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Abstract

Inverse Reinforcement Learning addresses the problem of inferring an expert’s
reward function from demonstrations. However, in many applications, we not only
have access to the expert’s near-optimal behaviour, but we also observe part of
her learning process. In this paper, we propose a new algorithm for this setting,
in which the goal is to recover the reward function being optimized by an agent,
given a sequence of policies produced during learning. Our approach is based on
the assumption that the observed agent is updating her policy parameters along
the gradient direction. Then we extend our method to deal with the more realistic
scenario where we only have access to a dataset of learning trajectories. For
both settings, we provide theoretical insights into our algorithms’ performance.
Finally, we evaluate the approach in a simulated GridWorld environment and on
the MuJoCo environments, comparing it with the state-of-the-art baseline.

1 Introduction

Inverse Reinforcement Learning (IRL) [20] aims to infer an expert’s reward function from her
demonstrations [21]. In the standard setting, an expert shows behaviour by repeatedly interacting
with the environment. This behaviour, encoded by its policy, is optimizing an unknown reward
function. The goal of IRL consists of finding a reward function that makes the expert’s behaviour
optimal [20]. Compared to other imitation learning approaches [3, 15], which output an imitating
policy (e.g, Behavioral Cloning [3]), IRL explicitly provides a succinct representation of the expert’s
intention. For this reason, it provides a generalization of the expert’s policy to unobserved situations.

However, in some cases, it is not possible to wait for the convergence of the demonstrator’s learning
process. For instance, in multi-agent environments, an agent has to infer the unknown reward
functions that the other agents are learning, before actually becoming “experts”; so that she can either
cooperate or compete with them. On the other hand, in many situations, we can learn something useful
by observing the learning process of an agent. These observations contain important information
about the agent’s intentions and can be used to infer her interests. Imagine a driver who is learning a
new circuit. During her training, we can observe how she behaves in a variety of situations (even
dangerous ones) and this is useful for understanding which states are good and which should be
avoided. Instead, when expert behaviour is observed, only a small sub-region of the state space could
be explored, thus leaving the observer unaware of what to do in situations that are unlikely under the
expert policy.
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Inverse Reinforcement Learning from not expert agents, called Learning from a Learner (LfL), was
recently proposed by Jacq et al. in [17]. LfL involves two agents: a learner who is currently learning
a task and an observer who wants to infer the learner’s intentions. In [17] the authors assume that
the learner is learning under an entropy-regularized framework, motivated by the assumption that
the learner is showing a sequence of constantly improving policies. However many Reinforcement
Learning (RL) algorithms [35] do not satisfy this and also human learning is characterized by mistakes
that may lead to a non-monotonic learning process.

In this paper we propose a new algorithm for the LfL setting called Learning Observing a Gradient
not-Expert Learner (LOGEL), which is not affected by the violation of the constantly improving
assumption. Given that many successful RL algorithms are gradient-based [22] and there is some
evidence that the human learning process is similar to a gradient-based method [32], we assume that
the learner is following the gradient direction of her expected discounted return. The algorithm learns
the reward function that minimizes the distance between the actual policy parameters of the learner
and the policy parameters that should be obtained if she were following the policy gradient using that
reward function.

After a formal introduction of the LfL setting in Section 3, we provide in Section 4 a first solution of
the LfL problem when the observer has full access to the learner’s policy parameters and learning
rates. Then, in Section 5 we extend the algorithm to the more realistic case in which the observer can
identify the optimized reward function only by analyzing the learner’s trajectories. For each problem
setting, we provide a finite sample analysis to give to the reader an intuition on the correctness of the
recovered weights. Finally, we consider discrete and continuous simulated domains to empirically
compare the proposed algorithm with state-of-the-art baselines in this setting [17, 7]. The proofs
of all the results are reported in Appendix A. In the appendix we report preliminary results on a
simulated autonomous driving task B.3.

2 Preliminaries

A Markov Decision Process (MDP) [27, 35] is a tupleM = (S,A, P, γ, µ,R) where S is the state
space, A is the action space, P : S ×A× S → R≥0 is the transition function, which defines the
density P (s′|s, a) of state s′ ∈ S when taking action a ∈ A in state s ∈ S , γ ∈ [0, 1) is the discount
factor, µ : S → R≥0 is the initial state distribution and R : S → R is the reward function. An
RL agent follows a policy π : S ×A → R≥0, where π(·|s) specifies for each state s a distribution
over the action space A, i.e., the probability of taking action a in state s. We consider stochastic
differentiable policies belonging to a parametric space ΠΘ = {πθ : θ ∈ Θ ⊆ Rd}. We evaluate the
performance of a policy πθ as its expected cumulative discounted return:

J(θ) = E
S0∼µ,

At∼πθ(·|St),
St+1∼P (·|St,At)

[
+∞∑

t=0

γtR(St, At)

]
.

To solve an MDP, we must find a policy πθ∗ that maximizes the performance θ∗ ∈ arg maxθ J(θ).

Inverse Reinforcement Learning [21, 20, 2] addresses the problem of recovering the unknown
reward function optimized by an expert given demonstrations of her behavior. The expert plays a
policy πE which is (nearly) optimal for some unknown reward function R : S × A → R. We are
given a dataset D = {τ1, . . . , τn} of trajectories from πE , where we define a trajectory as a sequence
of states and actions τ = (s0, a0, . . . , sT−1, aT−1, sT ), where T is the trajectory length. The goal of
an IRL agent is to find a reward function that explains the expert’s behavior. As commonly done in
the Inverse Reinforcement Learning literature [24, 41, 2], we assume that the expert’s reward function
can be represented by a linear combination with weights ω of q basis functions φ:

Rω(s, a) = ωTφ(s, a), ω ∈ Rq, (1)

where φ : S ×A → [−Mr,Mr]
q is a bounded feature vector function.

We define the feature expectations of a policy πθ as:

ψ(θ) = E
S0∼µ,

At∼πθ(·|St),
St+1∼P (·|St,At)

[
+∞∑

t=0

γtφ(St, At)

]
.
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The expected discounted return, under the linear reward model, is defined as:

J(θ,ω) = E
S0∼µ,

At∼πθ(·|St),
St+1∼P (·|St,At)

[
+∞∑

t=0

γtRω(St, At)

]
= ωTψ(θ). (2)

3 Inverse Reinforcement Learning from learning agents

The Learning from a Learner Inverse Reinforcement Learning setting (LfL), proposed in [17], involves
two agents:

• a learner which is learning a task defined by the reward function RωL ,
• and an observer which wants to infer the learner’s reward function.

More formally, the learner is an RL agent which is learning a policy πθ ∈ ΠΘ in order to maximize its
discounted expected return J(θ,ωL). The learner is improving its own policy by an update function
f(θ,ω) : Rd × Rq → Rd, i.e., at time t, θt+1 = f(θt,ω). The observer, instead, perceives a
sequence of learner’s policy parameters {θ1, · · · ,θm+1} and a dataset of trajectories for each policy
D = {D1, · · · ,Dm+1}, where Di = {τ i1, · · · , τ in}. Her goal is to recover the reward function RωL
that explains πθi → πθi+1 for all 1 ≤ i ≤ m, i.e the updates of the learner’s policy.
Remark 3.1. It is easy to notice that this problem has the same intention as Inverse Reinforcement
Learning since the demonstrating agent is motivated by some reward function. On the other hand,
in classical IRL the learner agent is an expert, and not a non-stationary agent. For this reason, we
cannot simply apply standard IRL algorithms to this problem or use Behavioral Cloning [26, 3, 21]
algorithms, which mimic a suboptimal behavior.

4 Learning from a learner following the gradient

Many algorithms that are the state of the art of reinforcement learning are policy-gradient methods [22,
36], i.e. approaches which optimize the expected discounted return with gradient updates of the policy
parameters. Recently it has been proved that even standard RL algorithms such as Value Iteration or
Q-learning have strict connections with policy gradient methods [13, 30]. For the above reasons, we
assume that the learner is optimizing the expected discounted return using gradient descent.

For the sake of presentation, we start by considering the simplified case in which we assume that
the observer can perceive the sequence of the learner’s policy parameters (θ1, · · · ,θm+1), the
associated gradients of the feature expectations (∇θψ(θ1), . . . ,∇θψ(θm)), and the learning rates
(α1, · · · , αm). Then, we will replace the exact knowledge of the gradients with estimates built on
a set of demonstrations Di for each learner’s policy πθi (Section 4.2). Finally, we introduce our
algorithm LOGEL, which, using behavioral cloning and an alternate block-coordinate optimization
[37], is able to estimate the reward’s parameters without requiring as input the policy parameters and
the learning rates (Section 5).

4.1 Exact gradient

We express the gradient of the expected return as [36, 23]:

∇θJ(θ,ω) = E
S0∼µ,

At∼πθ(·|St),
St+1∼P (·|St,At)

[+∞∑

t=0

γtRω(St, At)

t∑

l=0

∇θ log πθ(Al|Sl)
]

= ∇θψ(θ)ω,

where∇θψ(θ) = (∇θψ1(θ)| . . . |∇θψq(θ)) ∈ Rd×q is the Jacobian matrix of the feature expecta-
tions ψ(θ) w.r.t the policy parameters θ. In the rest of the paper, with some abuse of notation, we
will indicate ψ(θt) with ψt.

We define the gradient-based learner updating rule at time t as:

θLt+1 = θLt + αt∇θJ(θLt ,ω) = θLt + αt∇θψLt ωL, (3)
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where αt is the learning rate. Given a sequence of consecutive policy parameters (θL1 , · · · ,θLm+1),
and of learning rates (α1, · · · , αm) the observer has to find the reward function Rω such that the
improvements are explainable by the update rule in Eq. (3). This implies that the observer has to
solve the following minimization problem:

min
ω∈Rq

m∑

t=1

‖∆t − αt∇θψtω‖22 , (4)

where ∆t = θt+1 − θt. This optimization problem can be easily solved in closed form under the
assumption that

(∑m
t=1 α

2
t∇θψTt ∇θψt

)−1
is invertible.

Lemma 4.1. If the matrix
(∑m

t=1 α
2
t∇θψTt ∇θψt

)−1
is full-rank than optimization problem (4) is

solved in closed form by

ω̂ =

(
m∑

t=1

α2
t∇θψTt ∇θψt

)−1( m∑

t=1

αt∇θψTt ∆t

)
. (5)

When problem (4) has no unique solution or when the matrix to be inverted is nearly singular, in
order to avoid numerical issues, we can resort to a regularized version of the optimization problem.
In the case we add an L2-norm penalty term over weights ω we can still compute a closed-form
solution (see Lemma A.5 in Appendix A).

4.2 Approximate gradient

In practice, we do not have access to the Jacobian matrix ∇θψ, but the observer has to estimate
it using the dataset D and some unbiased policy gradient estimator, such as REINFORCE [40] or
G(PO)MDP [5]. The estimation of the Jacobian will introduce errors on the optimization problem (4).
Obviously the estimation of the reward weights ω becomes more accurate when more data are
available [25]. On the other hand during the learning process, the learner will produce more than
one policy improvement, and the observer can use these improvements to get better estimates of the
reward weights.

In order to have an insight on the relationship between the amount of data needed to estimate the
gradient and the number of learning steps, we provide a finite sample analysis on the norm of the
difference between the learner’s weights ωL and the recovered weights ω̂. The analysis takes into
account the learning steps data and the gradient estimation data, without having any assumption
on the policy of the learner. We denote with Ψ = [∇θψ1, · · · ,∇θψm]

T the concatenation of the

Jacobians and Ψ̂ =
[
∇̂θψ1, · · · , ∇̂θψm

]T
the concatenation of the estimated Jacobians.

Theorem 4.1. Let Ψ be the real Jacobians and Ψ̂ the estimated Jacocobian from n trajectories

{τ1, · · · , τn}. Assume that Ψ is bounded by a constant M and λmin(Ψ̂
T
Ψ̂) ≥ λ > 0. Then w.h.p.:

∥∥ωL − ω̂
∥∥

2
≤ O


 1

λ
M

√
dq log( 2

δ )

2n

(√
log dq

m
+
√
dq

)
 .

We have to underline that a finite sample analysis is quite important for this problem. In fact, the
number of policy improvement steps of the learner is finite as the learner will eventually achieve an
optimal policy. So, knowing the finite number of learning improvements m, we can estimate how
much data we need for each policy to get an estimate with a certain accuracy. More information
about the proof of the theorem can be found in appendix A.

Remark 4.1. Another important aspect to take into account is that there is an intrinsic bias [18]
due to the gradient estimation error that cannot be solved by increasing the number of learning
steps, but only with a more accurate estimation of the gradient. However, we show in Section 7 that,
experimentally, the component of the bound that does not depend on the number of learning steps
does not influence the recovered weights.
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5 Learning from improvement trajectories

In a realistic scenario, the observer has access only to a dataset D = (D1, . . . ,Dm+1) of trajectories
generated by each policy, such that Di = {τ1, · · · , τn} ∼ πθi . Furthermore, the learning rates are
unknown and possibly the learner applies an update rule other than (3). The observer has to infer
the policy parameters Θ = (θ1, . . . ,θm+1), the learning rates A = (α1, . . . , αm), and the reward
weights ω. If we suppose that the learner is updating its policy parameters with gradient ascent on
the discounted expected return, the natural way to see this problem is to maximize the log-likelihood
of p(θ1,ω, A|D):

max
θ1,ω,A

∑

(s,a)∈D1

log πθ1(a|s) +

m+1∑

t=2

∑

(s,a)∈Dt
log πθt(a|s),

where θt = θt−1 + αt−1∇θψt−1. Unfortunately, solving this problem directly is not practical as it
involves evaluating gradients of the discounted expected return up to the m-th order. To deal with
this, we break down the inference problem into two steps: the first one consists in recovering the
policy parameters Θ of the learner and the second in estimating the learning rates A and the reward
weights ω (see Algorithm 1).

5.1 Recovering learner policies

Since we assume that the learner’s policy belongs to a parametric policy space ΠΘ made of differen-
tiable policies, as explained in [24], we can recover an approximation of the learner’s parameters Θ
through behavioural cloning, exploiting the trajectories in D = {D1, · · · ,Dm+1}. For each dataset
Di ∈ D of trajectories, we cast the problem of finding the parameter θi to a maximum-likelihood
estimation. Solving the following optimization problem we obtain an estimate θ̂i of θi:

max
θi∈Θ

1

n

n∑

l=1

T−1∑

t=0

log πθi(al,t|sl,t). (6)

It is known that the maximum-likelihood estimator is consistent under mild regularity conditions on
the policy space ΠΘ and assuming the identifiability property [8]. Some finite-sample guarantees on
the concentration of distance ‖θ̂i − θi‖p were also derived under stronger assumptions, e.g., in [34].

5.2 Recovering learning rates and reward weights

Given the parameters (θ̂1, . . . , θ̂m+1), if the learner is updating her policy with a constant learning
rate we can simply apply Eq. (4). On the other hand, with an unknown learner, we cannot make
this assumption and it is necessary to estimate also the learning rates A = (α1, . . . , αm). The
optimization problem in Eq. (4) becomes:

min
ω∈Rq,A∈Rm

m∑

t=1

∥∥∥∆̂t − αt∇̂θψtω
∥∥∥

2

2
(7)

s.t. αt ≥ ε 1 ≤ t ≤ m. (8)

where ∆̂t = θ̂t+1 − θ̂t and ε is a small constant. To optimize this function we use alternate block-
coordinate descent [37]. We alternate the optimization of parameters A and the optimization of
parameters ω. Furthermore, we can notice that these two steps can be solved in closed form. When
we optimize on ω, the optimization can be done using Lemma 4.1. When we optimize on A we can
solve for each parameter αt, with 1 ≤ t ≤ m, in closed form.
Lemma 5.1. The minimum of (7) with respect to αt is equal to:

α̂t = max

(
ε,
(

(∇̂θψtω)T (∇̂θψtω)
)−1

(∇̂θψtω)T ∆̂t

)
. (9)

The inner matrix cannot be inverted only if the vector ∇̂θψω is equal to 0. This would happen only
if the expert is at a stationary point, so ∇̂θψ is 0. The optimization converges under the assumption
that there exists a unique minimum for each variable A and ω [37].
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Algorithm 1 LOGEL
Require: Dataset D = {D1, . . . ,Dm+1} with Dj = {(τ1, . . . , τnj ) | τi ∼ πθj}
Ensure: Reward weights ω ∈ Rq

1: Estimate policy parameters (θ̂1, . . . , θ̂m+1) with Eq. (6)
2: Initialize A and ω
3: Compute learning rates A and reward weights ω by alternating (9) and (5) up to convergence

5.3 Theoretical analysis

In this section, we provide a finite-sample analysis of LOGEL when only one learning step is
observed, assuming that the Jacobian matrix ∇̂θψ is bounded and the learner’s policy is a Gaussian
policy π ∼ N (θTϕ(s), σ2). The analysis evaluates the norm of the difference between the learner’s
weights ωL and the recovered weights ω̂. Without loss of generality, we consider the case where the
learning rate α = 1. The analysis takes into account the bias introduced by the behavioural cloning
and the gradient estimation.
Theorem 5.1. Let πθ1 , πθ2 be two Gaussian policies πθi(·|s) ∼ N (θTi ϕ(s), σ2) with i ∈ {1, 2},
such that πθ2 is the improvement of πθ1 . Let i ∈ [1, 2]. Given datasets Di = {τ i1, . . . , τ in} of
trajectories generated by πi, such that Si ∈ Rn×t×d is the matrix of corresponding states features,
let the minimum singular value of σmin(STi Si) ≥ η > 0, ∇̂θ1ψ uniformly bounded by M , the state
features bounded by MS , and the reward features bounded by MR. Then with probability 1− δ:

∥∥ωL − ω̂
∥∥

2
≤ O


 (M +M2

SMR)

σmin(∇θ1ψ)

√
log( 2

δ )

nη




where ωL are the real reward parameters and ω̂ are the parameters recovered using Lemma 4.1.

The theorem, that relies on perturbation analysis [39] and least squares with fixed design [29],
underlines how LOGEL, with a sufficient number of samples to estimate the policy parameters and
the gradients, succeeds in recovering the correct reward parameters.

6 Related Works

The problem of estimating the reward function of an agent who is learning is quite new. This setting
was proposed by Jacq et al. [17] and, to the best of our knowledge, it is studied only in that work.
In [17] the authors proposed a method based on entropy-regularized reinforcement learning, in
which they assumed that the learner is performing soft policy improvements. In order to derive their
algorithm, the authors also assume that the learner respects the policy improvement condition. We
do not make this assumption as our formulation assumes only that the learner is changing its policy
parameters along the gradient direction (which can result in a performance loss).

The problem, as we underlined in Section 3, is close to the Inverse Reinforcement Learning prob-
lem [21, 20], since they share the intention of acquiring the unknown reward function from the
observation of an agent’s demonstrations. LOGEL relies on the assumption that the learner is im-
proving her policy through gradient ascent updates. A similar approach, but in the expert case, was
taken in [25, 19] where the authors use the null gradient assumption to learn the reward from expert’s
demonstrations.

In another line of works, sub-optimal demonstrations are used in the preference-based IRL [11, 16]
and ranking-based IRL [7, 9]. Some of these works require that the algorithm asks a human to
compare possible agent’s trajectories to learn the underlying reward function of the task. We can
imagine that LOGEL can be used in a similar way to learn from humans who are learning a new task.
Instead, in [4] was proposed an Imitation Learning setting where the observer tries to imitate the
behavior of a supervisor that demonstrates a converging sequence of policies.

In works on theory of minds [28, 33], the authors propose an algorithm that uses meta-learning to
build a system that learns how to model other agents. In these works it is not required that agents are
experts but they must be stationary. Instead, in the setting considered by LOGEL, the observed agent
is non-stationary.
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Figure 1: Gridworld experiment with known policy parameters. The learner is using G(PO)MDP.
From left the expected discounted return and the norm difference between the real weights and the
recovered ones with one learning step; the same measures with fixed batch size (5 trajectories with
length 20). The performance of the observers are evaluated on the learner’s reward weights. Results
are averaged over 20 runs. 98% c.i as shaded area.
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Figure 3: Gridworld experiment with estimated policy parameters and four learners: from left
Q-learning, G(PO)MDP, SPI, SVI. The green line is the LfL observer, the blue one is the LOGEL ob-
server and the red one Behavioral Cloning. The performance of the observers are evaluated on the
learner’s reward weights. Results are everaged over 20 runs. 98% c.i. as shaded area.

7 Experiments

S -5

7

0

-1

-3

Figure 2: Gridworld envi-
ronment: every area has a
different reward weight. In
the green area the agent is
reset to the starting state.

This section is devoted to the experimental evaluation of LOGEL. The
algorithm LOGEL is compared to the state-of-the-art baseline Learner
From a Learner (LfL) [17] and T-REX [7] in a gridworld navigation task
and in two MuJoCo environments. In these experiments the assumption
that the learner is gradient-based is violated and in the MuJoCo task the
reward features are constructed by states and actions features. Therefore
we can argue that in this experiment the reward linearity assumption is
violated, since we use a different reward space for the recovered reward
function. More details on the experiments are in Appendix B.1.

7.1 Gridworld

The first set of experiments aims at evaluating the performance of LO-
GEL in a discrete Gridworld environment. The Gridworld, represented
in Figure 2, is composed of five regions with a different reward for
each area. The agent starts from the cell top left and when she reaches
the green state, then returns to the starting state. The reward feature
space is composed of the one-hot encoding of five areas: the orange, the light grey, the dark grey,
the blue, and the green. The learner weights for the areas are (−3,−1,−5, 7, 0) respectively. As a
first experiment, we want to verify in practice the theoretical finding exposed in Section 4. In this
experiment, the learner uses a Boltzmann policy and she is learning with the G(PO)MDP policy
gradient algorithm. The observer has access to the true policy parameters of the learner. Figure 1
shows the performance of LOGEL in two settings: a single learning step and increasing batch size (5,
10, 20, 30, 40, 50); a fixed batch size (batch size 5 and trajectory length 20) and an increasing number
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of learning steps (2, 4, 6, 8, 10). The figure shows the expected discounted return (evaluated in closed
form) and the difference in norm between the learner’s weights and the recovered weights 1. We note
that, as explained in Theorem 4.1, with a more accurate gradient estimate, the observer succeeds in
recovering the reward weights by observing even just one learning step. On the other hand, as we can
deduce from Theorem 4.1, if we have a noisy estimation of the gradient, with multiple learning steps,
the observer succeeds in recovering the learner’s weights. It is interesting to notice that, from this
experiment, it seems that the bias component, which does not vanish as the learning steps increase
(see Theorem 4.1), does not affect the correctness of the recovered weights.

In the second experiment we consider four different learners using: Q-learning [35], G(PO)MDP,
Soft policy improvement (SPI) [17] and Soft Value Iteration (SVI) [14] 2. For this experiment, we
compare the performance of LOGEL , LfL [17] and Behavioral Cloning. In Figure 3 we can notice as
LOGEL succeeds in recovering the learner’s reward weights even with learner algorithms other than
gradient-based ones. Instead, LfL does not recover the reward weights of the G(PO)MDP learner and
needs more learning steps than LOGEL to learn the reward weights when Q-learning learner and SVI
are observed. Behavioral Cloning only mimics the last seen policy which can be suboptimal.

7.2 MuJoCo environments

0 0.5 1

−0.5

0

0.5

1

Million env steps (m)

J
(θ

)

Reacher

0 0.5 1

0

2

4

Million env steps (m)

Hopper

LfL LOGEL Learner TREX BC

Figure 4: From the left, the Reacher and the Hop-
per MuJoCo environments. The red line is the per-
formance of the learner during 20 learning steps.
The observers, LfL, LOGEL, T-REX and Behav-
ioral Cloning (BC) observe the trajectories of the
learning steps from 10 to 20. The performance of
the observers are evaluated on the learner’s reward
weights. Scores are normalized setting to 0 the
first return of the learner and to 1 the last one. The
results are averaged over 10 runs. 98% c.i. are
shown as shaded areas.

In the second set of experiments, we show the
ability of LOGEL to infer the reward weights
in more complex and continuous environments.
We use two environments from the MuJoCo con-
trol suite [6]: Hopper and Reacher. As in [17],
the learner is trained using Policy Proximal Op-
timization (PPO) [31]3, with 16 parallel agents
for each learning step. For each step, the length
of the trajectories is 2000. Then we use LO-
GEL , LfL or T-REX [7] to recover the reward
parameters. In the end, the observer is trained
with the recovered weights using PPO and the
performances are evaluated on the learner’s
weights, starting from the same initial policy
of the learner for a fair comparison. The scores
are normalized by setting to 1 the score of the
last observed learner policy and to 0 the score
of the initial one (as done in [17]). In both envi-
ronments, the observer learns using the learning
steps from 10 to 20 as the first learning steps
are too noisy. The reward function of LfL is
the same as the one used in the original paper,
where the reward function is a neural network
equal to the one used for the learner’s policy.
Instead, for LOGEL we used linear reward functions derived only from state and action features.
The reward for the Reacher environment is a 26-grid radial basis function that describes the distance
between the agent and the goal, plus the 2-norm squared of the action. In the Hopper environment,
instead, the reward features are the distance between the previous and the current position and the
2-norm squared of the action. The T-REX algorithm aims to recover a reward function from ranked
trajectories, where the rank is given by an oracle and is based on the expected discounted return. We
use the algorithm in the LfL setting, where we approximate the ranking with the temporal updates of
the policies, as was done in an example in the original paper. We implement the reward function as in
the original paper with a three layer neural network with 256 as hidden size.

The results are shown in Figure 4, where we reported results averaged over 10 runs. For Behavioral
Cloning we report the performance of the policy learnt at the 20th step; in fact Behavioral Cloning
cannot improve its performance with learning steps. We can notice that LOGEL succeeds in

1To perform this comparison, we normalize the recovered weights and the learner’s weights
2In Appendix B.1 the learning process of each learning agent is shown.
3It is important to notice that PPO violates the gradient learning assumption of LOGEL.
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identifying a good reward function in both environments, although in the Reacher environment the
recovered reward function causes slower learning. Instead, LfL fails to recover an effective reward
function for the Hopper environment [17]. The T-REX algorithm, as in the original paper, succeeds
in recovering a good approximation of the reward weights in the Hopper domain; instead, it does not
succeed into recovering the reward function of the Reacher environment.

8 Conclusions

In this paper we propose a novel algorithm, LOGEL, for the “Learning from a Learner Inverse
Reinforcement Learning” setting. The proposed method relies on the assumption that the learner
updates her policy along the direction of the gradient of the expected discounted return. We provide
some finite-sample bounds on the algorithm performance in recovering the reward weights when the
observer observes the learner’s policy parameters and when the observer observes only the learner’s
trajectories. Finally, we tested LOGEL on a discrete gridworld environment and on two MuJoCo
continuous environments, comparing the algorithm with the state-of-the-art baselines [17, 7]. As
future work, we plan to extend the algorithm to account for the uncertainty in estimating both the
policy parameters and the gradient.

Broader impact

In this paper, we focus on the Inverse Reinforcement Learning [2, 15, 3, 21] task from a Learning
Agent [17]. The first motivation to study Inverse Reinforcement Learning algorithms is to overcome
the difficulties that can arise in specifying the reward function from human and animal behaviour.
Sometimes, in fact, it is easier to infer human intentions by observing their behaviours than to design
a reward function by hand. An example is helicopter flight control [1], in which we can observe a
helicopter operator and through IRL a reward function is inferred to teach a physical remote-controlled
helicopter. Another example is to predict the behavior of a real agent as route prediction tasks of taxis
[41, 42] or anticipation of pedestrian interactions [12] or energy-efficient driving [38]. However, in
many cases, the agents are not really experts and on the other hand, only expert demonstrations can
not show their intention to avoid dangerous situations. We want to point out that learning what the
agent wants to avoid because harmful is as important as learning his intentions.

The possible outcomes of this research are the same as those of Inverse Reinforcement Learning
mentioned above, avoiding the constraint that the agent has to be an expert. In future work, we will
study how to apply the proposed algorithm in order to infer the pilot’s intentions when they learn a
new circuit.

A relevant possible complication of using IRL is the error on the reward feature engineering which
can lead to errors in understanding the agent’s intentions. In an application such as autonomous
driving, errors in the reward function can cause dangerous situations. For this reason, verification
through the simulated environment of the effectiveness of the retrieve rewards is quite important.
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A Proofs and derivations

We start the proofs given some introduction on Pertubation on Least Square problems and on Least
Square problems with fixed design. Then we report the proofs and derivations for the results of
Sections 4 and 5. For the rest of this section we assume that:

• ωL, ω̂ ∈ Rq ,
• θL, θ̂ ∈ Rd.

We define with ωL (θL) the reward (policy) parameters of the learner, and with ω̂ (θ̂) the reward
(policy) parameters recovered by the observer.

A.1 Preliminaries

Definition A.1. The condition number of a matrix A ∈ Rm×q A 6= 0 is:

κ = ‖A‖2
∥∥A+

∥∥
2

=
σ1

σr
,

where 0 < r = rank(A) ≤ min(m, q), and σ1 ≥ · · · ≥ σr > 0 are the nonzero singular values of A.

A least-squares problem is defined as:
min
x
‖Ax− b‖2 , (10)

where the solution is x = A+b. We denote with A+ the pseudoinverse of A, the perturbed A as
Â = A + δA and the pertubed b̂ = b+ δb and the perturbed solution x̂ = Â

+
b̂ = x+ δx. Finally,

we denote with AH the adjoint of the matrix A.

We define as χ =
‖δA‖2
‖A‖2

and y = A+Hx.

Lemma A.1 (Perturbation on Least Square Problems [39]). Assume that rank(A + δA) = rank(A)
and χκ < 1 then:

‖x− x̂‖2 ≤
κ

(1− χκ) ‖A‖2
(χ ‖x‖2 ‖A‖2 + χκ ‖r‖2 + ‖δb‖2) + χ ‖y‖2 ‖A‖2 . (11)

Proof. The proof can be find in [39].

We adapt the lemma 6 in [10] to our context where ω̂ are the reward weights recovered with lemma
4.1.

Lemma A.2 (From lemma 6 in [10]). Let Σ = (∇̂θψ
T
∇̂θψ) and suppose the following strong

convexity condition holds: λmin(Σ) ≥ λ > 0. Then the estimation error satisfies:
∥∥ω̂ − ωL

∥∥
2
≤ O

(
1

λ

∥∥∇θψT∆− ΣωL
∥∥

2

)
.

Lemma A.3 (Revised from lemma 11 in [18]). Suppose X ∈ Rm×q and W ∈ Rn×M are zero-mean
sub-gaussian matrices with parameters ( 1

nΣx,
1
nσ

2
x), ( 1

nΣw,
1
nσ

2
w) respectively. Then for any fixed

vectors v1, v2, we have:

P[|vT1 (WTX − E[WTW ])v2| ≥ t ‖v1‖2 ‖v2‖2] ≤ 3exp

(
−cnmin

{
t2

σ2
xσ

2
w

,
t

σxσw

})
,

in particular if n & log p we have that:

|vT1 (WTX − E[WTW ])v2| ≤ σxσw ‖v1‖2 ‖v2‖2

√
log p

n
.

Setting v1 to be the first standard basis vector and using a union bound over j = 1, · · · , p we have:

∥∥(WTX − E[WTX])v
∥∥
∞ ≤ σxσw ‖v‖2

√
log p

n
,

with probability 1 − c1exp(−c2 log p) where c1, c2 are positive constants which are independent
from σx, σw, n, p.
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Theorem A.1 (from Chapter 2 [29]). Assume that the least-squares model:

min
x
‖Ax− b+ ε‖

holds where ε ∼ subGn(σ2). Then, for any δ > 0, with probability 1− δ it holds:

‖x− x̂‖2 ≤ σ

√
r + log( 1

δ )

nσmin
,

where σmin = ATA
n is the minimum singular value of ATA and r is the rank(ATA).

A.2 Additional Results

In this section we give the proofs and derivations of the theorems in Section 4.

First, we will provide a finite sample analysis on the difference in norm between the reward vector of
the learner ωL and the reward vector recoverd using (5), with a single learning step. This result was
omitted in the main paper as we can see this as a special case of Theorem 4.1, but with a different
technique. We add it here as it provides a first insight on how, having enough demonstrations, we
can recover the correct weights. In the demonstration, without loss of generality, we assume that the
learning rate is 1.

Lemma A.4. Let ∇θψ be the real Jacobian and ∇̂θψ the estimated Jacobian from n trajectories
{τ1, · · · , τn}. Assume that ∇̂θψ is uniformly bounded by M . Then with probability 1− δ

∥∥∥∇̂θψ −∇θψ
∥∥∥

2
≤M

√
qd

√
log( 2

δ )

2n
.

Proof. We use Hoeffding’s inequality:

P
[∥∥∥∇̂θψ −∇θψ

∥∥∥
2
≥ t
]
≤ P

[√
qd
∥∥∥∇̂θψ −∇θψ

∥∥∥
∞
≥ t
]
≤ 2 exp

(
−2t2n

dqM2

)

The result follows by setting δ = 2 exp
(
−2t2n
dqM2

)
.

Theorem A.1. Let ∇θψ be the real Jacobian and ∇̂θψ the estimated Jacobian from n trajectories
{τ1, · · · , τn}. Assume that ∇̂θψ is uniformly bounded by M , rank(∇̂θψ) = rank(∇θψ) and∥∥∥∇̂θψ −∇θψ

∥∥∥
2
· κ∇θψ < ‖∇θψ‖2. Then with probability 1− δ:

∥∥ωL − ω̂
∥∥

2
≤M

√
qd

√
log( 2

δ )

2n

(
κ∇θψ

∥∥ωL
∥∥

2

c ‖∇θψ‖2
+ ‖y‖2

)
, (12)

where ωL are the real reward parameters and ω̂ are the parameters recovered with Equation (5),

c = 1−
∥∥∥∇̂θψ−∇θψ

∥∥∥
2

‖∇θψ‖2
κ∇θψ > 0, and y = ∇θψ+Hω.

Proof. We need to bound the difference in norm between ωL and ω̂ that are the true
parameters and the parameters that we recovered solving the minimization problem (4).
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∥∥ωL − ω̂
∥∥

2
(13)

≤ κ(
1− κ‖δ∇θψ‖2

‖∇θψ‖2

)
‖∇θψ‖2

(
‖δ∇θψ‖2
‖∇θψ‖2

∥∥ωL
∥∥

2
‖∇θψ‖2

)
+
‖δ∇θψ‖2
‖∇θψ‖2

‖y‖2 ‖∇θψ‖2 (14)

≤ κ

c ‖∇θψ‖2

(
‖δ∇θψ‖2
‖∇θψ‖2

∥∥ωL
∥∥

2
‖∇θψ‖2

)
+
‖δ∇θψ‖2
‖∇θψ‖2

‖y‖2 ‖∇θψ‖2 (15)

= ‖δ∇θψ‖2

(
κ
∥∥ωL

∥∥
2

c ‖∇θψ‖2
+ ‖y‖2

)
(16)

≤M
√
qd

√
log( 2

δ )

2n

(
κ
∥∥ωL

∥∥
2

c ‖∇θψ‖2
+ ‖y‖2

)
, (17)

where line (14) is obtained by using Lemma A.1, lines (15, 16) by rearranging the terms, and line
(17) by using Lemma A.4. We can observe that the last term vanishes when the rank(∇θψ)= q (see
[39]).

A.3 Proofs and derivation of Section 4

Now we will give the proofs and derivations of Lemmas 4.1 and Theorem 4.1.

Lemma 4.1. If the matrix
(∑m

t=1 α
2
t∇θψTt ∇θψt

)−1
is full-rank than optimization problem (4) is

solved in closed form by

ω̂ =

(
m∑

t=1

α2
t∇θψTt ∇θψt

)−1( m∑

t=1

αt∇θψTt ∆t

)
. (5)

Proof. Taking the derivative of (4) with respect to ω:

∇ω
m∑

t=1

‖∆t − αt∇θψtω‖22 =

m∑

t=1

∇ω(∆t − αt∇θψtω)T (∆− α∇θψtω)

=

m∑

t=1

∇ω(∆T
t ∆t + (α∇θψtω)T (αt∇θψtω)− 2αt∇θψtω)T∆t)

= 2

(
m∑

t=1

α2
t∇θψTt ∇θψt

)
ω − 2

m∑

t=1

(
αt∇θψTt ∆t

)
.

Taking it equal to zero:
(

m∑

t=1

α2
t∇θψTt ∇θψt

)
ω −

m∑

t=1

(
αt∇θψTt ∆t

)
= 0

ω =

(
m∑

t=1

α2
t∇θψTt ∇θψt

)−1( m∑

t=1

αt∇θψTt ∆t

)

Lemma A.5. The regularized version of (4) is equal to:

min
ω

m∑

t=1

‖∆t − αt∇θψtω‖22 + λ ‖ω‖22 ,

where λ > 0. We can solve the regularized problem in closed form:

ω =

(
m∑

t=1

α2
t∇θψTt ∇θψt + λId

)−1( m∑

t=1

αt∇θψTt ∆t

)
.
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Proof. Taking the derivative respect to ω:

∇ω
m∑

t=1

‖∆t − αt∇θψtω‖22 + λ ‖ω‖22 =

m∑

t=1

∇ω(∆t − αt∇θψtω)T (∆t − α∇θψtω) +∇ωλωTω

=

m∑

t=1

∇ω(∆T
t ∆t + (α∇θψtω)T (αt∇θψtω)− 2αt∇θψtω)T∆t) + 2λω

= 2

(
m∑

t=1

α2
t∇θψTt ∇θψt

)
ω − 2

m∑

t=1

(
αt∇θψTt ∆t

)
+ 2λω.

Taking it equal to zero:
(

m∑

t=1

α2
t∇θψTt ∇θψt + λId

)
ω −

m∑

t=1

(
αt∇θψTt ∆t

)
= 0

ω =

(
m∑

t=1

α2
t∇θψTt ∇θψt + λId

)−1( m∑

t=1

αt∇θψTt ∆t

)
.

Theorem 4.1. Let Ψ be the real Jacobians and Ψ̂ the estimated Jacocobian from n trajectories

{τ1, · · · , τn}. Assume that Ψ is bounded by a constant M and λmin(Ψ̂
T
Ψ̂) ≥ λ > 0. Then w.h.p.:

∥∥ωL − ω̂
∥∥

2
≤ O


 1

λ
M

√
dq log( 2

δ )

2n

(√
log dq

m
+
√
dq

)
 .

Proof. We decompose the estimated Jacobian Ψ = Ψ + E, where E is the random variable
component caused by the estimation of the ∇θψ. Since we estimate the jacobians with an unbiased
estimator the mean of E is 0. We reshape the Ψ and E as Ψ ∈ Rm×dq and E ∈ Rm×dq. Now
E, since its mean is 0 and all lines are independent of each other, is a sub-Gaussian matrix with
parameters ( 1

mΣE ,
1
mσE). The proof is similar to the proof of Theorem 1 in [18].

∥∥∥(Ψ + E)T (ΨTωL)− (Ψ + E)T (Ψ + E)ωL
∥∥∥

2

=
∥∥∥ΨT∇θψTω∗ + ETΨTωL −ΨTΨωL −ΨTEω∗ − EΨTω∗ − ETEωL

∥∥∥
2

=
∥∥∥−ΨTEωL − ETEωL

∥∥∥
2
.

Now we bound separately these two terms, using Lemma A.3 as in [18]:
∥∥∥ΨTEω

∥∥∥
2
≤ ‖Ψ‖2 σE

∥∥ωL
∥∥

2

√
log dq

m

∥∥ETEωL
∥∥

2
=
∥∥(ETE + σ2

EIqd − σ2
EIqd)ω

L
∥∥

2
≤ σ2

E

(
C

√
log dq

m
+
√
dq

)
∥∥ωL

∥∥
2

with probability 1 − c1 exp(−c2 log q) where c1, c2 are positive constants that do not depend on
σE , n, q. So now applying Lemma A.2:

∥∥ωL − ω̂
∥∥

2
≤ 1

λ

(
‖Ψ‖2 σE

∥∥ωL
∥∥

2

√
log dq

m
+ σ2

E

(
C

√
log dq

m
+
√
dq

)
∥∥ωL

∥∥
2

)

w.h.p..

Now we need to bound the random variable σE . Remember that Ei = ∇θψi − ∇̂θψi. Since ∇̂θψ
are assumed to be bounded by M , by applying Hoeffding’s inequality, with probability 1− δ1:

‖Ei‖2 =
∥∥∥∇̂θψi −∇θψi

∥∥∥
2
≤M

√
dq log( 2

δ1
)

2n
.
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So E is a subgaussian random variable where each component is bounded by M
√

dq log( 2
δ1

)

2n .

Then:

P


∥∥ωL − ω̂

∥∥
2
≥ 1

λ
M

√
dq log( 2

δ1
)

2n

∥∥ωL
∥∥

2
‖Ψ‖2

√
log dq

m
+M

dq log( 2
δ1

)

2n
C

√
log dq

m
+
√
dq




≤ P


∥∥ωL − ω̂

∥∥
2
≥ 1

λ
M

√
dq log( 2

δ1
)

2n

∥∥ωL
∥∥

2

(
‖Ψ‖2

√
log dq

m
+ C

√
log dq

m
+
√
dq

)


≤ δ1 + c1 exp(−c2 log dq)

So the result follows where with w.h.p. we mean with probability 1− (δ1 + c1 exp(−c2 log dq)) as
in [18].

A.4 Proofs of Section 5

In this section we provide the proofs and derivations of the theorems in Section 5.
Lemma A.6. Given a dataset D = {(s1, a1), · · · , (sn, am)} of state-action couples sampled from
a Gaussian linear policy πθ(·|s) ∼ N (θTϕ(s), σ2) such that S ∈ Rn×p is the matrix of states
features and let the minimum singular value of (STS) σmin ≥ η, then the error between the maximum
likelihood estimator θMLE and the mean θ is, with probability 1− δ:

∥∥θMLE − θ
∥∥

2
≤ σ

√
r + log( 1

δ )

nη
,

where r is the rank(STS).

Proof. We start by stating that the maximum likelihood for linear Gaussian policies can be recast as
an ordinary least-squares problem. We write the Likelihood L(θ)

logL(θ) = log

(
n∏

i=1

π(ai|si)

)

=

n∑

i=1

log

(
1√

2πσ2
exp

(
− (ai − θTϕ(si))

2

2σ2

))

= n log

(
1√

2πσ2

)
−

n∑

i=1

(ai − θTϕ(si))
2

2σ2

The resulting maximum likelihood problem is given by:

max
θ

logL(θ) = min
θ

n∑

i=1

(ai − θTϕ(si))
2

So we have the following linear least-squares problem:

min
θ
‖Sθ −A+ ε‖2 ,

where ε is an error with mean 0 and variance σ2, S ∈ Rn×d is the matrix of states features and
A ∈ Rn is the vector of actions. Using Theorem A.1, we can say that with probability 1− δ:

∥∥θMLE − θ
∥∥

2
≤ σ

√
r + log( 1

δ )

nη
,

where r is the rank(STS).

Lemma A.7. Given two Gaussian policies πθ1(·|s) ∼ N (θT1 ϕ(s), σ2) and πθ2(·|s) ∼
N (θT2 ϕ(s), σ2) with same variance and the state features are bounded by MS:

‖∇θ log πθ1(a|s)−∇θ log πθ2(a|s)‖2 ≤
M2
S

σ2
‖θ1 − θ2‖2 .
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Proof. The gradient of the log policy of a general policy πθ(a|s) is:

∇θ log π(a|s) =
ϕ(s)T (a− θTϕ(s))

σ2
.

Now we apply this result to the difference in norm between two Gaussian log policies:

∥∥∇θ log πθ1(a|s)−∇θ log π(a|s)
∥∥

2
=

∥∥∥∥
ϕ(s)T (a− θT1 ϕ(s))

σ2
− ϕ(s)T (a− θT2 ϕ(s))

σ2

∥∥∥∥
2

(18)

=

∥∥∥∥
ϕ(s)

σ2
(θT1 ϕ(s)− θT2 ϕ(s))

∥∥∥∥
2

(19)

≤
∥∥∥∥
ϕ(s)

σ2

∥∥∥∥
2

‖θ1 − θ2‖2 ‖ϕ(s)‖2 (20)

≤ M2
S

σ2
‖θ1 − θ2‖2 . (21)

In line (19) we use the Cauchy-Schwartz inequality, and in line (20) the assumption that the state
features are bounded by MS .

Lemma A.8. Given a dataset D = {τ1, · · · , τn} of trajectories such that every trajectory τi =
{(s1, a1), · · · , (sT , aT )} is sampled from a Gaussian linear policy πθ(·|s) ∼ N (θTϕ(s), σ), the
maximum likelihood estimator θMLE estimated on D, the condition of Lemma A.6 holds, the ∇̂θψ
uniformly bounded by M , the state features bounded by MS , the reward features bounded by MR.
Let S ∈ Rn×p be the matrix of state features and let σmin(STS) ≥ η. Then with probability 1− δ:

∥∥∥∇̂θψ(θMLE)−∇θψ(θ)
∥∥∥

2
≤M

√
qd

√
log( 2

δ )

2n
+
TM2

SMR

(1− γ)σ

√
r + log( 1

δ )

nη
,

where γ is the discount factor and r is the rank of STS.

Proof. We start by decomposing the norm of the difference in two components, using triangular
inequality:

∥∥∥∇̂θψ(θ̂)−∇θψ(θ)
∥∥∥

2
≤
∥∥∥∇̂θψ(θ)−∇θψ(θ)

∥∥∥
2

+
∥∥∥∇̂θψ(θ)− ∇̂θψ(θ̂)

∥∥∥
2
.

The first component is bounded by Lemma A.4. We will bound now the second component, using
Reinforce estimator for the gradient:

∥∥∥∇̂θψ(θ)− ∇̂θψ(θ̂)
∥∥∥

2
= (22)

=

∥∥∥∥∥
1

n

n∑

i=1

T∑

t=1

∇θ log πθ(ai,t|si,t)Ri,tγt −
1

n

n∑

i=1

T∑

t=1

∇θ log πθ̂(ai,t|si,t)Ri,tγt
∥∥∥∥∥

2

(23)

=
1

n

∥∥∥∥∥
n∑

i=1

T∑

t=1

(∇θ log πθ(ai,t|si,t)−∇θ log πθ̂(ai,t|si,t))Ri,tγt
∥∥∥∥∥

2

(24)

≤ 1

n

n∑

i=1

T∑

t=1

∥∥(∇θ log πθ(ai,t|si,t)−∇θ log πθ̂(ai,t|si,t))
∥∥

2

∥∥Rtγt
∥∥

2
(25)

≤ 1

n

MR

(1− γ)

n∑

i=1

T∑

t=1

M2
S

σ2

∥∥∥θ − θ̂
∥∥∥

2
(26)

≤ TM2
SMR

σ2(1− γ)
σ

√
r + log( 1

δ )

nη
. (27)

In line (26) we apply the Cauchy-Schwartz inequality. In line (27) we apply lemma A.4 and in line
(28) we apply lemma A.4. Merging the two results the proof follows.
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Theorem 5.1. Let πθ1 , πθ2 be two Gaussian policies πθi(·|s) ∼ N (θTi ϕ(s), σ2) with i ∈ {1, 2},
such that πθ2 is the improvement of πθ1 . Let i ∈ [1, 2]. Given datasets Di = {τ i1, . . . , τ in} of
trajectories generated by πi, such that Si ∈ Rn×t×d is the matrix of corresponding states features,
let the minimum singular value of σmin(STi Si) ≥ η > 0, ∇̂θ1ψ uniformly bounded by M , the state
features bounded by MS , and the reward features bounded by MR. Then with probability 1− δ:

∥∥ωL − ω̂
∥∥

2
≤ O


 (M +M2

SMR)

σmin(∇θ1ψ)

√
log( 2

δ )

nη




where ωL are the real reward parameters and ω̂ are the parameters recovered using Lemma 4.1.

Proof. First we have to bound the error on ∆ created by the behavioral cloning. Given ∆ = θ2 − θ1

and ∆̂ = θ̂2 − θ̂1:

∥∥∥∆− ∆̂
∥∥∥ =

∥∥∥θ2 − θ1 − θ̂2 + θ̂1

∥∥∥ ≤
∥∥∥θ1 − θ̂1

∥∥∥+
∥∥∥θ2 − θ̂2

∥∥∥ ≤ 2σ

√
r + log( 1

δ )

nη
. (28)

So we can bound the difference in norm between the real weights ωL and the estimated weights ω̂.

We indicate with κ the condition number of ∇θψ, with χ =

∥∥∥∇̂θψ−∇θψ
∥∥∥
2

‖∇θψ‖2
and y = ∇θψ+Hω. We

apply the pertubation Lemma A.1.
∥∥ωL − ω̂

∥∥
2
≤ κ

(1− κχ) ‖∇θψ‖2
(χ
∥∥ωL

∥∥
2
‖∇θψ‖2 +

∥∥∥∆− ∆̂
∥∥∥

2
) + χ ‖y‖2 ‖∇θψ‖2 (29)

≤
κ
∥∥∥∇̂θψ −∇θψ

∥∥∥
2

c ‖∇θψ‖2

∥∥ωL
∥∥

2
+
κ
∥∥∥∆− ∆̂

∥∥∥
2

c ‖∇θψ‖2
+ ‖∇θψ‖2 ‖y‖2

=
∥∥∥∇θψ − ∇̂θψ

∥∥∥
2

(
κ
∥∥ωL

∥∥
2

c ‖∇θψ‖2
+ ‖y‖2

)
+
∥∥∥∆− ∆̂

∥∥∥
2

κ

c ‖∇θψ‖2

=
∥∥∥∇θψ − ∇̂θψ

∥∥∥
2

( ∥∥ωL
∥∥

2

cσmin(∇θψ)
+ ‖y‖2

)
+
∥∥∥∆− ∆̂

∥∥∥
2

1

cσmin(∇θψ)

+ 2σ

√
r + log( 1

δ )

nη

1

cσmin(∇θψ)
(30)

≤ O


 (M +M2

SMR)

σmin(∇θψ)

√
log( 2

δ )

nη


 , (31)

where in line (29) we apply Lemma A.1 and in line (30) we apply Equation (28) and Lemma A.8.
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B Experiments

In this appendix, we report some experimental details together with some additional experiments.

B.1 Gridworld

In the Gridworld experiment, we select different learning steps for different learners. The number of
learning steps depends on the number of policy updates that the learner takes to become an expert. In
the following plots, we report the expected discounted return for each learner: Q-Learning (Figure 6),
G(PO)MDP (Figure 5), SPI (Figure 7), SVI (Figure 8). In these plots, the expected discounted
return is estimating using a batch of 50 trajectories for each learner. The discount factor used in all
experiments is 0.96.
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Figure 5: Learning performance of
G(PO)MDP. 20 runs, 98%c.i.
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Figure 6: Learning performance of Q-
Learning. 20 runs, 98%c.i.
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Figure 7: Learning performance of SPI.
20 runs, 98%c.i.
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Figure 8: Learning performance of SVI.
20 runs, 98%c.i.

B.2 MuJoCo additional experiments

For the MuJoCo experiments, we use the same hyperparameters as in [17], apart from that we use 16
parallel agents for PPO, due to resource constraints. The number of forward steps are settled to 2000.
As in [17], we select a subset of the learner’s trajectories and we do not use the first 10 trajectories
because the first phase of learning is too noisy. We evaluate the algorithms on the first 1 million
environment steps.

19



Recovered Real
Weights Weights

Time 0.0401 0.0017
Jerk 0.0174 0.0003
Slow 0.0001 0.0000
Crash 0.9424 0.9980

Table 1: Reward weights for the autonomous simulate driving scenario.
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Figure 9: Reward weights for the autonomous simulate driving scenario.

B.3 Autonomous driving scenario

In this section, we report an additional, preliminary experiment, that we perform on a simulator
driving scenario. We employ SUMO simulator, an open-source, continuous road traffic simulation
package designed to handle large road networks. SUMO focuses on the high-level control of the
car, integrating an internal system that controls the vehicle dynamics. During the simulation, SUMO
provides information on the other vehicles around the ego vehicle.

We consider a crossroad scenario which consists of an intersection with an arbitrary number of roads.
The vehicle coming from the source road has to reach a target road that has a higher priority. The
goal of the agent is to drive the ego car and enter the target road, avoiding dangerous manoeuvres.

The reward features consists of four components: Time, a constant feature at each decision step; Jerk,
the absolute value of the instantaneous jerk, i.e., the finite- difference derivative of the acceleration;
Harsh Slow Down, a binary feature, which activates whenever the velocity is lower than a threshold;
Crash, a binary feature which activates when the vehicle violates the safety constraints or performs a
crash.

The agent’s policy is a rule-based policy, i.e., a set of parametrized rules, which is learned using
Policy Gradients with Parameter-based Exploration (PGPE). It is important to notice that the agent’s
policy is not differentiable.

We perform 10 PGPE updates of the agents and then we use the learning trajectories with LOGEL. In
the behavioural cloning step, we use a linear layer to approximate the policy of the learner. Table 1
shows the normalized weights recovered by LOGEL and the normalized real weights. As shown in
Table 1 and in Figure 9, the reward weights recovered are quite similar to the real ones.

We thank Amarildo Likmeta to provide us the data to perform this experiment.
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