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Abstract
In this work we address the challenging problem of multiview 3D surface recon-
struction. We introduce a neural network architecture that simultaneously learns the
unknown geometry, camera parameters, and a neural renderer that approximates the
light reflected from the surface towards the camera. The geometry is represented
as a zero level-set of a neural network, while the neural renderer, derived from
the rendering equation, is capable of (implicitly) modeling a wide set of lighting
conditions and materials. We trained our network on real world 2D images of
objects with different material properties, lighting conditions, and noisy camera
initializations from the DTU MVS dataset. We found our model to produce state
of the art 3D surface reconstructions with high fidelity, resolution and detail.

1 Introduction
Learning 3D shapes from 2D images is a fundamental computer vision problem. A recent successful
neural network approach to solving this problem involves the use of a (neural) differentiable rendering
system along with a choice of (neural) 3D geometry representation. Differential rendering systems are
mostly based on ray casting/tracing [41, 33, 24, 26, 38, 27], or rasterization [28, 20, 10, 25, 4], while
popular models to represent 3D geometry include point clouds [49], triangle meshes [4], implicit
representations defined over volumetric grids [17], and recently also neural implicit representations,
namely, zero level sets of neural networks [26, 33].

The main advantage of implicit neural representations is their flexibility in representing surfaces with
arbitrary shapes and topologies, as well as being mesh-free (i.e., no fixed a-priori discretization such
as a volumetric grid or a triangular mesh). Thus far, differentiable rendering systems with implicit
neural representations [26, 27, 33] did not incorporate lighting and reflectance properties required for
producing faithful appearance of 3D geometry in images, nor did they deal with trainable camera
locations and orientations.

The goal of this paper is to devise an end-to-end neural architecture system that can learn 3D geome-
tries from masked 2D images and rough camera estimates, and requires no additional supervision,
see Figure 1. Towards that end we represent the color of a pixel as a differentiable function in the
three unknowns of a scene: the geometry, its appearance, and the cameras. Here, appearance means
collectively all the factors that define the surface light field, excluding the geometry, i.e., the surface
bidirectional reflectance distribution function (BRDF) and the scene’s lighting conditions. We call
this architecture the Implicit Differentiable Renderer (IDR). We show that IDR is able to approximate
the light reflected from a 3D shape represented as the zero level set of a neural network. The approach
can handle surface appearances from a certain restricted family, namely, all surface light fields that
can be represented as continuous functions of the point on the surface, its normal, and the viewing
direction. Furthermore, incorporating a global shape feature vector into IDR increases its ability to
handle more complex appearances (e.g., indirect lighting effects).
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Figure 1: We introduce IDR: end-to-end learning of geometry, appearance and cameras from images.

Most related to our paper is [33], that was first to introduce a fully differentiable renderer for implicit
neural occupancy functions [31], which is a particular instance of implicit neural representation
as defined above. Although their model can represent arbitrary color and texture, it cannot handle
general appearance models, nor can it handle unknown, noisy camera locations. For example, we
show that the model in [33], as-well-as several other baselines, fail to generate the Phong reflection
model [8]. Moreover, we show experimentally that IDR produces more accurate 3D reconstructions
of shapes from 2D images along with accurate camera parameters. Notably, while the baseline often
produces shape artifact in specular scenes, IDR is robust to such lighting effects. Our code and data
are available at https://github.com/lioryariv/idr.

To summarize, the key contributions of our approach are:

• End-to-end architecture that handles unknown geometry, appearance, and cameras.
• Expressing the dependence of a neural implicit surface on camera parameters.
• Producing state of the art 3D surface reconstructions of different objects with a wide range

of appearances, from real-life 2D images, with both exact and noisy camera information.

2 Previous work
Differentiable rendering systems for learning geometry comes (mostly) in two flavors: differentiable
rasterization [28, 20, 10, 25, 4], and differentiable ray casting. Since the current work falls into the
second category we first concentrate on that branch of works. Then, we will describe related works
for multi-view surface reconstruction and neural view synthesis.

Implicit surface differentiable ray casting. Differentiable ray casting is mostly used with implicit
shape representations such as implicit function defined over a volumetric grid or implicit neural
representation, where the implicit function can be the occupancy function [31, 5], signed distance
function (SDF) [35] or any other signed implicit [2]. In a related work, [17] use a volumetric grid to
represent an SDF and implement a ray casting differentiable renderer. They approximate the SDF
value and the surface normals in each volumetric cell. [27] use sphere tracing of pre-trained DeepSDF
model [35] and approximates the depth gradients w.r.t. the latent code of the DeepSDF network by
differentiating the individual steps of the sphere tracing algorithm; [26] use field probing to facilitate
differentiable ray casting. In contrast to these works, IDR utilize exact and differentiable surface
point and normal of the implicit surface, and considers a more general appearance model, as well as
handle noisy cameras.

Multi-view surface reconstruction. During the capturing process of an image, the depth information
is lost. Assuming known cameras, classic Multi-View Stereo (MVS) methods [9, 40, 3, 45] try to
reproduce the depth information by matching features points across views. However, a post-processing
steps of depth fusion [6, 30] followed by the Poisson Surface Reconstruction algorithm [21] are
required for producing a valid 3D watertight surface reconstruction. Recent methods use a collection
of scenes to train a deep neural models for either sub-tasks of the MVS pipeline, e.g., feature
matching [23], or depth fusion [7, 36], or for an End-to-End MVS pipeline [13, 47, 48]. When the
camera parameters are unavailable, and given a set of images from a specific scene, Structure From
Motion (SFM) methods [42, 39, 19, 16] are applied for reproducing the cameras and a sparse 3D
reconstruction. Tang and Tan [44] use a deep neural architecture with an integrated differentiable
Bundle Adjustment [46] layer to extract a linear basis for the depth of a reference frame, and features
from nearby images and to optimize for the depth and the camera parameters in each forward pass. In
contrast to these works, IDR is trained with images from a single target scene, producing an accurate
watertight 3D surface reconstruction.
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Neural representation for view synthesis. Recent works trained neural networks to predict novel
views and some geometric representation of 3D scenes or objects, from a limited set of images
with known cameras. [41] encode the scene geometry using an LSTM to simulate the ray marching
process. [32] use a neural network to predict volume density and view dependent emitted radiance to
synthesis new views from a set of images with known cameras. [34] use a neural network to learns
the surface light fields from an input image and geometry and predicting unknown views and/or scene
lighting. Differently from IDR, these methods do not produce a 3D surface reconstruction of the
scene’s geometry nor handle unknown cameras.

3 Method

Figure 2: Notations.

Our goal is to reconstruct the geometry of an object from masked 2D
images with possibly rough or noisy camera information. We have
three unknowns: (i) geometry, represented by parameters θ ∈ Rm; (ii)
appearance, represented by γ ∈ Rn; and (iii) cameras represented by
τ ∈ Rk. Notations and setup are depicted in Figure 2.

We represent the geometry as the zero level set of a neural network
(MLP) f ,

Sθ =
{
x ∈ R3 | f(x; θ) = 0

}
, (1)

with learnable parameters θ ∈ Rm. To avoid the everywhere 0 solution,
f is usually regularized [31, 5]. We opt for f to model a signed distance
function (SDF) to its zero level set Sθ [35]. We enforce the SDF con-
straint using the implicit geometric regularization (IGR) [11], detailed
later. SDF has two benefits in our context: First, it allows an efficient
ray casting with the sphere tracing algorithm [12, 17]; and second, IGR
enjoys implicit regularization favoring smooth and realistic surfaces.

IDR forward model. Given a pixel, indexed by p, associated with some
input image, let Rp(τ) = {cp + tvp | t ≥ 0} denote the ray through
pixel p, where cp = cp(τ) denotes the unknown center of the respective camera and vp = vp(τ)
the direction of the ray (i.e., the vector pointing from cp towards pixel p). Let x̂p = x̂p(θ, τ)
denote the first intersection of the ray Rp and the surface Sθ. The incoming radiance along Rp,
which determines the rendered color of the pixel Lp = Lp(θ, γ, τ), is a function of the surface
properties at x̂p, the incoming radiance at x̂p, and the viewing direction vp. In turn, we make the
assumptions that the surface property and incoming radiance are functions of the surface point x̂p,
and its corresponding surface normal n̂p = n̂p(θ), the viewing direction vp, and a global geometry
feature vector ẑp = ẑp(x̂p; θ). The IDR forward model is therefore:

Lp(θ, γ, τ) = M(x̂p, n̂p, ẑp,vp; γ), (2)

where M is a second neural network (MLP). We utilize Lp in a loss comparing Lp and the pixel input
color Ip to simultaneously train the model’s parameters θ, γ, τ . We next provide more details on the
different components of the model in equation 2.

3.1 Differentiable intersection of viewing direction and geometry

Henceforth (up until section 3.4), we assume a fixed pixel p, and remove the subscript p notation to
simplify notation. The first step is to represent the intersection point x̂(θ, τ) as a neural network with
parameters θ, τ . This can be done with a slight modification to the geometry network f .

Let x̂(θ, τ) = c+ t(θ, c,v)v denote the intersection point. As we are aiming to use x̂ in a gradient
descent-like algorithm, all we need to make sure is that our derivations are correct in value and
first derivatives at the current parameters, denoted by θ0, τ0; accordingly we denote c0 = c(τ0),
v0 = v(τ0), t0 = t(θ0, c0,v0), and x0 = x̂(θ0, τ0) = c0 + t0v0.
Lemma 1. Let Sθ be defined as in equation 1. The intersection of the ray R(τ) and the surface Sθ
can be represented by the formula

x̂(θ, τ) = c+ t0v −
v

∇xf(x0; θ0) · v0
f(c+ t0v; θ), (3)

and is exact in value and first derivatives of θ and τ at θ = θ0 and τ = τ0.
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To prove this functional dependency of x̂ on its parameters, we use implicit differentiation [1, 33],
that is, differentiate the equation f(x̂; θ) ≡ 0 w.r.t. v, c, θ and solve for the derivatives of t. Then,
it can be checked that the formula in equation 3 possess the correct derivatives. More details are in
the supplementary. We implement equation 3 as a neural network, namely, we add two linear layers
(with parameters c,v): one before and one after the MLP f . Equation 3 unifies the sample network
formula in [1] and the differentiable depth in [33] and generalizes them to account for unknown
cameras. The normal vector to Sθ at x̂ can be computed by:

n̂(θ, τ) = ∇xf(x̂(θ, τ), θ)/ ‖∇xf(x̂(θ, τ), θ)‖2 . (4)

Note that for SDF the denominator is 1, so can be omitted.

3.2 Approximation of the surface light field
The surface light field radiance L is the amount of light reflected from Sθ at x̂ in direction −v
reaching c. It is determined by two functions: The bidirectional reflectance distribution function
(BRDF) describing the reflectance and color properties of the surface, and the light emitted in the
scene (i.e., light sources).

The BRDF function B(x,n,wo,wi) describes the proportion of reflected radiance (i.e., flux of light)
at some wave-length (i.e., color) leaving the surface point x with normal n at direction wo with
respect to the incoming radiance from direction wi. We let the BRDF depend also on the normal
n to the surface at a point. The light sources in the scene are described by a function Le(x,wo)
measuring the emitted radiance of light at some wave-length at point x in direction wo. The amount
of light reaching c in direction v equals the amount of light reflected from x̂ in direction wo = −v
and is described by the so-called rendering equation [18, 14]:

L(x̂,wo) = Le(x̂,wo) +

∫
Ω

B(x̂, n̂,wi,wo)Li(x̂,wi)(n̂ ·wi) dwi = M0(x̂, n̂,v), (5)

where Li(x̂,wi) encodes the incoming radiance at x̂ in directionwi, and the term n̂·wi compensates
for the fact that the light does not hit the surface orthogonally; Ω is the half sphere centered at n̂. The
function M0 represents the surface light field as a function of the local surface geometry x̂, n̂, and
the viewing direction v. This rendering equation holds for every light wave-length; as described later
we will use it for the red, green and blue (RGB) wave-lengths.

We restrict our attention to light fields that can be represented by a continuous function M0. We
denote the collection of such continuous functions by P = {M0} (see supplementary material for
more discussion on P). Replacing M0 with a (sufficiently large) MLP approximation M (neural
renderer) provides the light field approximation:

L(θ, γ, τ) = M(x̂, n̂,v; γ). (6)

Disentanglement of geometry and appearance requires the learnable M to approximate M0 for all
inputs x,n,v rather than memorizing the radiance values for a particular geometry. Given an arbitrary
choice of light field functionMo ∈ P there exists a choice of weights γ = γ0 so thatM approximates
M0 for all x,n,v (in some bounded set). This can be proved using a standard universality theorem
for MLPs (details in the supplementary). However, the fact that M can learn the correct light field
function M0 does not mean it is guaranteed to learn it during optimization. Nevertheless, being able
to approximate M0 for arbitrary x,n,v is a necessary condition for disentanglement of geometry
(represented with f ) and appearance (represented with M ). We name this necessary condition
P-universality.

(a) (b) (c)

Figure 3: Neural renderers without n
and/or v are not universal.

Necessity of viewing direction and normal. ForM to be
able to represent the correct light reflected from a surface
point x, i.e., be P-universal, it has to receive as arguments
also v,n. The viewing direction v is necessary even if
we expect M to work for a fixed geometry; e.g., for mod-
eling specularity. The normal n, on the other hand, can
be memorized by M as a function of x. However, for
disentanglement of geometry, i.e., allowing M to learn ap-
pearance independently from the geometry, incorporating
the normal direction is also necessary. This can be seen in
Figure 3: A rendererM without normal information will produce the same light estimation in cases (a)
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and (b), while a renderer M without viewing direction will produce the same light estimation in cases
(a) and (c). In the supplementary we provide details on how these renderers fail to generate correct
radiance under the Phong reflection model [8]. Previous works, e.g., [33], have considered rendering
functions of implicit neural representations of the form L(θ, γ) = M(x̂; γ). As indicated above,
omitting n and/or v from M will result in a non-P-universal renderer. In the experimental section
we demonstrate that incorporating n in the renderer M indeed leads to a successful disentanglement
of geometry and appearance, while omitting it impairs disentanglement.

Accounting for global light effects. P-universality is a necessary conditions to learn a neural
renderer M that can simulate appearance from the collection P . However, P does not include global
lighting effects such as secondary lighting and self-shadows. We further increase the expressive
power of IDR by introducing a global feature vector ẑ. This feature vector allows the renderer to
reason globally about the geometry Sθ. To produce the vector ẑ we extend the network f as follows:
F (x; θ) = [f(x; θ), z(x; θ)] ∈ R × R`. In general, z can encode the geometry Sθ relative to the
surface sample x; z is fed into the renderer as ẑ(θ, τ) = z(x̂; θ) to take into account the surface
sample x̂ relevant for the current pixel of interest p. We have now completed the description of the
IDR model, given in equation 2.

3.3 Masked rendering
Another useful type of 2D supervision for reconstructing 3D geometry are masks; masks are binary
images indicating, for each pixel p, if the object of interest occupies this pixel. Masks can be provided
in the data (as we assume) or computed using, e.g., masking or segmentation algorithms. We would
like to consider the following indicator function identifying whether a certain pixel is occupied by the
rendered object (remember we assume some fixed pixel p):

S(θ, τ) =

{
1 R(τ) ∩ Sθ 6= ∅
0 otherwise

Since this function is not differentiable nor continuous in θ, τ we use an almost everywhere differen-
tiable approximation:

Sα(θ, τ) = sigmoid

(
−αmin

t≥0
f(c+ tv; θ)

)
, (7)

where α > 0 is a parameter. Since, by convention, f < 0 inside our geometry and f > 0 outside, it
can be verified that Sα(θ, τ)

α→∞−−−−→ S(θ, τ). Note that differentiating equation 7 w.r.t. c,v can be
done using the envelope theorem, namely ∂c mint≥0 f(c+ tv; θ) = ∂cf(c+ t∗v; θ), where t∗ is an
argument achieving the minimum, i.e., f(c0 + t∗v0; θ) = mint≥0 f(c0 + tv0; θ), and similarly for
∂v. We therefore implement Sα as the neural network sigmoid (−αf(c+ t∗v; θ)). Note that this
neural network has exact value and first derivatives at c = c0, and v = v0.

3.4 Loss
Let Ip ∈ [0, 1]3, Op ∈ {0, 1} be the RGB and mask values (resp.) corresponding to a pixel p in
an image taken with camera cp(τ) and direction vp(τ) where p ∈ P indexes all pixels in the input
collection of images, and τ ∈ Rk represents the parameters of all the cameras in scene. Our loss
function has the form:

loss(θ, γ, τ) =lossRGB(θ, γ, τ) + ρlossMASK(θ, τ) + λlossE(θ) (8)

We train this loss on mini-batches of pixels in P ; for keeping notations simple we denote by P the
current mini-batch. For each p ∈ P we use the sphere-tracing algorithm [12, 17] to compute the first
intersection point, cp + tp,0vp, of the ray Rp(τ) and Sθ. Let P in ⊂ P be the subset of pixels p where
intersection has been found and Op = 1. Let Lp(θ, γ, τ) = M(x̂p, n̂p, ẑp,vp; γ), where x̂p, n̂p is
defined as in equations 3 and 4, and ẑp = ẑ(x̂p; θ) as in section 3.2 and equation 2. The RGB loss is

lossRGB(θ, γ, τ) =
1

|P |
∑
p∈P in

|Ip − Lp(θ, γ, τ)| , (9)

where | · | represents the L1 norm. Let P out = P \ P in denote the indices in the mini-batch for which
no ray-geometry intersection or Op = 0. The mask loss is

lossMASK(θ, τ) =
1

α|P |
∑

p∈P out

CE(Op, Sp,α(θ, τ)), (10)
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Fixed cameras Trained cameras

Figure 4: Qualitative results of multiview 3D surface reconstructions. Note the high fidelity of the
IDR reconstructions and its realistic rendering.

where CE is the cross-entropy loss. Lastly, we enforce f to be approximately a signed distance func-
tion with Implicit Geometric Regularization (IGR) [11], i.e., incorporating the Eikonal regularization:

lossE(θ) = Ex

(
‖∇xf(x; θ)‖ − 1

)2
(11)

where x is distributed uniformly in a bounding box of the scene.

Implementation details. The MLP F (x; θ) = (f(x; θ), z(x; θ)) ∈ R × R256 consists of 8 layers
with hidden layers of width 512, and a single skip connection from the input to the middle layer as in
[35]. We initialize the weights θ ∈ Rm as in [2], so that f(x, θ) produces an approximate SDF of a
unit sphere. The renderer MLP, M(x̂, n̂, ẑ,v; γ) ∈ R3, consists of 4 layers, with hidden layers of
width 512. We use the non-linear maps of [32] to improve the learning of high-frequencies, which
are otherwise difficult to train for due to the inherent low frequency bias of neural networks [37].
Specifically, for a scalar y ∈ R we denote by δk(y) ∈ R2k the vector of real and imaginary parts of
exp(i2ωπy) with ω ∈ [k], and for a vector y we denote by δk(y) the concatenation of δk(yi) for all
the entries of y. We redefine F to obtain δ6(x) as input, i.e., F (δ6(x); θ), and likewise we redefine
M to receive δ4(v), i.e., M(x̂, n̂, ẑ, δ4(v); γ). For the loss, equation 8, we set λ = 0.1 and ρ = 100.
To approximate the indicator function with Sα(θ, τ), during training, we gradually increase α and by
this constrain the shape boundaries in a coarse to fine manner: we start with α = 50 and multiply
it by a factor of 2 every 250 epochs (up to a total of 5 multiplications). The gradients in equations
(11),(4) are implemented using using auto-differentiation. More details are in the supplementary.

4 Experiments
4.1 Multiview 3D reconstruction
We apply our multiview surface reconstruction model to real 2D images from the DTU MVS
repository [15]. Our experiments were run on 15 challenging scans, each includes either 49 or 64 high
resolution images of objects with a wide variety of materials and shapes. The dataset also contains
ground truth 3D geometries and camera poses. We manually annotated binary masks for all 15 scans
except for scans 65, 106 and 118 which are supplied by [33].

We used our method to generate 3D reconstructions in two different setups: (1) fixed ground truth
cameras, and (2) trainable cameras with noisy initializations obtained with the linear method of [16].
In both cases we re-normalize the cameras so that their visual hulls are contained in the unit sphere.
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Trimmed Mesh Watertight Mesh
Scan Colmaptrim=7 Furutrim=7 Colmaptrim=0 Furutrim=0 DVR [33] IDR

Chamfer PSNR Chamfer PSNR Chamfer PSNR Chamfer PSNR Chamfer PSNR Chamfer PSNR
24 0.45 19.8 0.51 19.2 0.81 20.28 0.85 20.35 4.10(4.24) 16.23(15.66) 1.63 23.29
37 0.91 15.49 1.03 14.91 2.05 15.5 1.87 14.86 4.54(4.33) 13.93(14.47) 1.87 21.36
40 0.37 20.48 0.44 19.18 0.73 20.71 0.96 20.46 4.24(3.27) 18.15(19.45) 0.63 24.39
55 0.37 20.18 0.4 20.92 1.22 20.76 1.10 21.36 2.61(0.88) 17.14(18.47) 0.48 22.96
63 0.9 17.05 1.28 15.41 1.79 20.57 2.08 16.75 4.34(3.42) 17.84(18.42) 1.04 23.22
65 1.0 14.98 1.22 13.09 1.58 14.54 2.06 13.53 2.81(1.04) 17.23(20.42) 0.79 23.94
69 0.54 18.56 0.72 18.77 1.02 21.89 1.11 21.62 2.53(1.37) 16.33(16.78) 0.77 20.34
83 1.22 18.91 1.61 16.58 3.05 23.2 2.97 20.06 2.93(2.51) 18.1(19.01) 1.33 21.87
97 1.08 12.18 1.37 12.36 1.4 18.48 1.63 18.32 3.03(2.42) 16.61(16.66) 1.16 22.95
105 0.64 20.48 0.83 19.68 2.05 21.3 1.88 20.21 3.24(2.42) 18.39(19.19) 0.76 22.71
106 0.48 15.76 0.70 16.28 1.0 22.33 1.39 22.64 2.51(1.18) 17.39(18.1) 0.67 22.81
110 0.59 16.71 0.87 16.53 1.32 18.25 1.45 17.88 4.80(4.32) 14.43(15.4) 0.9 21.26
114 0.32 19.9 0.42 19.69 0.49 20.28 0.69 20.09 3.09(1.04) 17.08(20.86) 0.42 25.35
118 0.45 23.21 0.59 24.68 0.78 25.39 1.10 26.02 1.63(0.91) 19.08(19.5) 0.51 23.54
122 0.43 24.48 0.53 25.64 1.17 25.29 1.16 25.95 1.58(0.84) 21.03(22.51) 0.53 27.98

Mean 0.65 18.54 0.84 18.19 1.36 20.58 1.49 20.01 3.20(2.28) 17.26(18.33) 0.9 23.20

Table 1: Multiview 3D reconstruction with fixed cameras, quantitative results for DTU dataset. For
DVR we also present (in parentheses) the results with a partial set of images (with reduced reflectance)
as suggested in [33].

Training each multi-view image collection proceeded iteratively. Each iteration we randomly sampled
2048 pixel from each image and derived their per-pixel information, including (Ip, Op, cp,vp), p ∈ P .
We then optimized the loss in equation 8 to find the geometry Sθ and renderer network M . After
training, we used the Marching Cubes algorithm [29] to retrieve the reconstructed surface from f .

Evaluation. We evaluated the quality of our 3D surface reconstructions using the formal surface
evaluation script of the DTU dataset, which measures the standard Chamfer-L1 distance between the
ground truth and the reconstruction. We also report PSNR of train image reconstructions. We note
that the ground truth geometry in the dataset has some noise, does not include watertight surfaces,
and often suffers from notable missing parts, e.g., Figure 5 and Fig.7c of [33]. We compare to the
following baselines: DVR [33] (for fixed cameras), Colmap [40] (for fixed and trained cameras) and
Furu [9] (for fixed cameras). Similar to [33], for a fair comparison we cleaned the point clouds of
Colmap and Furu using the input masks before running the Screened Poison Surface Reconstruction
(sPSR) [22] to get a watertight surface reconstruction. For completeness we also report their trimmed
reconstructions obtained with the trim7 configuration of sPSR that contain large missing parts (see
Fig. 5 middle) but performs well in terms of the Chamfer distance.

GT Colmap IDR

Figure 5: Example of ground truth data (left).

Quantitative results of the experiment with known
fixed cameras are presented in Table 1, and qualitative
results are in Figure 4 (left). Our model outperforms
the baselines in the PSNR metric, and in the Chamfer
metric, for watertight surface reconstructions. In Ta-
ble 3 we compare the reconstructions obtained with
unknown trained camera. Qualitative results for this
setup are shown in Figure 4 (right). The relevant base-
line here is the Colmap SFM [39]+MVS[40] pipeline.
In Figure 7 we further show the convergence of our cameras (rotation and translation errors sorted
from small to large) from the initialization of [16] during training epochs along with Colmap’s
cameras. We note that our method simultaneously improves the cameras parameters while recon-
structing accurate 3D surfaces, still outperforming the baselines for watertight reconstruction and
PSNR in most cases; scan 97 is a failure case of our method. As can be seen in Figure 4, our 3D
surface reconstruction are more complete with better signal to noise ratio than the baselines, while
our renderings (right column in each part) are close to realistic.

Rerror(deg) terror(mm) PSNR

Colmap 0.03 2.86 21.99

IDR 0.02 2.02 26.48

Table 2: Fountain dataset: cameras
accuracy and rendering quality.

Small number of cameras. We further tested our method on
the Fountain-P11 image collections [43] provided with 11 high
resolution images with associated GT camera parameters. In
Table 2 we show a comparison to Colmap (trim7-sPSR) in a
setup of unknown cameras (our method is roughly initialized
with [16]). Note the considerable improvement in final camera
accuracy over Colmap. Qualitative results are shown in Figure 6.
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Figure 6: Qualitative results for Fountain data set.

Trimmed Mesh Watertight Mesh
Scan Colmaptrim=7 Colmaptrim=0 IDR

Chamfer PSNR Chamfer PSNR Chamfer PSNR
24 0.38 20.0 0.73 20.46 1.96 23.16
37 0.83 15.5 1.96 15.51 2.92 20.39
40 0.3 20.67 0.67 20.86 0.7 24.45
55 0.39 20.71 1.17 21.22 0.4 23.57
63 0.99 17.37 1.8 20.67 1.19 24.97
65 1.45 15.2 1.61 14.59 0.77 22.6
69 0.55 18.5 1.03 21.93 0.75 22.91
83 1.21 19.08 3.07 23.43 1.42 21.97
97 1.03 12.25 1.37 18.67 - -
105 0.61 20.38 2.03 21.22 0.96 22.98
106 0.48 15.78 0.93 22.23 0.65 21.18
110 1.33 18.14 1.53 18.28 2.84 18.65
114 0.29 19.83 0.46 20.25 0.51 25.19
118 0.42 23.22 0.74 25.42 0.50 22.58
122 0.4 24.67 1.17 25.44 0.62 24.42
Mean 0.71 18.75 1.35 20.68 1.16 22.79

Table 3: Multiview 3D reconstruction with trained
cameras, quantitative results for DTU dataset.
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Figure 7: Cameras conver-
gence for the DTU data set.

4.2 Disentangling geometry and appearance

To support the claim regarding the necessity of incorporating the surface normal, n, in the neural
renderer, M , for disentangling geometry and appearance (see Section 3.2), we performed the follow-
ing experiment: We trained two IDR models, each on a different DTU scene. Figure 8 (right) shows
(from left to right): the reconstructed geometry; novel views produced with the trained renderer; and
novel views produced after switching the renderers of the two IDR models. Figure 8 (left) shows the
results of an identical experiment, however this time renderers are not provided with normal input,
i.e., M(x̂,v, ẑ; γ). Note that using normals in the renderer provides a better geometry-appearance
separation: an improved surface geometry approximation, as well as correct rendering of different
geometries. Figure 9 depicts other combinations of appearance and geometry, where we render novel
views of the geometry networks, f , using renderers, M , trained on different scenes.

Without normal With normal

Figure 8: Incorporating normal in the renderer allows accurate geometry and appearance disentangle-
ment: comparison of reconstructed geometry, novel view with trained renderer, and novel view with
a different scene’s renderer shown with and without normal incorporated in the renderer.

8



Figure 9: Transferring appearance to unseen geometry.

4.3 Ablation study

We used scan 114 of the DTU dataset to conduct an ablation study, where we removed various
components of our renderer M(x̂, n̂, ẑ,v; γ), including (see Figure 10): (a) the viewing direction v;
(b) the normal n̂; and (c) the feature vector, ẑ. (d) shows the result with the full blown renderer M ,
achieving high detailed reconstruction of this marble stone figure (notice the cracks and fine details).
In contrast, when the viewing direction, normal, or feature vector are removed the model tends to
confuse lighting and geometry, which often leads to a deteriorated reconstruction quality.

In Figure 10 (e) we show the result of IDR training with fixed cameras set to the inaccurate camera
initializations obtained with [16]; (f) shows IDR results when camera optimization is turned on. This
indicates that the optimization of camera parameters together with the 3D geometry reconstruction is
indeed significant.

(a) (b) (c) (d) (e) (f)

Figure 10: Ablation study, see text for details.

5 Conclusions

We have introduced the Implicit Differentiable Renderer (IDR), an end-to-end neural system that can
learn 3D geometry, appearance, and cameras from masked 2D images and noisy camera intializations.
Considering only rough camera estimates allows for robust 3D reconstruction in realistic scenarios in
which exact camera information is not available. One limitation of our method is that it requires a
reasonable camera initialization and cannot work with, say random camera initialization. Interesting
future work is to combine IDR with a neural network that predicts camera information directly
from the images. Another interesting future work is to further factor the surface light field (M0 in
equation 5) into material (BRDF, B) and light in the scene (Li). Lastly, we would like to incorporate
IDR in other computer vision and learning applications such as 3D model generation, and learning
3D models from images in the wild.

Acknowledgments

LY, MA and YL were supported by the European Research Council (ERC Consolidator Grant,
"LiftMatch" 771136) and the Israel Science Foundation (Grant No. 1830/17). YK, DM, MG and RB
were supported by the U.S.- Israel Binational Science Foundation, grant number 2018680 and by
the Kahn foundation. The research was supported also in part by a research grant from the Carolito
Stiftung (WAIC).

9



Broader Impact

In our work we want to learn 3D geometry of the world from the abundant data of 2D images. In
particular we allow high quality of 3D reconstruction of objects and scenes using only standard
images. Applications of our algorithm could be anywhere 3D information is required, but only 2D
images are available. This could be the case in: product design, entertainment, security, medical
imaging, and more.
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