
A On the insufficiency of modified equation

Recently there has been an extremely interesting line of research in which discrete algorithms are
studied through their continuum limits (e.g., Su et al. [2014], Wibisono et al. [2016], Liu et al. [2017],
Franca et al. [2018], Ma et al. [2019], Tao and Ohsawa [2020]); these limits, however, correspond to
a small LR (denoted by η) regime.

It is possible to slightly extend this regime by writing down a limiting ODE that includes additional
correction terms (e.g., Shi et al. [2018], Li et al. [2019a], Kovachki and Stuart [2019]). The classical
notion for systematically doing so is backward error analysis and modified equation (e.g., Hairer
et al. [2006]). For example, the GD map ϕ can be formally approximated, via an application of the
modified equation theory, by ẋ = −∇f̃(x), where the modified loss

f̃(x) = f(x) +
η

4
‖∇f(x)‖22 +O(η2).

While informative, this result does not help us understand the large LR regime. Take f1,ε = εf1(x/ε)
for periodic f1 as an example. When η ≥ Cε for some C > 0, the formal series expansion used in
modified equation does not converge (see Appendix A), which renders it inapplicable.

More precisely, as detailed in Hairer et al. [2006] Chap IX.1, in order for a discrete map

Φη(x) = x+ ηg(x) (in our case g(x) = f ′(x) = f ′0(x) + f ′1(x/ε))

to be the η-time flow of
ẋ = g(x) + ηg2(x) + η2g3(x) + · · · , (5)

we need

g2(x) = − 1

2!
g′g(x)

g3(x) = − 1

3!
(g′′(g, g)(x) + g′g′g(x))− 1

2!
(g′g2(x) + g′2g(x))

· · ·

Note each derivative of g gives a factor of 1/ε, and thus gn = O(ε−(n−1)). Therefore, RHS of
(5) diverges if η ≥ Cε for some C > 0, in which case the more higher-order correction terms are
included, the worse approximation power the modified ODE will have.

This paper thus develops a completely different framework to understand the large LR regime.

B Proofs and additional remarks

B.1 On the relation between stochastic and deterministic map

Remark 10 (On Theorem 4).

• The purpose for using an open set E accumulating at 0 but does not use a interval such as
(0, 1] directly here. In the later Theorem 17, we proved that for a fixed f0 and η, there exists
periodic f1,ε and arbitrary small ε to make the non trivial invariant distribution doesn’t exist.
We can use the set E to eliminate this bad case that we doesn’t want to see.

• Lemma 5 gives a sufficient condition for ϕ̂ to have a unique fixed point, denoted by X .
When this happens, the conclusion will be if {Xεi}∞i=1 has a weak limit, {Xεi}∞i=1 → X .
We do numerical tests on this situation in Sec.D.2. When ϕ̂ have multiple fixed points,
please see related numerical test in Sec.D.5.

• Intuitively, condition (*) means ϕε is continuous in F . This property is used in the proof of
lemma 12. Condition (*) is strong, but we can hardly prove it or find a condition that easy to
test. The 2-order derative of f0 goes to infinity, which is pathological, but also make the
whole problem interesting and nontrivial. See Thm. 16 and 17 for 2 examples. However,
some necessary conditions could be useful, such as the r.v.’s in F cannot have atom points
(which means all the variables are nondegenerate).
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In order to prove Theorem 4, we need the following lemmas.

Lemma 10. Under the condition of Thm. 4, ∀X , there exists X̃ , such that supω∈Ω ‖X̃(ω) −
X(ω)‖2 < δ(ε) where Ω is the sample space and ϕε(X̃)

w−→ ϕ̂(X̃) when ε→ 0.

Proof. Let X̃ := X + YX,ε, where YX,ε is defined as in Cond. 1. Without causing confusion, the
dependence of Yx,ε on ε is omitted in this proof, as well as in lemma 11 and 12. So supω ‖YX(ω)‖2 <
δ(ε). (δ(ε) is given in Cond. 1)

Arbitrarily choosing a test function g, we have

lim
ε→0

E
[
g(ϕε(X̃))− g(ϕ̂(X̃))

]
= lim
ε→0

E
[
g(X̃ − η∇f0(X̃)− η∇f1,ε(X̃))− g(X̃ − η∇f0(X̃)− ηζ)

]
= lim
ε→0

EX [EYX
[g(X + YX − η∇f0(X + YX)

− η∇f1,ε(X + YX))− g(X + YX − η∇f0(X + YX)− ηζ)|X]]

We use the nice property of g and f0 to have some of the YX ’s.

g(x+ Yx − η∇f0(x+ Yx)− η∇f1,ε(x+ Yx)) = g(x− η∇f0(x)− η∇f1,ε(x+ Yx)) +O(δ(ε))

g(x+ Yx − η∇f0(x+ Yx)− ηζ) = g(x− η∇f0(x)− ηζ) +O(δ(ε))

Due to the uniform weak convergence condition in condition 1, we calculate the limit first and then
compute the expectation regarding X , which means

lim
ε→0

E
[
g(ϕε(X̃))− g(ϕ̂(X̃))

]
=EX

[
lim
ε→0

EYX
[g(X − η∇f0(X)− η∇f1,ε(X + YX))− g(X − η∇f0(X)− ηζ)|X]

]
=0

Lemma 11. Let X̃ := X + YX (as in the proof of Lemma 10). Then ϕ̂(X̃)
w−→ ϕ̂(X) as ε→ 0.

Proof. For an arbitrary test function g, we have

lim
ε→0

E
[
g(ϕ̂(X̃))− g(ϕ̂(X))

]
= lim
ε→0

E
[
g(X̃ − η∇f0(X̃)− ηζ)− g(X − η∇f0(X)− ηζ)

]
≤ lim
ε→0

E
[
sup ‖∇g‖‖(X̃ − η∇f0(X̃))− (X − η∇f0(X))‖

]
≤ lim
ε→0

E
[
sup ‖∇g‖(1 + ηL)‖X̃ −X‖2

]
≤ lim
ε→0

(1 + ηL) sup ‖∇g‖ δ(ε)

=0

The 3rd last line is due to L-smoothness of f0.

Lemma 12. ∀X ∈ F , ϕε(X)
w−→ ϕ̂(X) when ε→ 0.

Proof. We define X̃ := X + YX , like we did in the proof for lemma 10. Fix a g as the test function.

E [g(ϕε(X))− g(ϕ̂(X))]

=E
[
g(ϕε(X))− g(ϕε(X̃))

]
+ E

[
g(ϕ̂(X))− g(ϕ̂(X̃))

]
+ E

[
g(ϕε(X̃))− g(ϕ̂(X̃))

]
The first term converges to 0 due to condition (*) in Thm. 4, which ensures the continuity in the
weak sense of ϕε. The second term goes to 0 according to lemma 11. The third term converges to 0
according to lemma 10. So we have E [g(ϕε(X))− g(ϕ̂(X))]→ 0.
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This lemma prepares us to finish the following proof.

Proof of Thm.4. Suppose Xεi ∈ F is a sequence of r.v. , which are fixed points for ϕεi , and have a
limit point X ∈ F in the weak sence. Then we have

ϕε(Xε)
w
= Xε, ∀ε = εi

Xεi
w−→ X

ϕεi(Xεi)
w−→ ϕ̂(X)

So ϕ̂(X)
w
= X .

B.2 On the stochastic map ϕ̂

B.2.1 Some quantitative results about its ergodicity

Proof of Lemma 5. Here we use the machinery provided by Hennion and Hervé [2004]. Regard ϕ̂ as
a random action on Rd. In this proof, we write the dependence of ϕ̂ on ζ explicitly as ϕ̂ζ . Choose a
fixed point x0 and let

c(ζ) := sup

{
d(ϕ̂ζx, ϕ̂ζy)

d(x, y)
: x, y ∈ Rd, x 6= y

}
Mγ+1 :=

∫
G

(1 + c(ζ) + d(ϕζx0, x0))γ dπ(ζ)

C(n0)
γ+1 :=

∫
G

c(ϕζ) max{c(ϕζ), i}γ dπ∗n(ζ)

In ϕ̂ and the our interested chaotic regime of learning rate, since f0 is strongly convex and L-smooth,
we choose η0 small to ensure c(ϕζ) = 1 − η0L < 1, and we choose γ = 0, n0 = 1 to get
Mγ+1 = Eζ [1 + c(ϕζ) + d(ϕ̂ζ(x0), x0)] < +∞ and C(1)

γ+1 = Eζ [c(ϕζ)] < 1.

Under these facts, Theorem 1 in Hennion and Hervé [2004] ensures that there is a unique ϕ̂-invariant
probability distribution µ̂0. Moreover, geometric ergodicity holds in the Prokhorov distance dP .
Namely, there exists positive real number C and κ0 < 1, such that, for any probability distribution µ
on M satisfying µ(d(·, x0)) < +∞, and all n ≥ 1,

dP (ϕ̂
(n)
] µ, µ̂0) ≤ Cκn/20

where ϕ̂(n)
] stands for apply the push forward of measure n times.

Remark 11. In a separable metric space, which is our case, convergence of measures in the Prokhorov
metric is equivalent to weak convergence of measures, which is also equivalent to the convergence of
cumulative distribution functions.

The following two remarks show that convexity and L-smoothness of f0 are necessary for geometric
ergodicity established by Lemma 5.
Remark 12. Here we will explain in 1-dim, what can happen when the function f0 is not convex.
Since the random variable ζ is bounded, denote it by [a, b]. Unlike in a standard overdamped Langevin
case, there can be potential barriers in f0 that ϕ̂ cannot cross, because the noise is of a finite strength.
To make this quantitative, we assume the existence of an invariant distribution with density µ0, and
calculate what kind of points are not in the support of µ0. When η < 1/L, for a point x ∈ suppµ̂0,
we have ηf ′0(x) ∈ η[a, b]. So if {x|f ′0(x) ∈ [a, b]} is not a connected set (note that it is independent
from η), then the support of the invariant density will be separated in to disjoint components, and no
orbit can jump between them. An example explains why the set can be disconnected:

Suppose f0 = k(x2 − 1)2, k > 0 for example, and f1,ε = ε sin(x/ε). Calculate the set S := {x :

f ′0(x) ∈ [−1, 1]} = {x : |4kx(x2 − 1)| < 1}. We have that when k < 3
√

3
8 , S is connected. But

when k > 3
√

3
8 , the set S is not connected. In this case, a point cannot jump from one well to another

as ϕ̂ is closed in each connected component of S, which means ergodicity on S is lost. Which
distribution the system converges to (if existent) relies on which well the initial condition belongs to.

17



In multi-dimension case, connectedness is different from simply connectedness, which complicates
the intuition. We won’t discuss it here.

See also Sec. D.5 on jumping between potential wells by the deterministic map.
Remark 13. When f0 is not L-smooth, such as f0(x) = (x2 + 1)2 and f1,ε = ε sin(x/ε). For a
fixed η, it is easy to see that when the absolute value of initial condition is greater than x0, where
x0 is the greatest solution of x− 4ηx(x2 + 1) + η + x = 0, we know P (|ϕ̂(x)| > |x|) = 1, so the
system will explode and never converge to any distribution. This is becauseMγ+1 <∞ in the proof
of Lemma 5 is not satisfied.
Theorem 13 (coupling estimation of the exponential convergence rate of ϕ̂). Consider the iteration
xk+1 = xk − η∇f0(xk) + ηζk for i.i.d. ζk ∼ ζ. Denote by ρk the density of xk. Assume f0 is
C2, ν-smooth and µ-strongly convex, and f1 is C1. Then the limiting distribution ρ∞ exists and the
2-Wasserstein distance satisfies the nonasymptotic bound

W2(ρk, ρ∞) ≤ (max{|1− ηµ|, |1− ην|})k C (6)

for some constant C ≥ 0.

Proof. Existence of ρ∞ is guaranteed by Lemma 5.

Let x̂0 be a random variable distributed according to ρ∞ and define

x̂k+1 = x̂k − η∇f0(x̂k) + ηζk

using the same noise ζk. Then

xk+1 − x̂k+1 = xk − x̂k − η (∇f0(xk)−∇f0(x̂k))

Since f0 is C2, ν-smooth and µ-strongly convex, it is easy to see that the mapping x 7→ x− η∇f0(x)
is a contraction with rate= max{|1− ηµ|, |1− ην|}. Therefore,

‖xk+1 − x̂k+1‖ ≤ max{|1− ηµ|, |1− ην|}‖xk − x̂k‖
Thus,

E‖xk+1 − x̂k+1‖2 ≤ max{|1− ηµ|, |1− ην|}2kE‖x0 − x̂0‖2

Note x̂k is distributed according to ρ∞ because that is the invariant distribution and x̂0 ∼ ρ∞. By
definition,

W2(ρk, ρ∞)2 = inf
π∈Π(ρk,ρ∞)

∫
‖y1 − y2‖2dπ(y1, y2)

≤ E‖xk − x̂k‖2.

Therefore, the choice of C =
√
E‖x0 − x̂0‖2 leads to eq.6.

Corollary 14 (Spectral gap of ϕ̂ is at least at the order of η). Consider the setup of Thm.13 and η < 1
ν .

Denote by L the transition operator of the Markov process generated by ϕ̂, i.e., Lρk = ρk+1 ∀k.
Then L has a single eigenvalue of 1, and any other eigenvalue λ satisfies |1− λ| ≥ ηµ.

Proof. Since ϕ̂ generates a Markov process, any eigenvalue has modulus bounded by 1.

The single eigenvalue of 1 is guaranteed by geometric ergodicity (Lemma 5). Thus, for any other
eigenvalue λ, |λ| < 1.

Let ρ⊥ be the eigenfunction corresponding to λ. Since L preserves the normalization of probability
density,

∫
ρ⊥ = 0.

For any α 6= 0, let x0 be a random variable distributed according to density ρ∞ + αρ⊥. We have

ρxk
= Lk(ρ∞ + αρ⊥) = ρ∞ + αλkρ⊥

and therefore the L1 distance satisfies

d1(ρxk
, ρ∞) = αλk‖ρ⊥‖1

Since densities exist, we have the total variation distance

dTV (ρxk
, ρ∞) =

1

2
d1(ρxk

, ρ∞) =
1

2
α‖ρ⊥‖1λk
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Although in general total variation distance cannot be upper bounded by Wasserstein distance, it
was shown in Chae et al. [2017] Lemma 5.1 that such an upper bound exists when both probability
distributions admit smooth densities, i.e.,

dTV (ρxk
, ρ∞) ≤ CW2(ρxk

, ρ∞)

for some C ≥ 0. Combined with Thm. 13, this thus gives

dTV (ρxk
, ρ∞) ≤ Ĉ (max{|1− ηµ|, |1− ην|})k

for some Ĉ ≥ 0. Therefore, |λ| ≤ max{|1 − ηµ|, |1 − ην|} = 1 − ηµ (the last equality is due to
µ ≤ ν and η < 1/ν). This leads to |1− λ| ≥ ηµ.

B.2.2 On Proposition 6

To prove the bound of difference between Eh(ϕ̂(X0)) and Eh(X0), we first prove the following
lemma:
Lemma 15 (gradient estimate of rescaled Gibbs). Suppose f0 is L-smooth. Let x0 be the global
minimizer of f0. If

f0(x)− f0(x0) ≥ C1||x− x0||k1 and ||∇f0(x)|| ≤ C2‖x− x0‖k2 , ∀x ∈ Rd,
Then we have, for X0 following rescaled Gibbs (2),

E||∇f0(X0)||22 = O(η
2k2−1

k1 ) when η → 0.

.

Proof.

E||∇f0(X0)||22 =
1

Z1

∫
||∇f0(x)||22 exp

(
−2f0(x)

η

)
dx

≤
k
√
η

Z2

∫
||∇f0(x)||22 exp

(
−2C1(

||x||
k1
√
η

)k1
)
d
x
k
√
η

=
k1
√
η

Z2

∫
||∇f0( k1

√
ηu)||22 exp(−2C1||u||k1) du

Since
||∇f0(x)|| ≤ C2‖x− x0‖k2

So

E||∇f0(Y0)||22 =
k1
√
η

Z4

∫
C2( k1

√
η||u||)2k2 exp(−2C1||u||k1) du

= η
2k2−1

k1
1

Z4

∫
C2||u||2k2 exp(−2C1||u||k1) du

The integral converges and is a constant, so we have

E||∇f0(X0)||22 = O(η
2k2−1

k1 )

Proof of Prop. 6. Because ζ̃ is compactly supported and ||∇f0|| is bounded, Taylor expansion of h
in η gives, ∀X ,

E(h(ϕ̂(X))) = EX
[
Eζ̃ [h(X − η∇f0(X) + ηζ̃)|X]

]
= EXh(X − η∇f0(X)) + ηEζ̃>EX [∇h(X − η∇f0(X))]

+
η2

2
EX

[
Eζ̃ [ζ̃

>Hessh(X − η∇f0(X))ζ̃|X]
]

+O(η3)

= EX
[
h(X)− η∇f0(X)> · ∇h(X) +

η2

2
∇f0(X)>Hessh(X)∇f0(X) +

η2

2
Eζ̃>Hessh(X)Eζ̃

]
+O(η3)
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When X = X0, we first estimate the 3rd term. Since Hessh is bounded and due to the L-smoothness
and strong convexity of f0, we know it isO(η3) using Lemma 15 in the case k1 = k2 = 2. So we get

E(h(ϕ̂(X0)))− Eh(X0)

=
η2

2Z

∫ [
−2

η
∇f0(x)> · ∇h(x) + σ2Tr Hessh(x)

]
exp

(
−2f0(x)

ησ2

)
dx+O(η3)

And then we use Stokes’ theorem to prove the integration in RHS vanishes. Denote

ω :=
∑
i

(−1)i∇ih(x) exp

(
−2f0(x)

ησ2

)
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

where d̂xi means dropout dxi. Then

dω =
∑
i

∇2
ih(x) exp

(
−2f0(x)

ησ2

)
− 2

ησ2
∇ih(x)∇if0(x) exp

(
−2f0(x)

ησ2

)
dx1 ∧ ... ∧ dxn

= (Tr Hessh− 2

ησ2
∇h> · ∇f0) exp

(
−2f0(x)

ησ2

)
dx1 ∧ · · · ∧ dxn

According Stokes’ formula,

E(h(ϕ̂(X)))− Eh(X) =
η2σ2

2Z

∫
Rd

dω +O(η3)

=
η2σ2

2Z
lim
r→∞

∫
B(0,r)

dω +O(η3)

=
η2σ2

2Z
lim
r→∞

∫
∂B(0,r)

ω +O(η3)

The first term vanishes since h(x) is compacted supported, which gives us the conclusion that

E(h(ϕ̂(X0)))− Eh(X0) = O(η3)

Remark 14. Note that strong convexity and L-smoothness of f0 are sufficient to satisfy the condition
of Lemma 15, but they may not be necessary. In fact, Prop. 6 is also correct for any f0 that satisfies

f0(x)− f0(x0) ≥ C1||x− x0||k1 and ||∇f0(x)|| ≤ C2‖x− x0‖k2 , ∀x ∈ Rd,
where 2k2 − 1 ≥ k1. Although we only proved that the rescaled Gibbs approximates the invariant
distribution when f0 is strongly convex functions, the fact that rescaled Gibbs nearly satisfies the
invariance equation does not require strong convexity. In fact, we conjecture that rescaled Gibbs also
approximates the invariant distribution for convex and even nonconvex f0. See numerics in Sec.3.1
(f0 = x4/4, with k1 = 4, k2 = 3) and Appendix D.5 (nonconvex and multimodal f0).

B.2.3 On Theorem 7

Proof. Denote (as before) by L the transition operator of the Markov process generated by ϕ̂.
Consider a deviation function

r := ρ∞ − ρ̃.
Decompose r as an orthogonal sum

r = r1 + r0 where r1 ∈ ker(I − L) and r0 ⊥ ker(I − L)

Since ϕ̂ induces a geometric ergodic process, dim ker(I − L) = 1, and thus

r = γρ∞ + r0 for some scalar γ.

Since Lρ∞ = ρ∞ and Lρ̃ = ρ̃+O(η3) (Prop.6; note weak-* topology is metrizable on a separable
space), we have (I − L)r = O(η3), and consequently

(I − L)r0 = O(η3)
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Since r0 is orthogonal to ker(I − L) which is the eigenspace associated with eigenvalue 1 of L, and
all eigenvalues of I − L, except for the the irrelevant 0, satisfy |λ| ≥ µη due to Cor.14, we obtain

r0 = O(η2).

This means ρ∞ − ρ̃ = γρ∞ +O(η2). Since ρ∞ and ρ̃ are both density functions that normalize to
1, applying a uniform test function and letting its support go to infinity give 0 = γ +O(η2). This
yields eq.3.

Remark 15. The invariant distribution can be approximated by not only rescaled Gibbs but a
Gaussian if f0 is strongly convex. Here is the intuition of a more general result:
Consider rescaled Gibbs (2). Due to the small η at the denominator, X0 assumes small values with
exponentially large probability. We thus can formally Taylor expand f0(x) about x = 0, which we
assumed WLOG to be the minimizer. Denote the first nonzero derivative of f0 at 0 by the kth one.
Then f0(x) ≈ 1

k!f
k
0 (0)xk. So, from the density of rescaled Gibbs, we see the density of X0

k
√
η can be

approximated by
X0

k
√
η
∼ 1

Z
exp

(
−2fk0 (0)

k!σ2
xk
)

Note that iff f0 is strongly convex, k = 2, and one gets a Gaussian approximation.

Remark 16. If one considers another stochastic map ϕ̃(x) := x − η∇f0(x) + ησξ where ξ is
standard i.i.d. Gaussian, ϕ̃(x) admits, under the same Lipschitz and convexity conditions, a similar
limiting invariant distribution 1

Z exp
(
− 2f0(x)

ησ2

)
will be obtained. The key difference is, unlike ϕ̃

which uses unbounded noise and is the discretization of an SDE, our stochastic map ϕ̂ uses only
bounded noise as it mimicks the deterministic map ϕ.

B.3 On the deterministic map ϕ

B.3.1 counter-examples

Here are the complete version of the 2 counter-examples given in Sec. 2.3.

Theorem 16 (a sufficient condition for the nonexistence of nondegenerate invariant distribution).
When d = 1, for any fixed ε and fixed periodic f1 ∈ C2(R), for any η0, there exists η > η0 and
f0 ∈ C2 such that |f ′0| and |f ′′0 | (but 3-order or more derivative will explode) are arbitrarily small.
For such f0, the orbit starting at any point is bounded but ϕ does not admit a nontrivial invariant
distribution.

Proof.

ϕ′(x) = 1− ηf ′′0 (x)− η

ε
f ′′1

(x
ε

)
Because of the continuity of f ′′1 , 1− η

ε f
′′
1 (xε ) has a zero point, denote as x0. So we can choose δ to

make 1−η/εf ′′1 (x/ε)
η arbitrarily small on the interval I = [x0 − δ, x0 + δ]. Then construct f0|I and η

making ϕ′ ≡ 0 on I . After that, we adjust f0 to make ϕ(x0), which is not in I , be a fixed point of ϕ.
According to the property of Li-Yorke chaos, all the point will be finally mapped to I , and then to
ϕ(x0) and never move. So the nontrivial invariant distribution does not exist.

Theorem 17 (another sufficient condition for the nonexistence of invariant distribution). When d = 1,
∀ fixed f0 ∈ C2 and η > 0, there exists periodic f1 ∈ C2 whose period is 1 and 0,1,2-order derivative
is arbitrary small, together with an ε arbitrarily small, making nontrivial invariant distribution not
exist.

Proof. Choose f1 s.t. ∇2f1(xε ) ≡ ε
η (1− η∇2f0(x)) on a interval [0, δ] where δ � ε and make f1

and f ′1 arbitrarily small on [0, δ/ε], and choose f1 on [δ/ε] to ensure continuity and smoothness. We
can make ε→ 0 to make f ′′1 small. Then choose a specific ε to make ϕ(0) is a fix point. According
to the property of Li-Yorke chaos, all the point will be finally mapped to [0, δ], then to ϕ(0) and never
move. So the nontrivial invariant distribution does not exist.
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Remark 17. The requirements for η to be arbitrarily large in Theorem 16 and ε to be arbitrarily
small in Theorem 17 ensure the system won’t converge to a local minimum created by f1, and from
the construction of the counter-examples, we know the system is not the other trivial one, which
means the system explodes because η is too large.

Remark 18. Here we give some intuition of Thm.16 and 17. Thm.18 will show that in 1-dim case,
if we have a period-3 orbit, then there exists a subset S of the whole space J satisfying: For every
x1, x2 ∈ S with x1 6= x2, lim infn→∞ |ϕ(n)(x1)−ϕ(n)(x2)| = 0. So the intuition for proving Thm.
16 and 17 is to make ϕ ≡ 0 on a small interval, then all the points that drop in this interval will be
mapped to a single fixed point of ϕ.

B.3.2 Period Doubling

When η is small, each (local) minimizer of f corresponds to a stable fixed point of ϕ, which is thus
also a periodic orbit of ϕ with period 1. As η increases, this point remains as a fixed point but will
become unstable. Instead, the previously stable periodic orbit bifurcates into a stable periodic orbit
with period 2, and the period similarly keeps doubling as η further increases. Eventually, the period
becomes arbitrarily large before a finite value of η, as will be numerically illustrated in Sec.9. This
phenomenon is known as period doubling, which is a common route to chaos (e.g., Alligood et al.
[1997], Ott [2002]); after the appearance of arbitrarily large period, the system enters η regime that
corresponds to chaotic dynamics.

We now explain how this relates to what we call global and local chaos, which are specific to our
multiscale problem.

When η � ε, we know GD converges to a local minimum of f corresponding to one of the many
potential wells of created by f1,ε. This is the non-interesting case.

When η approaches some order function of ε describing the width of microscopic potential wells of
f1,ε (for the periodic case, this is O(ε)), the orbit is still trapped in a single microscopic potential
well, but it starts making jumps within the well. In fact, restricted to any potential well, ϕ becomes a
unimodal map (see e.g., Strogatz [2018]) and its dynamics is known to eventually become chaotic as
η exceeds a critical value. This is where the period of a periodic orbit keeps on doubling and becomes
arbitrarily large. The classical method for studying the invariant distribution of unimodal chaotic
maps applies here (see e.g., Cvitanovic [2017]). This is the local chaos regime.

Even more interesting is the case when η gets even larger, large enough for the orbit to jump out of a
single potential well created by f1,ε and navigate the landscape of f0. This is what we call global
chaos. For this, Thm.4 and 5 characterize the combined effect of chaos and global behavior of f0.

B.3.3 About Li-Yorke Chaos

Definition 1 (Li-Yorke chaos). Let J be an interval and let F : J → J be continuous. The dynamical
system generated by F exhibits Li-Yorke chaos if

1. For any k = 1, 2, ..., there is a periodic point in J having period k.

2. There is an uncountable set S ⊂ J containing no periodic points, that satisfies:
(A) For every p, q ∈ S with p 6= q, lim supn→∞ |Fn(p) − Fn(q)| > 0 and
lim infn→∞ |Fn(p)− Fn(q)| = 0.

(B) For every p ∈ S and periodic point q ∈ J , lim supn→∞ |Fn(p)− Fn(q)| > 0.

Theorem 18 (period 3 implies chaos). If there exists a ∈ J for which b = F (a), c = F 2(a), and
d = F 3(a) satisfy d ≤ a < b < c or d ≥ a > b > c, then F induces Li-Yorke chaos.

Remark 19. About Thm.18, see Sharkovskiı̆ [Original 1962; Translated 1995], Li and Yorke [1975]
for rigorous theorems and proofs. This is one of the most celebrated result in chaotic dynamics,
which tells us that period 3 implies chaos. The 1st conclusion is named after Sharkovskii. The 2nd
conlusion in this theorem is also generalized to be the definition of Li-Yorke Chaos in multi-dim case.
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Figure 8: Guideline to finding a period-3 orbit

Proof of Thm.8. First we show there exists an interval J , such that when 0 < η < 1/L, ϕ(J) ⊂ J .
WLOG, suppose f0(0) = 0. According to Cond. 1, there exists ε1, when ε < ε1, supx ‖∇f1,ε(x)‖ is
uniformly bounded w.r.t. ε. Denote the upper bound as R. Due to the L-smoothness of f0,

lim sup
x→+∞

[ϕ(x)− x] ≤ lim sup
x→+∞

[−ηf ′0(x) + ηR] < −C < 0

lim inf
x→+∞

[ϕ(x) + x] ≥ lim inf
x→+∞

[2x− ηf ′0(x) + ηR] ≥ lim inf
x→+∞

[(2− ηL)x+ ηR] > C > 0

where C > 0 is a constant. So there exists M1 such that −x < ϕ(x) < x when x > M1. Similarly,
we have M2 such that x < ϕ(x) < −x when x < −M2.

So there exists M := max(M1,M2), so when |x| > M , −|x| < ϕ(x) < |x|. Set J :=
[infx∈[−M,M ] ϕ(x), supx∈[−M,M ] ϕ(x)] and we have ϕ(J) ⊂ J when ε < ε1.

Next, we try to find a, b, c and d in Thm. 18. Because P (ζ = 0) < 1, ∃δ0 > 0 s.t.P (ζ > δ0) > 0 and
P (ζ < −δ0) > 0. Since ∇f0 have a zero point, we can find an interval J̃ on which |∇f0| < δ0/3.
Denote the middle point of x0. Find a subinterval of J̃ , whose length≤ η/ δ03 and denote as J . Divide
J into 2 parts of similar length J1 and J2. ∃ε1, s.t. when ε < ε1, |minJi ∇f1,ε|, |maxJi ∇f1,ε| >
2
3δ0, i = 1, 2. So now we have that | infJi ∇f |, | supJi ∇f | > δ0/3. Which means we can find
x1, x2 ∈ J1, x3, x4 ∈ J2 and x1 < x2 < x3 < x4 satisfying ϕ(x1) = x1, ϕ(x2) > x4, ϕ(x3) = x3,
ϕ(x4) < x1.

Let c = x4, and d = ϕ(c). So we have ϕ(x2) > c. And since ϕ(x1) = x1 and continuity,
b ∈ [x1, x2] s.t.ϕ(b) = c. By the same way we get a ∈ [x1, b] s.t. ϕ(a) = b. Let ε0 := min(ε1, ε2).
Based on Thm.18, we deduct that the discrete dynamical system induced by ϕ is chaotic in Li-Yorke
sense when ε < ε0 and 0 < η < 1/L.

Remark 20 (Beyond Li-Yorke Chaos). (Thanks to valuable comments from Fryderyk Falniowski.)
Here the 3-periodic orbit of ϕ can be used to establish a positive topological entropy [Misiurewicz,
2010], which implies not only Li-Yorke chaos but also distributional chaos, as well as the existence
of a subsystem chaotic in the sense of Devaney [Li, 1993] (see e.g., Aulbach and Kieninger [2001],
Falniowski et al. [2015] for their differences). So far these are only known in 1D though.

B.3.4 On the Lyapunov exponent

Proof of Thm.9. All the norms for matrix in this proof is 2-norm (for simplicity, we omit its subscript).

Denoted by ν the invariant distribution of the deterministic map. Denote the special map where is
f0 ≡ 0 as ϕ0:

ϕ0(x) = x− η∇f1,ε(x)

23



With ergodicity, when ε→ 0, we have

λ(x) = lim
n→∞

1

n

n∑
i=1

ln ||∇ϕ|ϕ(i)(x)||

=

∫
ln ||∇ϕ|x|| ν(dx)

=

∫
ln ||∇ϕ0|x + ηHessf0(x)|| ν(dx)

Since Hessf0 is bounded, we know that

λ(x) =

∫
ln ||∇ϕ0|x|| ν(dx) +O(η)

And then, we choose a bounded set T and a mesh of which, denoted as ∆ =
⊔
i∈I Γi, ∀δ > 0, we

have µ is a simple function which is constant on each Gammai, where suppµ ⊂ T ,
∫
|µ−ν| dx < δ.

Denoted the bound of ε∇2f1,ε = A, then

λ(x) =
∑
i∈I

∫
Γi

ln ||∇ϕ0|x|| ν(dx) +O(η)

=
∑
i∈I

∫
Γi

ln ||∇ϕ0|x|| (µ+ (ν − µ))dx+O(η)

= ln
(η
ε

)
+
∑
i∈I

∫
Γi

ln ||ε∇2f1(y)|| (µ+ (ν − µ))dx+O(η)

where
∑
i∈I
∫

Γi
ln ||∇ϕ0|x||µ(dx)→ m and

∑
i∈I
∫

Γi
ln ||∇ϕ0|x||(ν −µ)(dx) < δA→ 0. So we

know that λ(x)− ln
(
η
ε

)
→ m when ε→ 0 first and then η → 0.

Remark 21. Here we need ϕ to be ergodic, which means the distribution of a single trajectory
converges to the invariant distribution of the chaotic dynamical system. We don’t have a reference,
but please see section 3.1 for numerical test.
Remark 22. One may ask why f0 doesn’t appear in m. The reason is, the microstructure creates
both local and global chaos, not the macrostructure; in fact, since L� 1/ε, L for the L-smooth f0

gets absorbed in the high-order term in the proof.
Remark 23. When f1 is periodic and f1,ε = εf1(x/ε), we have an estimation of the order of
convergence.

We divide the support of the invariant distribution into small parts according to the period of εf1(x/ε),
and enumerate them with Aj , j ∈ N.

λ(x) =
∑
i

∫
Aj

ln ||∇ϕ|x|| ν(dx) +O(η)

=
∑
i

∫
Aj

1

ε|Γ|

(∫
εΓ

ln ||∇2f1,ε(y)||dy +O(ε)

)
ν(dx) +O(η)

= ln
(η
ε

)
+

1

|Γ|

∫
Γ

ln ||∇2f1(y)|| dy +O(ε+ η)

= ln
(η
ε

)
+m+O(ε+ η).

C A possible origin of multiscale landscape from neural networks

It is possible that the (training) loss of a neural network satisfies the multiscale requirement of the
presented theory. Here is an illustration in which multiscale training data together with periodic
activation leads to a multiscale loss:
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Consider the training of a 2-layer neural network to fit data {xk, yk}k, where the output yk = yk0 +yk1 +
ξk admits a decomposition into large scale behavior yk0 = g0(xk), microscopic detail yk1 = εg1(εxk),
and i.i.d. noise ξk. Assume g0 and g1 are regular enough so that universal approximation (UA)
works and they can be approximated by wide enough neural networks with O(1) weights. Consider
MSE loss

∑
k ‖yk −

∑
i aiσ(Wix

k + bi)‖2 with σ being the periodic activation in a recent progress
[Sitzmann et al., 2020]. Then the loss admits a minimizer and in its neighborhood the loss satisfies
Cond.1&2 for the following reason: omit k without loss of generality, absorb bias into weight, and
rewrite the loss as (denoting θ = [ai,Wi]i)

f(θ) =
∥∥∥y0 −

∑
i∈I aiσ(Wix) + εy1 −

∑
j 6∈I ajσ(Wjx)

∥∥∥2

=
∥∥∥g0(x)−

∑
i∈I aiσ(Wix)

∥∥∥2

+ 2ε
〈
g0(x)−

∑
i∈I aiσ(Wix), g1(εx)−

∑
j 6∈I ajσ(Wjx)

〉
+ ε2

∥∥∥g1(εx)−
∑
j 6∈I ajσ(Wjx)

∥∥∥2

where I and Ic are sets of nodes, each large enough for UA to ensure vanishing loss. Renormalize by
letting x̂ = εx so that UA works for g1(·), then the 2nd term rewrites as

2ε
〈
g0(x)−

∑
i∈I aiσ(Wix), g1(x̂)−

∑
j 6∈I ajσ

(
Wj

ε x̂
)〉
.

This is in the form of εf̂1(θ/ε, θ) for some f̂1(φ, ϕ) that is quasiperiodic in φ (quasiperiodic because
x̂ is multi-dim). The 3rd term rewrites similarly. Thus, we see f(θ) = f0(θ) +f1,ε(θ) where f0 is the
1st term and f1,ε(θ) = εf̂1(θ/ε, θ) + ε2f̂2(θ/ε, θ) for some f̂1, f̂2 quasiperiodic in the 1st argument.
Such f1,ε satisfies Cond.1&2 due to its quasiperiodic micro-scale. �

D More numerical evidence

D.1 Period doubling

Figure 9: Bifurcation diagram of GD with ε =
10−3, f0 = x4/4 and f1,ε = −ε cos(x/ε).

We illustrate numerically thatϕ, when viewed as
a family of maps indexed by LR η, keeps under-
going period doubling bifurcation as η increases,
and the period of η eventually approaches infi-
nite at a finite η value, which is the chaos thresh-
old (e.g., Alligood et al. [1997], Chap 11). This
observation is rather robust to f0, and we choose
a convex but not strongly-convex example for
an illustration.

The bifurcation diagram is plotted in Fig.9. For
each η value, we start with a fixed initial con-
dition and iterate it using GD dynamics (ϕ) for
sufficiently long so that the dynamics settle into
an attractor, and then draw each of the thereafter
iterations as a point on the diagram. For exam-
ple, one can read from Fig.9 that there are two
points at η = 2.5ε, corresponding to an orbit
of period 2. Although limited by the numerical
resolution, one can see that the chaos threshold
in this case is around η ≈ 3.5ε.

Worth mentioning is that the chaos that first onsets is a local one, happening in a (and every) small
potential well created by f1,ε. In other words, before global chaos for which LR is so large that GD
can escape local well, arbitrarily large period already appears and chaos already onsets. This can be
seen from Fig.9 as the boundaries of a small potential well, which is approximately [−επ, επ], are
marked by red dashed lines.

D.2 A multi-dimensional demonstration

Our sufficient condition for chaos (Thm.8) is restricted to 1D problems, although our connection
between ϕ and ϕ̂ limiting statistics (Sec.2.1) and the approximation of ϕ̂ limiting statistics (Sec.2.2)
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work for any finite dimension. We conjecture that stochasticity also appears in large LR GD for
multidimensional multiscale objective functions. A numerical experiment consistent with this
conjecture is presented, based on a classical strongly convex test function of Matyas:

Let f0 be defined as

f0(x, y) = 0.26(x2 + y2) + 0.48xy.

The small scale is arbitarily chosen to be

f1,ε(x, y) = ε sin(x/ε) + ε cos(y/ε), ε = 10−7.

The evolution of the empirical distribution of an ensemble, respectively under GD ϕ and the stochastic
map ϕ̂, is shown in Fig.10, where good agreement is observed. The GD empirical distribution is also
compared with rescaled Gibbs in Fig.11, where results again agree.

(a) Deterministic map (b) Stochastic map

Figure 10: Comparison between the deterministic map and the stochastic map on Matyas function
(η = 0.01) for testing Thm.4. Agreed histograms suggests that the limiting distributions of the two
maps are close.

(a) η = 0.1 (b) η = 0.01 (c) η = 0.001

Figure 11: Test for the explicit expression of the invariant distribution. The surface is rescaled Gibbs
and the histogram is the experiment result. They are overplotted after a rescaling by

√
η in both axis.

Obersved agreement is consistent with the rescaled Gibbs approximation.

In terms of deterministic chaos, although our sufficient condition for chaos (Thm.8) is only for
1-dim., the Lyapunov exponent estimate (Thm.9) works for any finite dimension as it assumes already
ergodicity. Here we observe numerically that the deterministic map is chaotic and mixing (thus
ergodic) despite of the ≥ 2 dimension: see Fig.12 for the statistical behavior of a single orbit. A
comparison with Fig.10 gives agreement in the statistics.
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(a) Histogram of a trajectory
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(b) x value of a trajectory
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(c) y value of a trajectory

Figure 12: The histogram of a single trajectory. We can see that it is the same as the experimental
result for the invariant distribution in Fig.10(b).

D.3 Lyapunov exponent

Thm.9 provides a quantitative estimate of the Lyapunov exponent of the deterministic GD map ϕ.
Although we required an additional strong convexity condition on f0 for the geometric ergodicity of
the stochastic map ϕ̂, this result about the deterministic map does not have this requirement.

D.3.1 On 1-dim periodic f1,ε

As an illustration, we pick multimodal nonconvex f0 = (x2 − 1)2, together with f1,ε(x) = ε sin
(
x
ε

)
.

Fig.’s 13 and 14 respectively plot how the numerically computed Lyapunov exponent (computed by
eq.4 with a random initial point) depends on η (with fixed ε) and on ε (with fixed η). The constant
m ≈ λ(x) − ln(η/ε) is around 0.7 in both plots, which agrees with our theoretical estimate of
m = 1

2π

∫ 2π

0
ln | sin(y)| dy ≈ −0.6931.
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Figure 13: Dependence of the Lyapunov exponent on η
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Figure 14: Dependence of the Lyapunov exponent on ε

D.3.2 On 1-dim non-periodic f1,ε

The following experiment shows that Thm. 9 works for non-periodic f1,ε. Fig. 15 is the test on
the quasiperiodic f1,ε given in Fig. 5 and Example 2. The theoritical value for m in Cond. 2 is
limn→∞

∫ n
0

ln | sin(x) + 2 sin(
√

2x)| dx ≈ −0.0117, is the same as the experiment shows.
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Figure 15: Dependence of the Lyapunov exponent on ε and η for non-periodic f1,ε(m=-0.0117).

D.3.3 On the multi-dim case

Then we also test the theorem in a multi-dim case, whose f0 is Matyas function and f1,ε is periodic
function, same as we did in Sec. D.2. We chose a random initial point, run sufficiently many
iterations, and use eq.4 to compute it. At the same time, Thm.9 gives a theoretical estimation,
with m = 1

4π2

∫
[0,2π]2

ln max(| sin(x)|, | cos(y)|) dx dy ≈ −0.2669. Fig.’s 16 and 17 show that this
estimation, namely λ(x) ≈ m+ ln

(
η
ε

)
, is correct up to O(ε+ η) error.
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Figure 16: Dependence of λ(x) on η (ε = 0.00001)
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Figure 17: Dependence of λ(x) on ε (η = 0.1)

D.4 Stochasticity of deterministic gradient descent with momentum

Just for illustrations, consider f0 = x2/2, f1,ε(x) = ε sin(x/ε), and two common ways for adding
momentum:

D.4.1 Heavy ball

The iteration is [Polyak, 1964] vn+1 = γyn − η∇f(xn), xn+1 = xn + vn+1, with v0 = 0. See the
stochasticity of x in Fig.18.

(a) Evolution of an ensemble (b) Empirical distrib. of an orbit
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(c) Iterations in an orbit

Figure 18: Heavy ball experiment. η = 0.01, ε = 0.0001, and γ = 0.9.
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D.4.2 Nesterov Accelerated Gradient for strongly convex function (NAG-SC)

The iteration is [Nesterov, 2013] yk+1 = xk − η∇f(xk), xk+1 = yk+1 + c(yk+1 − yk), with
y0 = x0. c =

1−√µη
1+
√
µη where µ is supposed to be the strong convexity constant; we chose µ to be

that for f0, in this case µ = 1. See the stochasticity of x in Fig. 19. The smaller variance is due a
different scaling for relating η to a timestep in continuous time (see e.g., Su et al. [2014]).

(a) Evolution of an ensemble (b) Empirical distrib. of an orbit
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(c) Iterations in an orbit

Figure 19: NAG-SC experiment. η = 0.01, ε = 0.0001.

D.5 The nonconvex f0 dichotomy: to escape or not to escape macroscopic potential well
created by f0?

What will happen when f0 is nonconvex but multimodal? Both escapes from f0’s local minima (and
the corresponding potential wells) and nonescapes will be possible. Roughly speaking, it depends on
how strong f1,ε is when compared with f0. Rmk.12 provided some discussions. To elaborate more,
we first make a general remark:

Remark 24. As theoretically shown, especially in section 2.3.1, B.3.2 and 2.3.2, we see that chaos
can be just a localized small-scale behavior, thus independent of the convexity of f0. However,
the limiting distribution of the deterministic map is a global property and it should depend on the
global behavior of f0. As explained in Rmk.12, when f0 is not convex, it can happen that an orbit
cannot jump between potential wells, and then unique ergodicity is lost in the sense that multiple
ergodic foliations appear and respectively localize to individual potential wells. In this case, the
limiting statistics is no longer unique. However, every connected subset of the support of an invariant
distribution of the stochastic map can be an ergodic foliation, so if we regard the invariant distributions
of the deterministic map and the stochastic map as convex combinations of the invariant distributions
in each potential well, the conclusion in Theorem 4 still stands.

Then we demonstrate two possible outcomes concretely in numerical experiments. We will use the
same test function, which is f0(x) = k(x2 − 1)2 and f1,ε(x) = ε sin(x/ε). x > 0 and x < 0 are two
potential wells of f0.

We already obtained a bound on the relative strength between f0 and f1,ε; it is kcritical = 3
√

3
8

for whether the point can jump from one potential well to another. Fig.’s 20 and 21 respectively
illustrates the long-time statistics of GD when k = 0.05 < kcritical and k = 5 < kcritical. Results
are consistent with theoretical predictions.
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(a) Invariant distribution (b) Histogram of a trajectory

(c) Histogram of another trajectory
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Figure 20: A non-convex mixing example. The initial condition is concentrated in the right potential
well but barrier crossing happens. k = 0.02, η = 0.05 and ε = 0.0001.
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(a) One of the invariant distributions (b) Histogram of a trajectory, starting in the right
well

(c) Histogram of another trajectory, starting in the
left well
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Figure 21: A non-convex and non-mixing example. The initial condition is concentrated in the right
potential well but no orbit can cross the potential barrier at x = 0. There is at least another invariant
distribution in the left potential well due to symmetry. But if one restricts to the foliation within the
potential well, convergence to a statistical limit still occurs. k = 5, η = 0.05 and ε = 0.0001.

Interestingly, we observe that Rmk.15 still holds even though the orbit is confined in one potential
well if k is large. As f ′′(1) > 0, the function is strongly convex in a neighborhood of x = 1, and
rescaled Gibbs can be approximated by a Gaussian density of exp(−16k(x− 1)2)/Z. Fig.22 shows
that the ensemble empirical distribution indeed converges to this prediction as η → 0.

(a) η = 0.05 (b) η = 0.02 (c) η = 0.01 (d) η = 0.001

Figure 22: Empirical distributions of a sufficiently evolved ensemble for different η values when
k = 5. The red line is the theoretical approximation in Rmk.15. Note x-axis has been zoomed in via
x 7→ 1 + (x− 1)/

√
η for focusing on the essential part.
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