
Supplementary Material: Asymptotic Guarantees for Generative Modeling

based on the Smooth Wasserstein Distance

A Additional result and proofs for Section 2

A.1 Concentration inequalities for W
(σ)
1 (Pn, P )

We consider a quantitative concentration inequality for W
(σ)
1 (Pn, P ). For α > 0, let ‖ξ‖ψα

:=

inf{C > 0 : E[e(|ξ|/C)α ] ≤ 2} be the Orlitz ψα-norm for a real-valued random variable ξ (if
α ∈ (0, 1), then ‖ · ‖ψα

is a quasi-norm). In Section A.4 we prove the following.

Corollary 3 (Concentration inequality). Assume E[W
(σ)
1 (Pn, P )] <∞. The following hold:

(i) If P is compactly supported with support X , then

P

(
W

(σ)
1 (Pn, P ) ≥ E

[
W

(σ)
1 (Pn, P )

]
+ t
)
≤ e

− nt2

diam(X)2 , ∀t > 0.

(ii) If ‖‖X‖‖ψα
< ∞ for some α ∈ (0, 1], where X ∼ P , then for any η > 0, there exists a

constant C = Cη,α depending only on η, α such that

P

(
W

(σ)
1 (Pn, P ) ≥ (1 + η)E

[
W

(σ)
1 (Pn, P )

]
+ t
)
≤ exp

(
− nt2

C
(
P‖x‖2 + σ2d

)
)

+ 3 exp


−


 nt

C
(∥∥max1≤i≤n ‖Xi‖

∥∥
ψα

+ σ
√
d
)



α
 , ∀t > 0.

(iii) If P‖x‖q < ∞ for some q ∈ [1,∞), then for any η > 0, there exists a constant C = Cη,q
depending only on η, q such that

P

(
W

(σ)
1 (Pn, P ) ≥ (1 + η)E

[
W

(σ)
1 (Pn, P )

]
+ t
)
≤ exp

(
− nt2

C
(
P‖x‖2 + σ2d

)
)

+
C
(
E
[
max1≤i≤n ‖Xi‖q

]
+ σqdq/2

)

nqtq
, ∀t > 0.

A.2 Proof of Theorem 1

Recall that ϕσ is the density function of N (0, σ2Id), i.e., ϕσ(x) = (2πσ2)−d/2e−‖x‖2/(2σ2) for

x ∈ R
d. Noting that the measure Pn ∗ Nσ has density

x 7→ 1

n

n∑

i=1

ϕσ(x−Xi) =
1

n

n∑

i=1

ϕσ(Xi − x),

we arrive at the expression

W
(σ)
1 (Pn, P ) = sup

f∈Lip1

[
1

n

n∑

i=1

f ∗ ϕσ(Xi)− Pf ∗ ϕσ
]
. (3)

The RHS of (3) does not change even if we replace f by f − f(x⋆) for any fixed point x⋆ (as∫
Rd ϕσ(x

⋆ − y)dy = 1). Thus, the problem boils down to showing that the function class

F̌ := F̌σ,d :=
{
f ∗ ϕσ : f ∈ Lip1,0

}
with Lip1,0 := {f ∈ Lip1 : f(0) = 0}

is P -Donsker. Pick any f ∈ Lip1,0, and consider

fσ(x) := f ∗ ϕσ(x) =
∫
f(y)ϕσ(x− y) dy.
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We see that, since |f(y)| ≤ |f(0)|+ ‖y‖ = ‖y‖,

|fσ(x)| ≤
∫

‖y‖ϕσ(x− y) dy ≤
∫
(‖x‖+ ‖x− y‖)ϕσ(x− y) dy

≤ ‖x‖+
∫

‖y‖ϕσ(y) dy ≤ ‖x‖+
(∫

Rd

‖y‖2ϕσ(y) dy
)1/2

= ‖x‖+ σ
√
d.

In general, for a vector k = (k1, . . . , kd) of d nonnegative integers, define the differential operator

Dk =
∂|k|

∂xk11 · · · ∂xkdd
,

with |k| =∑d
i=1 ki. We next give a uniform bound on the derivatives of fσ, for any f ∈ Lip1.

Lemma 1 (Uniform bound on derivatives). For any f ∈ Lip1 and any nonzero multiindex k =
(k1, . . . , kd), we have

∣∣Dkfσ(x)
∣∣ ≤ σ−|k|+1

√
(|k| − 1)!, ∀x ∈ R

d.

Proof. Let Hm(z) denote the Hermite polynomial of degree m defined by

Hm(z) = (−1)mez
2/2

[
dm

dzm
e−z

2/2

]
, m = 0, 1, . . . .

Note that for Z ∼ N (0, 1), E[Hm(Z)2] = m!.

A straightforward computation shows that

Dk
xϕσ(x− y) = ϕσ(x− y)




d∏

j=1

(−1)kjσ−kjHkj

(
(xj − yj)/σ

)



for any multiindex k = (k1, . . . , kd), where Dx means that the differential operator is applied to x.
Hence, we have

Dkfσ(x) =

∫
f(y)ϕσ(x− y)




d∏

j=1

(−1)kjσ−kjHkj

(
(xj − yj)/σ

)

 dy

=

∫
f(x− σy)ϕ1(y)




d∏

j=1

(−1)kjσ−kjHkj (yj)


 dy,

so that, by 1-Lipschitz continuity of f ,

∣∣Dkfσ(x)−Dkfσ(x
′)
∣∣ ≤ ‖x− x′‖

∫
ϕ1(y)




d∏

j=1

σ−kj ∣∣Hkj (yj)
∣∣

 dy.

Note that the integral on the RHS equals

d∏

j=1

σ−kjE
[∣∣Hkj (Z)

∣∣] ≤
d∏

j=1

σ−kj
√
E

[∣∣Hkj (Z)
∣∣2
]
=

d∏

j=1

σ−kj√kj ! ≤ σ−|k|√|k|!,

where Z ∼ N (0, 1). The conclusion of the lemma follows from induction on the size of |k|.

We will use the following technical result.

2



Lemma 2 (Metric entropy bound for Hölder ball). Let X be a bounded convex subset of Rd with
nonempty interior. For given N ∈ N and M > 0, let CN (X ) be the set of continuous real func-
tions on X that are N -times differentiable on the interior of X , and consider the Hölder ball with
smoothness N and radius M

CNM (X ) :=
{
f ∈ CN (X ) : ‖f‖CN (X ) ≤M

}
,

where ‖f‖CN (X ) := max0≤|k|≤N supx |Dkf(x)| (the suprema are taken over the interior of X ).

Then, the metric entropy of CNM (X ) (w.r.t. the uniform norm ‖ · ‖∞) can be bounded as

logN
(
ǫM,CNM (X ), ‖ · ‖∞

)
.d,N,diam(X ) ǫ

−d/N , 0 < ǫ ≤ 1,

Proof of Lemma 2. See Theorem 2.7.1 in [33].

We are now in position to prove Theorem 1.

Proof of Theorem 1. The proof applies Theorem 1.1 in [64] to the function class F̌ = F̌σ,d =

{f ∗ ϕσ : f ∈ Lip1,0} to show that it is P -Donsker. We begin with noting that the function class F̌
has envelope F̌ (x) := F̌σ,d(x) := ‖x‖+ σ

√
d. By assumption, PF̌ 2 <∞.

Next, for each j, consider the restriction of F̌ to Ij , denoted as F̌j = {f1Ij : f ∈ F̌}. To
invoke [64, Theorem 1.1], we have to verify that each function class Fj is P -Donsker and to bound
each E[‖Gn‖F̌j

] where Gn :=
√
n(Pn − P ) and ‖ · ‖F̌j

= supf∈F̌j
| · |. In view of Lemma

1, F̌j can be regarded as a subset of CNM (Ij) with N = ⌊d/2⌋ + 1 and M ′
j =

(
supIj ‖x‖ +

σ
√
d
)∨

σ−⌊d/2⌋√⌊d/2⌋!. Thus, by Lemma 2, the L2(Q)-metric entropy of F̌j for any probability

measure Q on R
d can be bounded as

logN
(
ǫM ′

jQ(Ij)
1/2, F̌j , L2(Q)

)
.d,K ǫ−d/(⌊d/2⌋+1).

The square root of the RHS is integrable (w.r.t. ǫ) around 0, so that Fj is P -Donsker by Theorem
2.5.2 in [33], and by Theorem 2.14.1 in [33], we obtain

E[‖Gn‖F̌j
] .d,K M ′

jP (Ij)
1/2 .d σ

−⌊d/2⌋MjP (Ij)
1/2

with Mj = supIj ‖x‖. By assumption, the RHS is summable over j.

By Theorem 1.1 in [64] we conclude that F̌ is P -Donsker, which implies that there exists a tight

version of P -Brownian bridge process GP in ℓ∞(F̌) such that (Gnf)f∈F̌ converges weakly in

ℓ∞(F̌) to GP . Finally, the continuous mapping theorem yields that

√
nW

(σ)
1 (Pn, P ) = sup

f∈F̌
Gnf

d→ sup
f∈F̌

GP (f) = sup
f∈Lip1,0

G
(σ)
P (f),

where G
(σ)
P (f) := GP (f ∗ ϕσ). By construction, the Gaussian process (G

(σ)
P (f))f∈Lip1,0

is tight

in ℓ∞(Lip1,0). The moment bound follows from summing up the moment bound for each F̌j . This
completes the proof.

A.3 Proof of Corollary 1

We start with proving the following technical lemma.

Lemma 3 (Distribution of L
(σ)
P

). Assume the conditions of Theorem 1 and that P is not a point mass.

Then the distribution of L
(σ)
P is absolutely continuous with respect to (w.r.t.) Lebesgue measure and

its density is positive and continuous on (0,∞) except for at most countably many points.

Proof of Lemma 3. From the proof of Theorem 1 and the fact that Lip1 is symmetric, we have

L
(σ)
P = ‖GP ‖F̌ with ‖ · ‖F̌ := supf∈F̌ | · |. Since GP is a tight Gaussian process in ℓ∞(F̌),
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F̌ is totally bounded for the pseudometric dP (f, g) =
√
VarP (f − g), and GP is a Borel measur-

able map into the space of dP -uniformly continuous functions Cu(F̌) equipped with the uniform

norm ‖ · ‖F̌ . Let F denote the distribution function of L
(σ)
P , and define

r0 := inf{r ≥ 0 : F (r) > 0}.
From [69, Theorem 11.1], F is absolutely continuous on (r0,∞), and there exists a countable set
∆ ⊂ (r0,∞) such that F ′ is positive and continuous on (r0,∞) \ ∆. The theorem however does
not exclude the possibility that F has a jump at r0, and we will verify that (i) r0 = 0 and (ii) F has
no jump at r = 0, which lead to the conclusion. The former follows from p. 57 in [32]. The latter is
trivial since

F (0)− F (0−) = P

(
L
(σ)
P = 0

)
≤ P

(
GP (f) = 0

)
,

for any f ∈ F̌ . Because GP is Gaussian we have P
(
GP (f) = 0

)
= 0 unless f is constant P -

a.s.

Proof of Corollary 1. From Theorem 3.6.2 in [33] applied to the function class F̌ , together with the
continuous mapping theorem, we see that conditionally on X1, X2, . . . ,

√
nW

(σ)
1 (PBn , Pn) = sup

f∈F̌

√
n(PBn − Pn)f

d→ L
(σ)
P

for almost every realization of X1, X2, . . . The desired conclusion follows from the fact that the

distribution function of L
(σ)
P is continuous (cf. Lemma 3) and Polya’s theorem (cf. Lemma 2.11

in [70]).

A.4 Proof of Corollary 3

Case (i) is Corollary 1 in [28]. Cases (ii) and (iii) follow from Theorems 4 and 2 in [71] and [72],

respectively, applied to the function class F̌ using the envelope function F̌ (x) = ‖x‖ + σ
√
d. We

omit the details for brevity.

B Proofs for Section 4

B.1 Preliminaries

The following technical lemmas will be needed.

Lemma 4 (Continuity of W
(σ)
1 ). The smooth Wasserstein distance W

(σ)
1 is lower semicontinuous

(l.s.c.) relative to the weak convergence on P(Rd) and continuous in W1. Explicitly, (i) if µk ⇀ µ
and νk ⇀ ν, then

lim inf
k→∞

W
(σ)
1 (µk, νk) ≥ W

(σ)
1 (µ, ν);

and (ii) if W1(µk, µ) → 0 and W1(νk, ν) → 0, then

lim
k→∞

W
(σ)
1 (µk, νk) = W

(σ)
1 (µ, ν). (4)

Proof. Part (i). We first note that if µk ⇀ µ, then µk ∗ Nσ ⇀ µ ∗ Nσ . This follows from the facts
that weak convergence is equivalent to pointwise convergence of characteristic functions, and the

Gaussian measure has a nonvanishing characteristic function EX∼Nσ
[eit·X ] = e−σ

2‖t‖2/2 6= 0 for

all t ∈ R
d. Now, if µk ⇀ µ and νk ⇀ ν, then µk ∗Nσ ⇀ µ ∗Nσ and νk ∗Nσ ⇀ ν ∗Nσ . From the

lower semicontinuity of W1 relative to the weak convergence (cf. Remark 6.10 in [16]), we conclude

that lim infk→∞ W
(σ)
1 (µk, νk) = lim infk→∞ W1(µk ∗ Nσ, νk ∗ Nσ) ≥ W1(µ ∗ Nσ, ν ∗ Nσ) =

W
(σ)
1 (µ, ν).

Part (ii). Recall that W
(σ)
1 generates the same topology as W1, i.e.,

W
(σ)
1 (µk, µ) → 0 ⇐⇒ W1(µk, µ) → 0.
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See Theorem 2 in [28]. So if µk → µ and νk → ν in W1, then W
(σ)
1 (µk, µ) = W1(µk ∗ Nσ, µ ∗

Nσ) → 0 and W
(σ)
1 (νk, ν) = W1(νk ∗ Nσ, ν ∗ Nσ) → 0. Thus, by Corollary 6.9 in [16], we have

W
(σ)
1 (µk, νk) = W1(µk ∗ Nσ, νk ∗ Nσ) → W1(µk ∗ Nσ, νk ∗ Nσ) = W

(σ)
1 (µ, ν).

Lemma 5 (Weierstrass criterion for the existence of minimizers). Let X be a compact metric space,
and let f : X → R ∪ {+∞} be l.s.c. (i.e., lim infx→x f(x) ≥ f(x) for any x ∈ X ). Then,
argminx∈X f(x) is nonempty.

Proof. See, e.g., p. 3 of [73].

B.2 Proof of Theorem 2

By Lemma 5, compactness of Θ, and lower semicontinuity of the map θ 7→ W
(σ)
1 (Pn(ω), Qθ) (cf.

Lemma 4), we see that argminθ∈Θ W
(σ)
1 (Pn(ω), Qθ) is nonempty.

To prove the existence of a measurable estimator, we will apply Corollary 1 in [66]. Consider the
empirical distribution as a function on XN with X = R

d, i.e., XN ∋ x = (x1, x2, . . . ) 7→ Pn(x) =
n−1

∑n
i=1 δxi

. Observe that XN and R
d0 are both Polish, D := XN × Θ is a Borel subset of the

product metric space XN × R
d0 , the map θ 7→ W

(σ)
1 (Pn(x), Qθ) is l.s.c. by Lemma 4, and the set

Dx =
{
θ ∈ Θ : (x, θ) ∈ D

}
⊂ R

d0 is σ-compact (as any subset in R
d0 is σ-compact). Thus, in

view of Corollary 1 of [66], it suffices to verify that the map (x, θ) 7→ W
(σ)
1 (Pn(x), Qθ) is jointly

measurable.

To this end, we use the following fact: for a real function Y ×Z ∋ (y, z) 7→ f(y, z) ∈ R defined on
the product of a separable metric space Y (endowed with the Borel σ-field) and a measurable space
Z , if f(y, z) is continuous in y and measurable in z, then f is jointly measurable; see e.g. Lemma

4.51 in [74]. Equip P1(R
d) with the metric W1 and the associated Borel σ-field; the metric space

(P1(R
d),W1) is separable [16, Theorem 6.16]. Then, since the map XN ∋ x 7→ Pn(x) ∈ P1(R

d) is

continuous (which is not difficult to verify), the map XN×Θ ∋ (x, θ) 7→ (Pn(x), θ) ∈ P1(R
d)×Θ

is continuous and thus measurable. Second, by Lemma 4, the function P1(R
d) × Θ ∋ (µ, θ) 7→

W
(σ)
1 (µ,Qθ) ∈ [0,∞) is continuous in µ and l.s.c. (and thus measurable) in θ, from which we

see that the map (µ, θ) 7→ W
(σ)
1 (µ,Qθ) is jointly measurable. Conclude that the map (x, θ) 7→

W
(σ)
1 (Pn(x), Qθ) is jointly measurable.

B.3 Proof of Theorem 3

The proof relies on Theorem 7.33 in [67], and is reminiscent of that of Theorem B.1 in [37]; we
present a simpler derivation under our assumption.11 To apply Theorem 7.33 in [67], we extend the

map θ 7→ W
(σ)
1 (Pn, Qθ) to the entire Euclidean space R

d0 as

gn(θ) :=

{
W

(σ)
1 (Pn, Qθ) if θ ∈ Θ

+∞ if θ ∈ R
d0 \Θ .

Likewise, define

g(θ) :=

{
W

(σ)
1 (P,Qθ) if θ ∈ Θ

+∞ if θ ∈ R
d0 \Θ .

The function gn is stochastic, gn(θ) = gn(θ, ω), but g is non-stochastic. By construc-

tion, we see that argminθ∈Rd0 gn(θ) = argminθ∈Θ W
(σ)
1 (Pn, Qθ) and argminθ∈Rd0 g(θ) =

argminθ∈Θ W
(σ)
1 (P,Qθ). In addition, by Lemma 4, continuity of the map θ 7→ Qθ relative to

the weak topology, and closedness of the parameter space Θ, we see that both gn and g are l.s.c. (on
R
d0 ). The main step of the proof is to show a.s. epi-convergence of gn to g. Recall the definition of

epi-convergence (in fact, this is an equivalent characterization; see [67, Proposition 7.29]):

11Theorem B.1 in [37] applies Theorem 7.31 in [67]. To that end, one has to extend the maps θ 7→
Wp(µ̂n, µθ) and θ 7→ Wp(µ⋆, µθ) to the entire Euclidean space R

dθ . The extension was not mentioned
in the proof of [37, Theorem B.1], although this missing step does not affect their final result.
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Definition 1 (Epi-convergence). For extended-real-valued functions fn, f on R
d0 with f being l.s.c.,

we say that fn epi-converges to f if the following two conditions hold:

(i) lim infn→∞ infθ∈K fn(θ) ≥ infθ∈K f(θ) for any compact set K ⊂ R
d0 ; and

(ii) lim supn→∞ infθ∈U fn(θ) ≤ infθ∈U f(θ) for any open set U ⊂ R
d0 .

We also need the concept of level-boundedness.

Definition 2 (Level-boundedness). For an extended-real-valued function f on R
d0 , we say that f is

level-bounded if for any α ∈ R, the set {θ ∈ R
d0 : f(θ) ≤ α} is bounded (possibly empty).

We are now in position to prove Theorem 3.

Proof of Theorem 3. By boundedness of the parameter space Θ, both gn and g are level-bounded by
construction as the (lower) level sets are included in Θ. In addition, by assumption, both gn and g
are proper (an extended-real-valued function f on R

d0 is proper if the set {θ ∈ R
d0 : f(θ) < ∞}

is nonempty). In view of Theorem 7.33 in [67], it remains to prove that gn epi-converges to g a.s.
To verify property (i) in the definition of epi-convergence, recall that Pn → P in W1 (and hence in

W
(σ)
1 ) a.s. Pick any ω ∈ Ω such that Pn(ω) → P in W1. Pick any compact set K ⊂ R

d0 . Since
gn(·, ω) is l.s.c., by Lemma 5, there exists θn(ω) ∈ K such that gn(θn(ω), ω) = infθ∈K gn(θ, ω).
Up to extraction of subsequences, we may assume θn(ω) → θ⋆(ω) for some θ⋆(ω) ∈ K. If θ⋆(ω) /∈
Θ, then by closedness of Θ, θn(ω) /∈ Θ for all sufficiently large n. Thus, we have

lim inf
n→∞

inf
θ∈K

gn(θ, ω) = lim inf
n→∞

gn(θn(ω), ω) = +∞,

so that lim infn→∞ infθ∈K gn(θ, ω) ≥ infθ∈K g(θ). Next, consider the case where θ⋆(ω) ∈ Θ. In
this case, θn(ω) ∈ Θ for all n (otherwise, +∞ = gn(θn(ω), ω) > gn(θ

⋆(ω), ω), which contradicts

the construction of θn(ω)). Thus, gn(θn(ω), ω) = W
(σ)
1 (Pn(ω), Qθn(ω)), so that

lim inf
n→∞

inf
θ∈K

gn(θn(ω), ω) = lim inf
n→∞

W
(σ)
1 (Pn(ω), Qθn(ω))

(a)

≥ W
(σ)
1 (P,Qθ⋆(ω))

≥ inf
θ∈K

g(θ), (5)

where (a) follows from Lemma 4.

To verify property (ii) in the definition of epi-convergence, pick any open set U ⊂ Θ. It is enough
to consider the case where U ∩ Θ 6= ∅. Let {θ′n}∞n=1 ⊂ U be a sequence with limn→∞ g(θ′n) =
infθ∈U g(θ). Since infθ∈U g(θ) is finite, we may assume that θ′n ∈ U ∩Θ for all n. Thus, we have

lim sup
n→∞

inf
θ∈U

gn(θ, ω) ≤ lim sup
n→∞

gn(θ
′
n, ω)

= lim sup
n→∞

W
(σ)
1 (Pn(ω), Qθ′n)

≤ lim
n→∞

W
(σ)
1 (Pn(ω), P )

︸ ︷︷ ︸
=0

+ lim
n→∞

W
(σ)
1 (P,Qθ′n)

︸ ︷︷ ︸
=infθ∈U g(θ)

= inf
θ∈U

g(θ). (6)

Conclude that gn epi-converges to g a.s. This completes the proof.

B.4 Proof of Theorem 4

Recall that P = Qθ⋆ . Condition (ii) implies that argminθ∈Θ W
(σ)
1 (P,Qθ) = {θ⋆}. Hence, by

Theorem 3, for any neighborhood N of θ⋆,

inf
θ∈Θ

W
(σ)
1 (Pn, Qθ) = inf

θ∈N
W

(σ)
1 (Pn, Qθ)

with probability approaching one.
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Define R
(σ)
θ := Q

(σ)
θ − P (σ) −

〈
θ − θ⋆, D(σ)

〉
∈ ℓ∞(Lip1,0), and choose N1 as a neighborhood of

θ⋆ such that
∥∥〈θ − θ⋆, D(σ)

〉∥∥
Lip1,0

−
∥∥R(σ)

θ

∥∥
Lip1,0

≥ 1

2
C, ∀θ ∈ N1, (7)

for some constant C > 0. Such N1 exists since conditions (iii) and (iv) ensure the existence of an
increasing function η(δ) = o(1) (as δ → 0) and a constant C > 0 such that

∥∥R(σ)(θ)
∥∥
Lip1,0

≤
‖θ − θ⋆‖η

(
‖θ − θ⋆‖

)
and

∥∥〈t,D(σ)
〉∥∥

Lip1,0
≥ C‖t‖ for all t ∈ R

d0 .

For any θ ∈ N1, the triangle inequality and (7) imply that

W
(σ)
1 (Pn, Qθ) ≥

C

2
‖θ − θ⋆‖ −W

(σ)
1 (Pn, P ). (8)

For ξn := 4
√
n

C W
(σ)
1 (Pn, P ), consider the (random) set N2 :=

{
θ ∈ Θ :

√
n‖θ − θ⋆‖ ≤ ξn

}
. Note

that ξn is of orderOP(1) by Theorem 1. By the definition of ξn, infθ∈N1
W

(σ)
1 (Pn, Qθ) is unchanged

if N1 is replaced with N1 ∩N2; indeed, if θ ∈ N c
2 , then W

(σ)
1 (Pn, Qθ) >

C
2
ξn√
n
−W

(σ)
1 (Pn, P ) =

W
(σ)
1 (Pn, P ), so that infθ∈Nc

2
W

(σ)
1 (Pn, Qθ) >W

(σ)
1 (Pn, P ) ≥ infθ∈N1

W
(σ)
1 (Pn, Qθ).

Reparametrizing t :=
√
n(θ − θ⋆) and setting Tn :=

{
t ∈ R

d0 : ‖t‖ ≤ ξn, θ
⋆ + t/

√
n ∈ Θ

}
, we

have the following approximation

sup
t∈Tn

∣∣∣∣
√
n
∥∥P (σ)

n −Q
(σ)

θ⋆+t/
√
n

∥∥
Lip1,0︸ ︷︷ ︸

=W
(σ)
1 (Pn,Qθ⋆+t/

√
n)

−
∥∥√n

(
P (σ)
n − P (σ)

)
︸ ︷︷ ︸

=G
(σ)
n

−
〈
t,D(σ)

〉∥∥
Lip1,0

∣∣∣∣

≤ sup
t∈Tn

√
n
∥∥R(σ)

θ⋆+t/
√
n

∥∥
Lip1,0

≤ ξnη(ξn/
√
n)

= oP(1).

(9)

Observe that any minimizer t⋆ ∈ R
d0 of the function hn(t) :=

∥∥G(σ)
n −

〈
t,D(σ)

〉∥∥
Lip1,0

satisfies

‖t⋆‖ ≤ ξn; indeed if ‖t⋆‖ > ξn, then hn(t
⋆) ≥ C‖t⋆‖−‖G(σ)

n ‖Lip1,0 = C‖t⋆‖−√
nW

(σ)
1 (Pn, P ) =

3
√
nW

(σ)
1 (Pn, P ) = 3hn(0), which contradicts the assumption that t⋆ is a minimizer of hn(t).

Since by assumption θ⋆ ∈ int(Θ), the set of minimizers of hn lies inside Tn. Conclude that

inf
θ∈Θ

√
nW

(σ)
1 (Pn, Qθ) = inf

t∈Rd0

∥∥G(σ)
n −

〈
t,D(σ)

〉∥∥
Lip1,0

+ oP(1). (10)

Now, from the proof of Theorem 1 and the fact that the map G 7→ (G(f ∗ϕσ))f∈Lip1,0
is continuous

(indeed, isometric) from ℓ∞(F̌) into ℓ∞(Lip1,0), we see that (G
(σ)
n f)f∈Lip1,0

→ G
(σ)
P weakly in

ℓ∞(Lip1,0)

Applying the continuous mapping theorem to L 7→ inft∈Rd0

∥∥L −
〈
t,D(σ)

〉∥∥
Lip1,0

and using the

approximation (10), we obtain the conclusion of the theorem.

B.5 Proof of Corollary 2

The proof relies on the following result on weak convergence of argmin solutions of convex stochas-
tic functions. The following lemma is a simple modification of Theorem 1 in [75]. Similar tech-
niques can be found in [76] and [77].

Lemma 6. Let Hn(t) and H(t) be convex stochastic functions on R
d0 . Suppose that (i)

argmint∈Rd0 H(t) is unique a.s., and (ii) for any finite set of points t1, . . . , tk ∈ R
d0 , we

have (Hn(t1), . . . , Hn(tk))
d→ (H(t1), . . . , H(tk)). Then, for any sequence {t̂n}n∈N such that

Hn(t̂n) ≤ inft∈Rd0 Hn(t) + oP(1), we have t̂n
d→ argmint∈Rd0 H(t).
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(b) Mean estimation for 2-mode Gaussian mixture

Figure 4: One-dimensional limiting distributions for: (a) the mean and variance of an MSWE-based
generative model fitted to P = N (µ⋆, σ

2
⋆), with µ⋆ = 0 and σ⋆ = 1; and (b) the two mean

parameters of the mixture P = 0.5N (µ1, 1) + 0.5N (µ2, 1), for µ1 = 0 and µ2 = 1. Also shown
on a log-log scale (with error bars) is the SWD convergence as a function of n.

Proof of Corollary 2. By Theorem 3, θ̂n → θ⋆ in probability. From equation (8) and the definition

of θ̂n, we see that, with probability approaching one,

inf
θ∈Θ

√
nW

(σ)
1 (Pn, Qθ)

︸ ︷︷ ︸
=OP(1)

+oP(1) ≥
√
nW

(σ)
1 (Pn, Qθ̂n) ≥

C

2

√
n‖θ̂n − θ⋆‖ − √

nW
(σ)
1 (Pn, P )︸ ︷︷ ︸
=OP(1)

,

which implies that
√
n‖θ̂n − θ⋆‖ = OP(1). Let Hn(t) :=

∥∥G(σ)
n −

〈
t,D(σ)

〉∥∥
Lip1,0

and H(t) :=
∥∥G(σ)

P −
〈
t,D(σ)

〉∥∥
Lip1,0

. Both Hn(t) and H(t) are convex in t. Then, from equation (9), for

t̂n :=
√
n(θ̂n − θ⋆) = OP(1), we have

√
nW

(σ)
1 (Pn, Qθ̂n) = Hn(t̂n) + oP(1).

Combining the result (10) and the definition of θ̂n, we see that Hn(t̂n) ≤ inft∈Rd0 Hn(t) + oP(1).

Since G
(σ)
n converges weakly to G

(σ)
P in ℓ∞(Lip1,0), by the continuous mapping theorem, we have

(Hn(t1), . . . , Hn(tk))
d→ (H(t1), . . . , H(tk)) for any finite number of points t1, . . . , tk ∈ R

d0 .

By assumption, argmint∈Rd0 H(t) is unique a.s. Hence, by Lemma 6, we conclude that t̂n
d→

argmint∈Rd0 H(t).

Remark 6 (Alternative proofs). Corollary 2 alternatively follows from the proof of Theorem 4 com-
bined with the argument given at the end of p. 63 in [2] (plus minor modifications), or the result of
Theorem 5 combined with the argument given at the end of p. 67 in [2]. The proof provided above
is differs from both these arguments and is more direct.

C Additional Experiments

Figure 4 shows tne-dimensional limiting distributions for: (a) the mean and variance of an MSWE-
based generative model fitted to P = N (µ⋆, σ

2
⋆), with µ⋆ = 0 and σ⋆ = 1; and (b) the two mean

parameters of the mixture P = 0.5N (µ1, 1) + 0.5N (µ2, 1), for µ1 = 0 and µ2 = 1 (repeated from
the main text). Also shown on a log-log scale (with 1-sigma error bars) is the SWD convergence as
a function of n.
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