- We appreciate the valuable comments, which urged us to embody explicit connections to practices of learning. Apology 1
- that not all comments are replied here and our replies have to be short due to space, but they'll be fully addressed in a 2
- revision. We plead a reconsideration based on the improvement, as our contribution is truly innovative and nontrivial. 3

Re: connection to learning, and when Cond.1&2 hold. Here is an example (simplified and only briefly explained 4

- for length) in which the loss will be multiscale as considered in our paper: train a 2-layer neural network to fit data $\{x^k, y^k\}_k$, where the output $y^k = y_0^k + y_1^k + \xi^k$ admits a decomposition into large scale behavior $y_0^k = g_0(x^k)$, microscopic detail $y_1^k = \epsilon g_1(\epsilon x^k)$, and i.i.d. noise ξ_k . Assume g_0 and g_1 are regular enough so that universal approximation (UA) works and they can be approximated by wide enough neural networks with $\mathcal{O}(1)$ weights. Consider MSE loss $\sum_k ||y^k \sum_i a_i \sigma(W_i x^k + b_i)||^2$ with σ being the periodic activation in a recent progress [Implicit Neural Representations with Periodic Activation Functions, 2020]. Then there exists a minimizer and in its neighborhood the loss satisfies Cond 1& 2 and k 2 and k 2. 5 6
- 7
- 8
- 9
- 10
- loss satisfies Cond.1& 2: omit k WLOG, absorb bias into weight, and rewrite the loss as (denote by $\theta = [a_i, W_i]_i$) 11

$$f(\theta) = \left\| y_0 - \sum_{i \in I} a_i \sigma(W_i x) + \epsilon y_1 - \sum_{j \notin I} a_j \sigma(W_j x) \right\|^2 = \left\| g_0(x) - \sum_{i \in I} a_i \sigma(W_i x) \right\|^2 + 2\epsilon \left\langle g_0(x) - \sum_{i \in I} a_i \sigma(W_i x), g_1(\epsilon x) - \sum_{j \notin I} a_j \sigma(W_j x) \right\rangle + \epsilon^2 \left\| g_1(\epsilon x) - \sum_{j \notin I} a_j \sigma(W_j x) \right\|^2$$

where I and I^c are sets of nodes, each large enough for UA to ensure vanishing loss. Renormalize by letting $\hat{x} = \epsilon x$ so 12

that UA works for $g_1(\cdot)$, then the 2nd term rewrites as 13

$$2\epsilon \left\langle g_0(x) - \sum_{i \in I} a_i \sigma(W_i x), g_1(\hat{x}) - \sum_{j \notin I} a_j \sigma\left(\frac{W_j}{\epsilon} \hat{x}\right) \right\rangle$$

- This is in the form of $\epsilon \hat{f}_1(\theta/\epsilon, \theta)$ for some $\hat{f}_1(\phi, \varphi)$ that is quasiperiodic in ϕ (quasiperiodic because \hat{x} is multi-dim). The 3rd term rewrites similarly. Thus, we see $f(\theta) = f_0(\theta) + f_{1,\epsilon}(\theta)$ where f_0 is the 1st term and $f_{1,\epsilon}(\theta) =$ 14
- 15
- $\epsilon \hat{f}_1(\theta/\epsilon,\theta) + \epsilon^2 \hat{f}_2(\theta/\epsilon,\theta)$ for some \hat{f}_1, \hat{f}_2 quasiperiodic in the 1st argument. Such $f_{1,\epsilon}$ satisfies Cond.1&2 due to its 16 quasiperiodic small scale. 17
- Like most theory papers, we also present numerical experiments in which our conclusions still hold although conditions 18
- for our theorems no longer apply. Thanks to the reviews the following will be added (and expanded): 19
- Neural network training. We use fully connected 5-16-2 MLP to regress UCI Airfoil Self-Noise Data Set, with leaky 20
- ReLU, MSE as loss, and batch gradient. Fig.1 shows large LR again produces stochasticity as our paper studies. 21

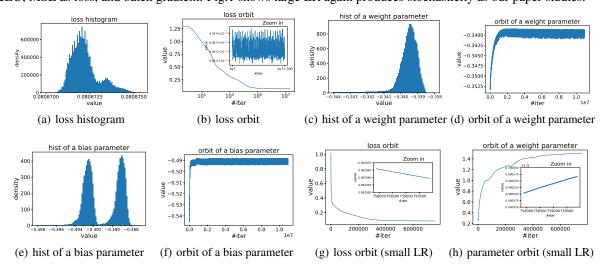


Figure 1: (a)-(f) use LR=0.0165 (large) and demonstrate stochasticity originated from chaos as GD converges to a statistical distribution rather than a local min. (g,h) use LR=0.001 (small) and GD converges to a local min.

- **Re:** $f_{1,\epsilon}$ satisfying Cond.1&2 is like a random variable; tautology? $f_{1,\epsilon}$ does contribute like a r.v., but this needs to be proved, which is one of our main contributions note both x and $f_{1,\epsilon}(x)$ are deterministic even under Cond.1&2! Cond.1&2 use auxiliary random variables to define the needed $f_{1,\epsilon}$, but $f_{1,\epsilon}$ is a deterministic function. 22
- 23
- 24
- Re: weaken isotropic noise assumption? We don't require isotropic 'noise'. Kindly see e.g., Thm.2, which contains 25
- 2 statements: (i) convergence to stochastic behavior for general covariance; (ii) explicit characterization of the limiting 26
- statistics when covariance is isotropic (note the same thing holds for SGD). 27
- Re: valid in multi-dim? Apology that multi-dim. and nonconvex demonstrations were left in Appendix C.2, C.3.3, & 28
- C.5. This rebuttal also adds a neural network example, which is high-dim. & nonconvex, and our conclusion still holds. 29