 𝐿𝑠𝑢𝑝𝑝 is minimized when the coordinates of 𝑥 that are within 𝛿 from541

‖𝑥‖∞ correspond to the coordinates 𝑖 such that 𝑞𝑖 > 0, and (3) 𝐿𝑠𝑞𝑟 minimizes the error between542

PLSOFTMAX𝛿(𝑥) and 𝑞 assuming they have the same order. Finally, our loss function 𝐿PLSOFTMAX543

is the sum of these three components, i.e. 𝐿PLSOFTMAX = 𝐿𝑜𝑟𝑑 + 𝐿𝑠𝑢𝑝𝑝 + 𝐿𝑠𝑞𝑟.544

Order Regularization. For every 𝑞 ∈ ∆𝑑, let 𝜋𝑞 be the permutation of the coordinates [𝑑] such that545

𝑞𝜋𝑞(1) ≥ · · · ≥ 𝑞𝜋𝑞(𝑑), then546

𝐿𝑜𝑟𝑑(𝑥; 𝑞) =

𝑑−1∑︁
𝑖=1

max{𝑥𝜋𝑞(𝑖+1) − 𝑥𝜋𝑞(𝑖+1), 0}.

Support Regularization. Let 𝑞 ∈ ∆𝑑, let 𝑆 ⊆ [𝑑] be the subset of the coordinates [𝑑] such that547

𝑖 ∈ 𝑆 ⇔ 𝑞𝑖 > 0, let also 𝛿 be the parameter of PLSOFTMAX, then548

𝐿𝑠𝑢𝑝𝑝(𝑥; 𝑞) =
∑︁
𝑖∈𝑆

max{𝑥𝜋𝑞(1) − 𝑥𝑖 − 𝛿, 0}+
∑︁

𝑖∈[𝑑]∖𝑆

max{𝑥𝑖 − 𝑥𝜋𝑞(1) + 𝛿, 0}.

Square Loss. Let 𝑞 ∈ ∆𝑑−1, then549

𝐿𝑠𝑞𝑟(𝑥; 𝑞) =

⃦⃦⃦⃦
𝑞 − 1

𝛿
𝑃−1

𝜋𝑞
𝑆𝑀 (𝑘𝑞,𝑑)𝑃 𝜋𝑞𝑥− 𝑃−1

𝜋𝑞
𝑢(𝑘𝑞)

⃦⃦⃦⃦2
2

.

The main properties of the loss function 𝐿PLSOFTMAX are summarized in Proposition 6.8. This propo-550

sition suggests that 𝐿PLSOFTMAX can be used as a meaningful loss function in multiclass classification.551

Proof of Proposition 6.8. The property (1) follows directly from the fact that 𝐿PLSOFTMAX is a sum552

of non-negative terms. Also observe that: (i) 𝐿𝑜𝑟𝑑 = 0 if and only if the order of the coordinates553

of the vector 𝑥 agrees with the order of the coordinates of 𝑞, and (ii) 𝐿𝑠𝑢𝑝𝑝 = 0 if and only if the554

only coordinates that are 𝛿-close to ‖𝑥‖∞ are the coordinates for which 𝑞𝑖 > 0. Using (i) and (ii)555

together with 𝐿𝑠𝑞𝑟 = 0 we can see that the property (2) of Proposition 6.8 is implied. Property (3)556

follows again easily from the fact that the maximum of two convex function is convex and the sum557

of convex functions is also convex.558
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[28] Jiří Rohn. Computing the norm‖ a‖∞, 1 is np-hard*. Linear and Multilinear Algebra,626

47(3):195–204, 2000.627

22



[29] Tim Roughgarden, Inbal Talgam-Cohen, and Qiqi Yan. Supply-limiting mechanisms. In Pro-628

ceedings of the 13th ACM Conference on Electronic Commerce, pages 844–861. ACM, 2012.629

[30] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford630

Book, Cambridge, MA, USA, 2018.631

[31] Edward Charles Titchmarsh and David Rodney Heath-Brown. The theory of the Riemann632

zeta-function. Oxford University Press, 1986.633

[32] Pascal Vincent, Alexandre De Brébisson, and Xavier Bouthillier. Efficient exact gradient up-634

date for training deep networks with very large sparse targets. In Advances in Neural Informa-635

tion Processing Systems, pages 1108–1116, 2015.636

[33] Irving L zGlicksberg. A further generalization of the kakutani fixed point theorem, with637

application to nash equilibrium points. Proceedings of the American Mathematical Society,638

3(1):170–174, 1952.639

23


