
Asymptotic Guarantees for Generative Modeling

Based on the Smooth Wasserstein Distance

Ziv Goldfeld
Cornell University

goldfeld@cornell.edu

Kristjan Greenewald
MIT-IBM Watson AI Lab

kristjan.h.greenewald@ibm.com

Kengo Kato
Cornell University

kk976@cornell.edu

Abstract

Minimum distance estimation (MDE) gained recent attention as a formulation of
(implicit) generative modeling. It considers minimizing, over model parameters, a
statistical distance between the empirical data distribution and the model. This for-
mulation lends itself well to theoretical analysis, but typical results are hindered
by the curse of dimensionality. To overcome this and devise a scalable finite-
sample statistical MDE theory, we adopt the framework of smooth 1-Wasserstein

distance (SWD) W
(σ)
1 . The SWD was recently shown to preserve the metric and

topological structure of classic Wasserstein distances, while enjoying dimension-
free empirical convergence rates. In this work, we conduct a thorough statistical
study of the minimum smooth Wasserstein estimators (MSWEs), first proving the
estimator’s measurability and asymptotic consistency. We then characterize the
limit distribution of the optimal model parameters and their associated minimal

SWD. These results imply an O(n−1/2) generalization bound for generative mod-
eling based on MSWE, which holds in arbitrary dimension. Our main technical

tool is a novel high-dimensional limit distribution result for empirical W
(σ)
1 . The

characterization of a nondegenerate limit stands in sharp contrast with the classic
empirical 1-Wasserstein distance, for which a similar result is known only in the
one-dimensional case. The validity of our theory is supported by empirical results,
posing the SWD as a potent tool for learning and inference in high dimensions.

1 Introduction

Minimum distance estimation (MDE) considers the minimization of a statistical distance (SD) be-
tween the empirical data distribution and a parametric model class. Given an identically and inde-
pendently distributed (i.i.d.) dataset X1, . . . , Xn sampled from P , the goal is to learn a model Qθ,
for θ ∈ Θ, that approximates the empirical measure Pn := n−1

∑n
i=1 δXi

under a SD1 δ, i.e., we

aim to find θ̂n ∈ argminθ∈Θ δ(Pn, Qθ). This classic mathematical statistics problem [1–3] was
adopted in recent years as a formulation of generative modeling. Indeed, both generative adversarial
networks (GANs) [4–11] and variational (or Wasserstein) autoencoders [12,13] stem from different
strategies for (approximately) solving MDE2 for various choices of δ.

Beyond the practical effectiveness of MDE-based generative models, this formulation is well-suited
for a theoretic analysis. This inspired a recent line of works studying GAN generalization in terms of
MDEs [9,14,15]. Such sample-complexity results boil down to the rate of empirical approximation
under the chosen SD, i.e., the speed at which δ(Pn, P ) converges to zero. Unfortunately, popular
SDs, such as Wasserstein distances [16], f -divergences [17], and integral probability metrics [18]

1Recall that δ is an SD if δ(P,Q) = 0 ⇐⇒ P = Q.
2or a variant thereof, where Qθ is also estimated from samples.
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(excluding maximum mean discrepancy [19]) suffer from the curse of dimensionality (CoD), con-

verging as δ(Pn, P ) ≍ n−1/d, with d being the data dimension [20–23].3 This limits the practical
usefulness of the devised results, which degrade exponentially fast with dimension.

1.1 MDE with Smooth Wasserstein Distance and Contributions

To circumvent the CoD impasse, we adopt the smooth 1-Wasserstein distance (SWD) [27,28] as our

SD. Namely, for any σ > 0, consider W
(σ)
1 (P,Q) := W1(P ∗Nσ, Q∗Nσ), where Nσ = N (0, σ2Id)

is the d-dimensional isotropic Gaussian measure of parameter σ, P ∗ Nσ is the convolution of P
and Nσ , and W1 is the regular 1-Wasserstein distance (see Section 2 for details). The motivation
for this choice is twofold. First, the 1-Wasserstein distance is widely used for generative model-
ing [8, 13, 29, 30] due to its beneficial attributes, such as metric structure, robustness to support
mismatch, compatibility to gradient-based optimization, etc. As shown in [28], these properties are
all preserved under Gaussian smoothing. Second, while W1 suffers from the CoD, [27] showed

that E
[
W

(σ)
1 (Pn, P )

]
.σ,d n

−1/2 in all dimensions, whenever P is sub-Gaussian.4 The considered
minimum smooth Wasserstein estimator (MSWE) is thus

θ̂n ∈ argmin
θ∈Θ

W
(σ)
1 (Pn, Qθ). (1)

We first prove measurability and strong consistency of θ̂n, along with almost sure convergence of
the associated minimal distance. Moving to a limit distribution analysis, we characterize the high-

dimensional limits of
√
n(θ̂n − θ⋆) and

√
n infθ∈Θ W

(σ)
1 (Pn, Qθ), thus establishing n−1/2 con-

vergence rates for both quantities in arbitrary dimension. Leveraging these results along with the

framework from [14], we derive a high-dimensional generalization bound of order n−1/2 on genera-

tive modeling with W
(σ)
1 . Empirical results to support our theory are provided. Using synthetic data

we validate both the limiting distributions of parameter estimates and the convergence of the SWD
as the number of samples increases.

Our main technical tool is a novel high-dimensional limit distribution result for scaled empirical

SWD, i.e.,
√
nW

(σ)
1 (Pn, P ), which may be of independent interest. Our analysis relies on the

Kantorovich-Rubinstein (KR) duality for W1 [16], which allows representing
√
nW

(σ)
1 (Pn, P ) as

a supremum of an empirical process indexed by the class of 1-Lipschitz functions convolved with
a Gaussian density. We then prove that this function class is Donsker (i.e., satisfies the uniform
central limit theorem (CLT)) under a polynomial moment condition on P .5 By the continuous

mapping theorem, we conclude that
√
nW

(σ)
1 (Pn, P ) converges in distribution to the supremum of

a tight Gaussian process. To enable evaluation of the distributional limit, we also prove that the
nonparametric bootstrap is consistent. The characterization of a high-dimensional limit distribution
for empirical SWD stands in sharp contrast to the classic W1 case, for which such a result is known
only when d = 1 [35].

1.2 Comparisons and Related Works

MDE questions similar to those studied herein were addressed for classic W1 in [36,37] (see also [38,
39]). They derived limit distribution results only for the one-dimensional case, essentially because it
is unknown whether a properly scaled W1(Pn, P ) has a nondegenerate limit in general when d > 1.

Sliced Wasserstein distance MDE was recently analyzed in [40], covering arbitrary dimension, as
done herein. Indeed, both sliced and smooth Wasserstein distances employ different approaches for
alleviating the CoD. The sliced version eliminates dependence on d by definition, as it is an average
of one-dimensional W1 distances (via random projections of d-dimensional distributions). SWD, on

3One might hope that using more sophisticated estimates of P (instead of the empirical measure) or avoiding
plugin methods altogether may alleviate the CoD. However, recent minimax analyses for Wasserstein distances

[24], f -divergences [25] and integral probability metrics [26] show that the n−1/d rate is generally unavoidable.
4The explicit bound from [31] is E

[
δ(σ)(Pn, P )

]
. σ−d/2n−1/2. While the dependence on n is optimal

and decoupled from d (unlike in CoD rates), the prefactor is exponential in d—a dependence that warrants
further exploration. See discussion in Section 6.

5The reader is referred to, e.g., [32–34] as useful references on modern empirical process theory.

2



the other hand, does not entail dimensionality reduction, but leverages Gaussian smoothing to level
out local irregularities in the high-dimensional distributions, which speeds up empirical convergence
rates. This, in turn, enables a thorough MSWE asymptotic analysis for any d. Sliced and smooth
Wasserstein distances are also similar in that they are both metrics and (topologically) equivalent
to W1, but there are some notable differences. While sliced W1 is easily computable using the
one-dimensional formula, computational aspects of SWD are still under exploration (see Section 6
for further discussion). SWD might be preferable as a proxy for regular W1, as the two are within

an additive 2σ
√
d gap from one another [28, Lemma 1]. Comparison results for sliced Wasserstein

seem weaker, assuming compact support and involving implicit dimension-dependent constants (cf.,
e.g., [41, Lemma 5.1.4]).

Also related to our work is entropic optimal transport (EOT). Its popularity has been driven both by
algorithmic advances [42,43] (the latter gives a near-linear-time algorithm) and some statistical prop-
erties it possesses [44–46]. Specifically, two-sample empirical estimation under EOT is known to

converge as n−1/2 for smooth costs (thus, in particular, excluding entropic W1) with compactly sup-
ported distributions [47], or squared cost with subgassian distributions [48]. In comparison, SWD
enjoys this fast convergence rate in the stronger one-sample setting and under milder conditions on
the distribution. A CLT for empirical EOT under quadratic cost was also derived in [48]. This result
is similar to that of [49] for the classic 2-Wasserstein distance, but is markedly different from ours.
Notably, [48] derive the CLT with unknown centering constants given by the expected empirical
EOT (which differs from the population one). Furthermore, unlike the SWD, EOT is not a metric,
even when the underlying cost is [50, 51].6 In conclusion, while EOT can be efficiently computed,
several gaps are still present as far as its statistical properties, and perhaps more importantly, it
surrenders some desirable structural properties of classic Wasserstein distances.

Notation. Let ‖·‖ denote the Euclidean norm, and x ·y, for x, y ∈ R
d, designate the inner product.

For any probability measure Q on a measurable space (S,S) and any measurable real function f on
S, we use the notationQf :=

∫
S
f dQwhenever the integral exists. We write a .x bwhen a ≤ Cxb

for a constant Cx that depends only on x (a . b means a ≤ Cb for an absolute constant C).

We denote by (Ω,A,P) the underlying probability space on which all random variables are defined.

The class of Borel probability measures on R
d is P(Rd). The subset of measures with finite first

moment is denoted by P1(R
d), i.e., P ∈ P1(R

d) whenever
∫
‖x‖ dP (x) < ∞. The convolution of

P,Q ∈ P(Rd) is (P ∗Q)(A) :=
∫ ∫

1A(x+ y) dP (x) dQ(y), where 1A is the indicator of A. The

convolution of measurable functions f, g on R
d is f ∗g(x) =

∫
f(x−y)g(y) dy. We also recall that

Nσ := N (0, σ2Id), and use ϕσ(x) = (2πσ2)−d/2e−‖x‖2/(2σ2), x ∈ R
d, for the Gaussian density.

For a non-empty set T , let ℓ∞(T ) denote the space of all bounded functions f : T → R, equipped

with the uniform norm ‖f‖T := supt∈T
∣∣f(t)

∣∣. We denote Lip1(R
d) := {f : Rd → R : |f(x) −

f(y)| ≤ ‖x − y‖ ∀x, y ∈ R
d} for the set of Lipschitz continuous functions on R

d with Lipschitz
constant bounded by 1. When d is clear from the context we use the shorthand Lip1.

2 Background and preliminaries

We next provide a short background on the central technical ideas used in the paper.

1-Wasserstein distance. The 1-Wasserstein distance W1(P,Q) between P,Q ∈ P1(R
d) is

W1(P,Q) := inf
π∈Π(P,Q)

∫

Rd×Rd

‖x− y‖ dπ(x, y),

where Π(P,Q)is the set of all couplings of P and Q. The KR duality further implies W1(P,Q) =
supf∈Lip1

∫
Rd f d(P −Q). See [16] for additional background.

Empirical approximation. Fix P ∈ P1(R
d) and let X1, . . . , Xn ∼ P be i.i.d. Let Pn =

n−1
∑n
i=1 δXi

be the empirical distribution of X1, . . . , Xn, where δx is the Dirac measure at x.

The convergence rate of W1(Pn, P ) received much attention in the literature; see, e.g., [20,52–58].7

6EOT can be transformed into a Sinkhorn divergence via a simple modification, but it is still is not a metric
since it lacks the triangle inequality [51].

7Those references also contain results on the more general Wasserstein distance and non-Euclidean spaces.
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Sharp rates are known in all dimensions;8 E[W1(Pn, P )] = O(n−1/2) if d = 1, = O(n−1/2 log n)
if d = 2, and = O(n−1/d) for d ≥ 3 provided that P has sufficiently many moments (cf. [20]).

Limit distribution. Despite the comprehensive account of the expected W1(Pn, P ), limiting dis-
tribution results for a scaled version thereof are known only for d = 1. Indeed, Theorem 2 in [59]

yields that Lip1(R) is a P -Donsker class if (and only if)
∑
j P
(
[−j, j]c

)1/2
< ∞. Combining with

KR duality, we have
√
nW1(Pn, P )

d→ supf∈Lip1(R)
GP (f) for some tight Gaussian process GP in

ℓ∞(Lip1(R)). An alternative derivation of the limit distribution for d = 1 is given in [35], based on
the fact that W1 equals the L1 distance between distribution functions when d = 1. The arguments
in those papers, however, do not carry over to general d. For d ≥ 2, in general, the function class

Lip1(R
d) is not Donsker; if it was, then E[W1(Pn, P )] would be of order O(n−1/2), contradicting

existing results lower bounding the rate of convergence of W1(Pn, P ) [20].

Smooth Wasserstein distance. We are interested in d ≥ 2, and instead of W1 consider the SWD

[27, 28] W
(σ)
1 (P,Q) := W1(P ∗ Nσ, Q ∗ Nσ). [27] shows that W

(σ)
1 (Pn, P ) = OP (n

−1/2), for

all d and any sub-Gaussian P . Herein, we characterize the limit distribution of
√
nW

(σ)
1 (Pn, P ),

prove that this distribution can be accurately estimated via the bootstrap, and derive concentration
inequalities (see Supplement A.1 for the latter). To simplify discussions, henceforth we assume 0 <
σ ≤ 1.

Stochastic processes. A stochastic process G :=
(
G(t)

)
t∈T indexed by T is Gaussian if the

(
G(ti)

)k
i=1

are jointly Gaussian for any finite collection {ti}ki=1 ⊂ T . A Gaussian processG is tight

in ℓ∞(T ) if and only if T is totally bounded for the pseudometric dG(s, t) =
√

E
[
|G(s)−G(t)|2

]
,

and G has sample paths a.s. uniformly dG-continuous [33, Section 1.5]. If G is sample bounded, we
view it as a mapping from the sample space into ℓ∞(T ). A version of a stochastic process is another
stochastic process with the same finite dimensional distributions.

3 Limit distribution theory for smooth Wasserstein distance

The main technical tool for treating MSWE is a characterization of the limit distribution of√
nW

(σ)
1 (Pn, P ) in all dimensions, which is the focus of this section. We also derive consistency of

the bootstrap as a means for computing the limit distribution, and establish concentration inequalities

for W
(σ)
1 (Pn, P ) (see Supplement A.1 for the latter).

Starting from the limit distribution of
√
nW

(σ)
1 (Pn, P ), some definitions are needed to describe

the limit random variable. Denote Lip1,0 := {f ∈ Lip1 : f(0) = 0}, assume that P‖x‖2 <

∞, and let G
(σ)
P =

(
G

(σ)
P (f)

)
f∈Lip1,0

be a centered Gaussian process with covariance function

E
[
G

(σ)
P (f)G

(σ)
P (g)

]
= CovP (f∗ϕσ, g∗ϕσ), where f, g,∈ Lip1,0. One may verify that |f∗ϕσ(x)| ≤

‖x‖ + σ
√
d (cf. Section A.2), so that P |f ∗ ϕσ|2 < ∞, for all f ∈ Lip1,0 (which ensures that the

covariance function above is well-defined). With that, we are ready to state the theorem.

Theorem 1 (SWD limit distribution). Assume that P‖x‖2 < ∞. Let Rd =
⋃∞
j=1 Ij be a partition

of Rd into bounded convex sets with nonempty interior such that K := supj diam(Ij) <∞. If

∑∞

j=1
MjP (Ij)

1/2 <∞ with Mj := sup
Ij

‖x‖, (2)

then there exists a version of G
(σ)
P that is tight in ℓ∞(Lip1,0), and denoting the tight version by the

same symbol G
(σ)
P , we have

√
nW

(σ)
1 (Pn, P )

d→ supf∈Lip1,0
G

(σ)
P (f) =: L

(σ)
P . In addition, we have

√
nE
[
W

(σ)
1 (Pn, P )

]
.d,K σ−⌊d/2⌋∑∞

j=1MjP (Ij)
1/2.

The proof is given in Supplement A.2. We use KR duality to translate the Gaussian convolution in the
measure space to the convolution of Lipschitz functions with a Gaussian density. It is then shown that

8Except d = 2, where a log factor is possibly missing.
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this class of Gaussian-smoothed Lipschitz functions is P -Donsker by bounding the metric entropy
of the function class restricted to each Ij . The proof substantially relies on empirical process theory.

Remark 1 (Discussion on Condition (2)). Let {Ij} consist of cubes with side length 1 and integral
lattice points as vertices. One may then obtain the bound

∞∑

j=1

MjP (Ij)
1/2 .d

∞∑

k=1

kdP
(
‖x‖∞ > k

)1/2
.

∫ ∞

1

tdP
(
‖x‖∞ > t

)1/2
dt,

which is finite (by Markov’s inequality) if there exists ǫ > 0 such that P |xj |2(d+1)+ǫ <∞ for all j.

Proposition 1 in [27] shows that E
[
W

(σ)
1 (Pn, P )

]
= O(n−1/2) whenever P is sub-Gaussian. The-

orem 1 substantially relaxes this moment condition, in addition to deriving a limit distribution.

Remark 2 (Limit distribution for empirical Wp). The limit distribution of
√
nWp(Pn, P ), when P

is supported on a finite or a countable set, was derived in [60] and [61], respectively. [62] show
asymptotic normality of

√
n(W2(Pn, Q) − E[W2(Pn, Q)]), in arbitrary dimension, but under the

assumption thatQ 6= P . The limit distribution for the empirical 2-Wasserstein distance withQ = P
is known only when d = 1 [63]. None of the techniques employed in these works are applicable in
our case, which therefore requires a different analysis as described above.

The proof of Theorem 1 along with Lemma 3 from Supplement A.3 implies that the distribution

of L
(σ)
P can be estimated via the bootstrap [33, Chapter 3.6]. Let XB

1 , . . . , X
B
n be i.i.d. from Pn

conditioned on X1, . . . , Xn, and set PBn := n−1
∑n
i=1 δXB

i
as the bootstrap empirical distribution.

Let PB be the probability measure induced by the bootstrap (i.e., the conditional probability given
X1, X2, . . . ).

Corollary 1 (Bootstrap consistency). Assume the conditions of Theorem 1 and that P is not a point

mass. Then, we have supt≥0

∣∣PB
(√
nW

(σ)
1 (PBn , Pn) ≤ t

)
− P

(
L
(σ)
P ≤ t

)∣∣→ 0 a.s.

This corollary, together with continuity of the distribution function of L
(σ)
P (cf. Lemma 3 in the

Appendix), implies that for q̂1−α := inf{t ≥ 0 : PB
(√
nW

(σ)
1 (PBn , Pn) ≤ t

)
≥ 1− α} (which can

be computed numerically), we have P
(√
nW

(σ)
1 (Pn, P ) > q̂1−α

)
= α+ o(1).

Remark 3 (Two-sample setting). Theorem 1 and Corollary 1 can be extended to the two-sample

case, i.e., accounting for W
(σ)
1 (Pn, Qm). The proof of Theorem 1 shows that the function class

Fσ,d :=
{
f ∗ ϕσ : f ∈ Lip1,0

}
is Donsker, for all d. Consequently,

√
mn
m+nW

(σ)
1 (Pn, Qm) con-

verges in distribution to the supremum of a tight Gaussian process, if the population distributions
agree (cf. [64, Chapter 3.7]). By [64, Theorem 3.7.6], this limit process can be consistently esti-
mated by the two-sample bootstrap. Two-sample testing with (unsmoothed) Wp is studied in [65],
but they find critical values for the tests only for d = 1. This is due to lack of tractable distribution
approximation results for Wp in high dimensions. Our theory shows that we can overcome this

bottleneck by adopting W
(σ)
1 .

4 Minimum Smooth Wasserstein Estimation

We study the statistical properties of the MSWE θ̂n ∈ argminθ∈Θ W
(σ)
1 (Pn, Qθ) in high dimensions.

Here P ∈ P1(R
d), Pn is the associated empirical measure, and Qθ ∈ P1(R

d), where θ ∈ Θ ⊂ R
d0 ,

is the model class. We henceforth assume (without further mentioning) that the parameter space
Θ ⊂ R

d0 is compact with nonempty interior. The boundedness assumption on Θ can be weakened
with some adjustments to the proofs of Theorems 2 and 3 below; cf. [37, Assumption 2.3].

4.1 Measurability and Consistency

The following theorem states that the MSWE is measurable. The proof (given in Supplement B.2)
relies on Corollary 1 in [66], which provides a sufficient condition for the desired measurability.
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Theorem 2 (MSWE measurability). Assume that the map θ 7→ Qθ is continuous relative to the weak

topology,9 i.e., Qθ ⇀ Qθ whenever θ → θ in Θ. Then, for every n ∈ N, there exists a measurable

function ω 7→ θ̂n(ω) such that θ̂n(ω) ∈ argminθ∈Θ W
(σ)
1

(
Pn(ω), Qθ

)
for every ω ∈ Ω (this also

implies that argminθ∈Θ W
(σ)
1

(
Pn(ω), Qθ

)
is nonempty).

Next, we establish consistency of the MSWE. The proof relies on [67, Theorem 7.33]. To apply it,

we verify epi-convergence of the map θ 7→ W
(σ)
1 (Pn, Qθ) towards θ 7→ W

(σ)
1 (P,Qθ) (after proper

extensions). See Supplement B.3 for details.

Theorem 3 (MSWE consistency). Assume that the map θ 7→ Qθ is continuous relative to the weak

topology. Then, we have infθ∈Θ W
(σ)
1 (Pn, Qθ) → infθ∈Θ W

(σ)
1 (P,Qθ) a.s. In addition, there

exists an event with probability one on which the following holds: for any sequence {θ̂n}n∈N of

measurable estimators such that W
(σ)
1 (Pn, Qθ̂n) ≤ infθ∈Θ W

(σ)
1 (Pn, Qθ) + o(1), the set of cluster

points of {θ̂n}n∈N is included in argminθ∈Θ W
(σ)
1 (P,Qθ). In particular, if argminθ∈Θ W

(σ)
1 (P,Qθ)

is unique, i.e., argminθ∈Θ W
(σ)
1 (P,Qθ) = {θ⋆}, then θ̂n → θ⋆ a.s.

4.2 Limit Distributions

We study the limit distributions of the MSWE and the associated SWD. Results are presented for
the ‘well-specified’ setting, i.e., when P = Qθ⋆ for some θ⋆ in the interior of Θ ⊂ R

d0 . Extensions
to the ‘misspecified’ case are straightforward (cf. [37, Theorem B.8]). Our derivation leverages
the method of [2] for MDE analysis over normed spaces. To make the connection, we need some
definitions.

For any G ∈ ℓ∞(Lip1,0), define ‖G‖Lip1,0 := supf∈Lip1,0
|G(f)|. With any Q ∈ P1(R

d), associate

the functional Q(σ) : Lip1,0 → R defined by Q(σ)(f) := Q(f ∗ ϕσ) = (Q ∗ Nσ)(f). Note that∥∥Q(σ)
∥∥
Lip1,0

:= supf∈Lip1,0

∣∣Q(σ)(f)
∣∣ is finite as Q ∈ P1(R

d) and |(f ∗ ϕσ)(x)| ≤ ‖x‖ + σ
√
d

for any f ∈ Lip1,0. Consequently, Q(σ) ∈ ℓ∞(Lip1,0) for any Q ∈ P1(R
d). Finally, observe that

W
(σ)
1 (P,Q) =

∥∥P (σ) −Q(σ)
∥∥
Lip1,0

, for any P,Q ∈ P1(R
d) (cf. Supplement A.2).

SWD limit distribution. We start from the limit distribution of the (scaled) infimized SWD. This
result is central for deriving the limiting MSWE distribution (see Theorem 5 and Corollary 2 below).
Theorem 4 is proven in Supplement B.4 via an adaptation of the argument from [2, Theorem 4.2].

Theorem 4 (Minimal SWD limit distribution). Let P satisfy the conditions of Theorem 1. In addi-
tion, suppose that (i) the map θ 7→ Qθ is continuous relative to the weak topology; (ii) P 6= Qθ
for any θ 6= θ⋆; (iii) there exists a vector-valued functional D(σ) ∈ (ℓ∞(Lip1,0))

d0 such that∥∥Q(σ)
θ −Q

(σ)
θ⋆ − 〈θ − θ⋆, D(σ)〉

∥∥
Lip1,0

= o(‖θ − θ⋆‖) as θ → θ⋆, where 〈t,D(σ)〉 :=∑d0
i=1 tiD

(σ)
i

for t ∈ R
d0 ; (iv) the derivative D(σ) is nonsingular in the sense that 〈t,D(σ)〉 6= 0, i.e., 〈t,D(σ)〉 ∈

ℓ∞(Lip1,0) is not the zero functional for all 0 6= t ∈ R
d0 . Then,

√
n infθ∈Θ W

(σ)
1 (Pn, Qθ)

d→
inft∈Rd0

∥∥G(σ)
P −

〈
t,D(σ)

〉∥∥
Lip1,0

, where G
(σ)
P is the Gaussian process from Theorem 1.

Remark 4 (Norm differentiability). Condition (iii) in Theorem 4 is called ‘norm differentiability’

in [2]. In these terms, the theorem assumes that the map θ 7→ Q
(σ)
θ ,Θ → ℓ∞(Lip1,0), is norm

differentiable around θ⋆ with derivative D(σ). This allows approximating the map θ 7→ Q
(σ)
θ by the

affine function Q
(σ)
θ⋆ +

〈
θ − θ⋆, D(σ)

〉
near θ⋆. Together with the result of Theorem 1 and the right

reparameterization, norm differentiability is key for establishing the theorem.

Remark 5 (Primitive conditions for norm differentiability). Suppose that {Qθ}θ∈Θ is dominated by

a common Borel measure ν on R
d, and let qθ denote the density of Qθ with respect to ν, i.e., dQθ =

qθ dν. Then, Qθ ∗Nσ has Lebesgue density x 7→
∫
ϕσ(x− t)qθ(x) dν(t). Assume that qθ admits the

Taylor expansion qθ(x) = qθ⋆(x)+ q̇θ⋆(x) · (θ−θ⋆)+rθ(x) · (θ−θ⋆) with rθ(x) = o(1) as θ → θ⋆.

9The weak topology on P(Rd) is induced by integration against the set Cb(R
d) of bounded and continuous

functions, i.e., (µk)k∈N converges weakly to µ, denoted by µk ⇀ µ, if µk(f) → µ(f), for all f ∈ Cb(R
d).
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Then, one may verify that Condition (iii) holds withD(σ)(f) =
∫
f(x)

∫
ϕσ(x−t)q̇θ⋆(t) dν(t) dx =∫

(f ∗ ϕσ)(t)q̇θ⋆(t) dν(t), for f ∈ Lip1,0, provided that
∫
(1 + ‖t‖)‖q̇θ⋆(t)‖ dν(t) < ∞ and

∫
(1 +

‖t‖)‖rθ(t)‖ dν(t) = o(1) (use the fact that |f(t)| ≤ ‖t‖, for any f ∈ Lip1,0).

MSWE limit distribution. We study convergence in distribution of the MSWE. Optimally, the

limit distribution of
√
n(θ̂n−θ⋆), for some θ̂n ∈ argminθ∈Θ W

(σ)
1 (Pn, Qθ), is the object of interest.

However, a limit is guaranteed to exist only when the (convex) function t 7→
∥∥G(σ)

P −
〈
t,D(σ)

〉∥∥
Lip1,0

has a unique minimum a.s. (see Corollary 2 below). To avoid this stringent assumption, before

treating
√
n(θ̂n − θ⋆), we first consider the set of approximate minimizers Θ̂n :=

{
θ ∈ Θ :

W
(σ)
1 (Pn, Qθ) ≤ infθ′∈Θ W

(σ)
1 (Pn, Qθ′)+λn/

√
n
}

, where {λn}n∈N is an arbitrary oP(1) sequence.

We show that Θ̂n ⊂ θ⋆ + n−1/2Kn for some (random) sequence of compact convex sets
{Kn}n∈N with inner probability approaching one. Resorting to inner probability seems inevitable

since the event {Θ̂n ⊂ θ⋆ + n−1/2Kn} need not be measurable in general (see [2, Section
7]). To define such sequence {Kn}n∈N, for any L ∈ ℓ∞(Lip1,0) and β ≥ 0, let K(L, β) :={
t ∈ R

d0 :
∥∥L−

〈
t,D(σ)

〉∥∥
Lip1,0

≤ inft′∈Rd

∥∥L−
〈
t′, D(σ)

〉∥∥
Lip1,0

+β
}

. Lemma 7.1 of [2] en-

sures that for any β ≥ 0, L 7→ K(L, β) is a measurable map from ℓ∞(Lip1,0) into K – the class of

all compact, convex, and nonempty subsets of Rd0 – endowed with the Hausdorff topology. That
is, the topology induced by the metric dH(K1,K2) := inf

{
δ > 0 : Kδ

1 ⊃ K2, K
δ
2 ⊃ K1

}
, where

Kδ :=
⋃
x∈K

{
y ∈ R

d0 : ‖y − x‖ ≤ δ
}

is the δ-blowup of K.

Theorem 5 (MSWE limit distribution). Under the conditions of Theorem 4, there exists a sequence

of nonnegative reals βn ↓ 0 such that (i) P∗
(
Θ̂n ⊂ θ⋆ + n−1/2K(G

(σ)
n , βn

))
→ 1, where G

(σ)
n :=√

n(P
(σ)
n − P (σ)) is the (smooth) empirical process and P∗ denotes inner probability; and (ii)

K(G
(σ)
n , βn)

d→ K(G
(σ)
P , 0) as K-valued random variables.

Given Theorem 4, the proof of Theorem 5 follows by a verbatim repetition of the argument from [2,

Section 7.2]. The details are therefore omitted. If argmint∈Rd0

∥∥G(σ)
P −

〈
t,D(σ)

〉∥∥
Lip1,0

is unique

a.s. (a nontrivial assumption), then Theorem 5 simplifies as follows.10

Corollary 2 (Simplified MSWE limit distribution). Assume the conditions of Theorem 4. Let

{θ̂n}n∈N be a sequence measurable estimators such that W
(σ)
1 (Pn, Qθ̂n) ≤ infθ∈Θ W

(σ)
1 (Pn, Qθ)+

oP(n
−1/2). Then, provided that argmint∈Rd0

∥∥G(σ)
P −

〈
t,D(σ)

〉∥∥
Lip1,0

is unique a.s., we have

√
n(θ̂n − θ⋆)

d→ argmint∈Rd0

∥∥G(σ)
P −

〈
t,D(σ)

〉∥∥
Lip1,0

.

Corollary 2 is proven in Supplement B.5 using weak convergence of argmin of random convex maps.

Generalization discussion. Theorem 5 and Corollary 2 imply a generalization bound for MSWE-

based generative model. Focusing on the corollary, θ̂n is an approximate optimizer (e.g., obtained

via some suboptimal gradient-based optimization) of the empirical MSWE problem W
(σ)
1 (Pn, Qθ).

The goal is to obtain a θ̂n that approximates as best as possible the minimizer θ⋆ of the population

loss W
(σ)
1 (P,Qθ). Corollary 2 thus states that the MSWE θ̂n converges to the true optimum θ⋆

(in expectation, in distribution, and with high probability) at a dimension-free rate of n−1/2, which
corresponds to the notion of GAN generalization from [9, 14]. In fact, by Eq. (10) from [14], we

further have that W
(σ)
1 (P,Qθ̂n)− infθ∈Θ W

(σ)
1 (P,Qθ) . n−1/2, with high probability.

10Note that argmint∈Rd0

∥∥G(σ)
P −

〈
t,D(σ)

〉∥∥
Lip1,0

6= ∅ provided that D(σ) is nonsingular, since the latter

guarantees that
∥∥G(σ)

P −
〈
t,D(σ)

〉∥∥
Lip1,0

→ ∞ as ‖t‖ → ∞.
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Figure 1: One-dimensional limiting distributions for the two mean parameters of the mixture P =
0.5N (µ1, 1)+0.5N (µ2, 1), for µ1 = 0 and µ2 = 1. Also shown on a log-log scale (with error bars)
is the SWD convergence as a function of n.
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Figure 2: Empirical limiting distributions for the variance parameter of an MSWE-based generative
model fitted to P = N1. Also shown as a log-log plot is the SWD convergence as a function of n.

5 Empirical Results

We provide experiments on synthetic data validating our theory. We start with a one-dimensional
setting since then an exact expression for the SWD is available (as the L1 distance between cumu-
lative distribution functions [68]). Afterwards, higher dimensional problems are explored using an
estimator based on the neural network (NN) parameterized KR dual form of W1.

Fig. 1 shows results for fitting two-parameter generative models in one dimension for a Gaussian
mixture (parameterized by the two means, one from each mode).

√
n-scaled scatter plots of the

estimation error are shown for various σ and n values, each formed from 50 estimation trials. Con-
vergence of the corresponding SWD losses is shown on the right. Note that the point clouds closely
overlap in each plot even as n increases, implying that indeed a limiting distribution is emerging,
as predicted by the theory. In particular, the spread of the scatter plots does not increase despite a

16-fold increase in n, and the SWD loss converges at approximately an n−1/2 rate. Supplement C
gives additional results for a single Gaussian (parameterized by mean and variance).

In higher dimensions, the MSWE is computed as follows. We first draw n samples from P and ob-
tain the empirical measure Pn. Sampling from Pn and Nσ and adding the obtained values produces

samples from Pn ∗ Nσ . Applying similar steps to Qθ, we may compute W
(σ)
1 (Pn, Qθ) by applying

standard W1 estimators to samples from the convolved measures. We use the NN-based estimator
for WGAN-GP discriminator from [29]. As a side note, we believe that more effective estimators
that are tailored for the SWD structure are possible, but leave this exploration to future work.

Fig. 2 shows MSWE results in dimensions 5 and 10. The target distribution is a multivariate stan-
dard Gaussian P = Nσ⋆

for σ⋆ = 1. The model Qθ is also an isotropic Gaussian, with a single
(variance) parameter. The WGAN-GP discriminator has 3 hidden layers with 512 hidden units each.
The resulting distribution of

√
n(σ̂2

n − σ2
⋆) is shown for various values of σ (the SWD smoothing

parameter) and number of samples n. These distributions are computed using a kernel density esti-

8



mate on 50 random trials. As seen in the figure, the distribution of
√
n(σ̂2

n−σ2
⋆) converges to a clear

limit as n increases, for all σ > 0 values (although convergence is slower for smaller σ). When σ
is smaller, i.e., closer to the classic W1 case, convergence is less pronounced, especially in higher

dimensions. Finally, note that as predicted by our theory, the MSWE convergence rate is n−1/2.

103 104
n

10−1

100

101

W
(σ
)

1

sigma = 0.1
sigma = 0.2
sigma = 0.5
sigma = 1.0

Figure 3: Convergence for fitting an NN genera-
tive model to a multivariate Gaussian mixture.

Lastly, we consider a more complex target P
and parameterize Qθ via a three-layer neural
network with 256 hidden units per layer. Note
that this corresponds to the generator in a GAN
setup, where the parameters θ of the neural net-
work are learned so that Qθ matches a target
distribution. We combine this with our neu-
ral SWD-based discriminator, effectively creat-
ing an SWD GAN that we train in a way sim-
ilar to WGAN-GP. Setting d = 10, we take
P as a 2d-mode Gaussian mixture formed by
equal-weighted isotropic Gaussians (with vari-
ance parameter 1) centered at each corner of the
[−1, 1]d hypercube. As there are too many pa-
rameters to visualize the limiting distribution,
Fig. 3 instead shows the SWD convergence ver-
sus the number of samples n. As predicted, for
σ > 0, the SWD asymptotically converges as

approximately n−1/2, though for smaller σ this
rate only kicks in for higher values of n. This two-phase behavior is expected, since when n and
σ are small, and d is large, the Gaussian convolution in the SWD is unlikely to result in smoothing
different samples together.

6 Summary and concluding remarks

We studied MDE with W
(σ)
1 as the figure of merit. Measurability, strong consistency and limit

distributions for MSWE in arbitrary dimensions were established. The characterization of high-
dimensional distributional limits stands in sharp contrast with the classic W1 MDE, where such a

result is known only for d = 1 [37]. In particular, our results imply a uniform n−1/2 convergence

rate for MSWE for all d, highlighting the virtue of W
(σ)
1 for high-dimensional generative modeling.

Our ability to treat MSWE for arbitrary d relied on a novel limit distribution result for the empirical

SWD. Under a polynomial moment condition on P we show that
√
nW

(σ)
1 (Pn, P ) converges in

distribution to the supremum of a tight Gaussian process. This again contrasts the W1 case, where a
limit distribution is known only in d = 1. We have also established consistency of the bootstrap to
enable evaluation of the limit distribution in practice.

This work focuses of statistical aspects of generative modeling with the SWE. A major goal go-

ing forward is to develop efficient algorithms for computing W
(σ)
1 , that are tailored to exploit the

Gaussian convolution structure. We view the Monte Carlo algorithm employed herein merely as
a placeholder. Gaussian smoothing significantly speeds up W1 empirical convergence rates from

n−1/d to σ−d/2n−1/2. While the latter is optimal in n, the exponential dependence of the prefactor
on d calls for further exploration. We aim to relax this dependence under the manifold hypothesis,
showing that the actual dependence is on the intrinsic dimension, and not the ambient one. Addi-
tional directions include an analysis for when σ ↓ 0 is at a sufficiently slow rate (as a proxy for W1).
This is both theoretically challenging (calls for a finer analysis than the one presented herein) and
practically relevant, as noise annealing is often used to stabilize training. SWDs of higher orders are
also of interest.
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Broader Impact

Our goal is to provide a stronger theoretical foundation for generative modeling based on the
smoothed Wasserstein distance. We hope that this enables practitioners to build more robust, fair,
and resilient generative models.
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[40] K. Nadjahi, A. Durmus, U. Şimşekli, and R. Badeau. Asymptotic guarantees for learning
generative models with the sliced-wasserstein distance. In Advances in Neural Information
Processing Systems (NeurIPS-2019), Vancouver, Canada, Dec. 2019.

[41] N. Bonnotte. Unidimensional and evolution methods for optimal transportation. PhD thesis,
Paris-Sud University, 2013.

[42] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
Neural Information Processing Systems (NeurIPS-2013), pages 2292–2300, Stateline, NV, US,
Dec. 2013.

[43] J. Altschuler, J. Niles-Weed, and P. Rigollet. Near-linear time approximation algorithms for
optimal transport via Sinkhorn iteration. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS-2017), pages 1964–1974), Long Beach, California, US, Dec.
2017.

[44] A. Genevay M., Cuturi, G. Peyré, and F. Bach. Stochastic optimization for large-scale opti-
mal transport. In Advances in Neural Information Processing Systems (NeurIPS-2016), pages
3440–3448, Barcelona, Spain, Dec. 2017.

[45] G. Montavon, K.-R. Müller, and M. Cuturi. Wasserstein training of restricted boltzmann ma-
chines. In Advances in Neural Information Processing Systems (NeurIPS-2016), pages 3718–
3726, Barcelona, Spain, Dec. 2016.

[46] P. Rigollet and J. Weed. Entropic optimal transport is maximum-likelihood deconvolution.
Comptes Rendus Mathematique, 356(11-12):1228–1235, Nov 2018.

[47] A. Genevay, L. Chizat, F. Bach, M. Cuturi, and G. Peyré. Sample complexity of Sinkhorn diver-
gences. In International Conference on Artificial Intelligence and Statistics (AISTATS-2019),
pages 1574–1583, Okinawa, Japan, Apr. 2019.

[48] G. Mena and J. Niles-Weed. Statistical bounds for entropic optimal transport: sample complex-
ity and the central limit theorem. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS-2019), pages 4541–4551, Vancouver, Canada, Dec. 2019.

[49] E. del Barrio and J.-M. Loubes. Central limit theorems for empirical transportation cost in
general dimension. Annals of Probability, 47:926–951, 2019.

[50] J. Feydy, T. Séjourné, F.-X. Vialard, S.-I. Amari, A. Trouvé, and G. Peyré. Interpo-
lating between optimal transport and mmd using sinkhorn divergences. arXiv preprint
arXiv:1810.08278, Oct. 2018.

[51] J. Bigot, E. Cazelles, and N. Papadakis. Central limit theorems for entropy-regularized optimal
transport on finite spaces and statistical applications. arXiv preprint arXiv:1711.08947, 2019.

[52] R. M. Dudley. The speed of mean Glivenko-Cantelli convergence. Ann. Math. Stats., 40(1):40–
50, Feb. 1969.

[53] F. Bolley, A. Guillin, and C. Villani. Quantitative concentration inequalities for empirical
measures on non-compact spaces. Probab. Theory Related Fields, 137:541–593, 2007.

[54] E. Boissard. Simple bounds for the convergence of empirical and occupation measures in
1-Wasserstein distance. Electron. J. Probab., 16:2296–2333, 2011.

[55] S. Dereich, M. Scheutzow, and R. Schottstedt. Constructive quantization: Approximation by
empirical measures. Ann. Inst. H. Poincaré Probab. Stat., 49(4):1183–1203, Nov. 2013.

[56] E. Boissard and T. Le Gouic. On the mean speed of convergence of empirical and occupation
measures in Wasserstein distance. Ann. Inst. H. Poincaré Probab. Stat., 50(2):539–563, May
2014.

12



[57] J. Weed and F. Bach. Sharp asymptotic and finite-sample rates of convergence of empirical
measures in Wasserstein distance. Bernoulli, 25(4A):2620–2648, Nov. 2019.

[58] J. Lei. Convergence and concentration of empirical measures under Wasserstein distance in
unbounded functional spaces. Bernoulli, 26(1):767–798, Feb. 2020.

[59] E. Giné and J. Zinn. Empirical processes indexed by Lipschitz functions. Annals of Probability,
14:1329–1338, 1986.

[60] M. Sommerfeld and A. Munk. Inference for empirical Wasserstein distances on finite spaces.
Journal of Royal Statistical Society Series B, 80:219–238, 2018.

[61] C. Tameling, M. Sommerfeld, and A. Munk. Empirical optimal transport on countable met-
ric spaces: Distributional limits and statistical applications. Annals of Applied Probability,
29:2744–2781, 2019.

[62] E. del Barrio and J.-M. Loubes. Central limit theorems for empirical transportation cost in
general dimension. The Annals of Probability, 47(2):926–951, 2019.

[63] E. del Barrio, E. Giné, and F. Utzet. Asymptotics for L2 functionals of the empirical quantile
process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli,
11(1):131–189, 2005.

[64] A. var der Vaart. New Donsker classes. Annals of Probability, 24:2128–2124, 1996.

[65] A. Ramdas, N. G. Trillos, and M. Cuturi. On wasserstein two-sample testing and related
families of nonparametric tests. Entropy, 19, 2017.

[66] L. D. Brown and R. Purves. Measurable selections of extrema. Annals of Statistics, 1(5):902–
912, 1973.

[67] T. R. Rockafellar and R. J-B Wets. Variational Analysis, volume 317. Springer Science &
Business Media, 2009.

[68] SS Vallender. Calculation of the wasserstein distance between probability distributions on the
line. Theory of Probability & Its Applications, 18(4):784–786, 1974.

[69] Y. A. Davydov, M. A. Lifschits, and N. V. Smorodina. Local Properties of Distributions of
Stochastic Functionals. Translation of Mathematical Monographs. American Mathematical
Society, 1998.

[70] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, Cambridge, UK,
1998.

[71] R. Adamczkak. A few remarks on the operator norm of random Toeplitz matrices. Journal of
Theoretical Probability, 23:85–108, 2010.

[72] R. Adamczkak. A tail inequality for suprema of unbounded empirical processes with applica-
tions to Markov chains. Electronic Journal of Probability, 34:1000–1034, 2008.

[73] F. Santambrogio. Optimal Transport for Applied Mathematicians. Birkhäuser, 2015.

[74] C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis: A Hitchhiker’s Guide.
Springer, 2006.

[75] K. Kato. Asymptotics for argmin processes: Convexity arguments. Journal of Multivariate
Analysis, 100:1816–1829, 2009.

[76] D. Pollard. Asymptotics for least absolute deviation regression estimators. Econometric
Theory, 7:186–199, 1991.

[77] N. I. Hjort and D. Pollard. Asymptotics for minimizers of convex processes. Unpublished
manuscript, 1993.

13


	Introduction
	MDE with Smooth Wasserstein Distance and Contributions
	Comparisons and Related Works

	Background and preliminaries
	Limit distribution theory for smooth Wasserstein distance
	Minimum Smooth Wasserstein Estimation
	Measurability and Consistency
	Limit Distributions

	Empirical Results
	Summary and concluding remarks
	Additional result and proofs for Section 2
	Concentration inequalities for W1()(Pn,P)
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 3

	Proofs for Section 4
	Preliminaries
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Corollary 2

	Additional Experiments

