
A Proofs

Proof of Proposition 1

Proof. Let us start from the initial optimization problem:

min
W

K∑
k=1

p̂k log p̂k −
α

|Q|
∑
i∈Q

K∑
k=1

pik log pik −
λ

|S|
∑
i∈S

K∑
k=1

yik log pik (7)

We can reformulate problem (7) using the ADM approach, i.e., by introducing auxiliary variables
q = [qik] ∈ R|Q|×K and enforcing equality constraint q = p, with p = [pik] ∈ R|Q|×K , in addition
to pointwise simplex constraints:

min
W,q

K∑
k=1

q̂k log q̂k −
α

|Q|
∑
i∈Q

K∑
k=1

qik log pik −
λ

|S|
∑
i∈S

K∑
k=1

yik log pik

s.t. qik = pik, i ∈ Q, k ∈ {1, . . . ,K}
K∑
k=1

qik = 1, i ∈ Q

qik ≥ 0, i ∈ Q, k ∈ {1, . . . ,K} (8)

We can slove constrained problem (8) with a penalty-based approach, which encourages auxiliary
pointwise predictions qi = [qi1, . . . , qiK] to be close to our model’s posteriors pi = [pi1, . . . , piK].
To add a penalty encouraging equality constraints qi = pi, we use the Kullback–Leibler (KL)
divergence, which is given by:

DKL(qi||pi) =

K∑
k=1

qik log
qik
pik

Thus, our constrained optimization problem becomes:

min
W,q

K∑
k=1

q̂k log q̂k −
α

|Q|
∑
i∈Q

K∑
k=1

qik log pik −
λ

|S|
∑
i∈S

K∑
k=1

yik log pik +
1

|Q|
∑
i∈Q
DKL(qi||pi)

s.t.
K∑
k=1

qik = 1, i ∈ Q

qik ≥ 0, i ∈ Q, k ∈ {1, . . . ,K} (9)

Proof of Proposition 2

Proof. Recall that we consider a softmax classifier over distances to weights W = {w1, . . . ,wK}.
To simplify the notations, we will omit the dependence upon φ in what follows, and write
zi =

fφ(xi)
‖fφ(xi)‖ , such that:

pik =
e−

τ
2 ‖zi−wk‖

2∑K
j=1 e

− τ2 ‖zi−wj‖
2 (10)

14

Without loss of generality, we use τ = 1 in what follows. Plugging the expression of pik into Eq. (4),
and grouping terms together, we get:

(4) =

K∑
k=1

q̂k log q̂k −
1 + α

|Q|
∑
i∈Q

K∑
k=1

qik log pik −
λ

|S|
∑
i∈S

K∑
k=1

yik log pik +
1

|Q|
∑
i∈Q

K∑
k=1

qik log qik

=

K∑
k=1

q̂k log q̂k

+
1 + α

2|Q|
∑
i∈Q

K∑
k=1

qik ‖zi −wk‖2 +
1 + α

|Q|
∑
i∈Q

log

 K∑
j=1

e−
1
2‖zi−wj‖

2

+

λ

2|S|
∑
i∈S

K∑
k=1

yik ‖zi −wk‖2 +
λ

|S|
∑
i∈S

log

 K∑
j=1

e−
1
2‖zi−wj‖

2

+

1

|Q|
∑
i∈Q

K∑
k=1

qik log qik

(11)

Now, we can solve our problem approximately by alternating two sub-steps: one sub-step optimizes
w.r.t classifier weights W while auxiliary variables q are fixed; another sub-step fixes W and update
q.

• W-update: Omitting the terms that do not involve W, Eq. (11) reads:

λ

2|S|
∑
i∈S

yik ‖zi −wk‖2 +
1 + α

2|Q|
∑
i∈Q

qik ‖zi −wk‖2︸ ︷︷ ︸
C:convex

+
λ

|S|
∑
i∈S

log

 K∑
j=1

e−
1
2‖zi−wj‖

2

+
1 + α

|Q|
∑
i∈Q

log

 K∑
j=1

e−
1
2‖zi−wj‖

2

︸ ︷︷ ︸

C̄:non-convex

(12)

One can notice that objective (11) is not convex w.r.twk. Actually, it can be split into convex
and non-convex parts as in Eq. (12). Thus, we cannot simply set the gradients to 0 to get the
optimal wk. The non-convex part can be linearized at current solution w(t)

k as follows:

C̄(wk) ≈ C̄(w(t)
k) +

∂C̄
∂wk

(w
(t)
k)T (wk −w(t)

k)

c
=

λ

|S|
∑
i∈S

p
(t)
ik (zi −w(t)

k)Twk +
1 + α

|Q|
∑
i∈Q

p
(t)
ik (zi −w(t)

k)Twk (13)

Where c
= stands for "equal, up to an additive constant". By adding this linear term to the

convex part C, we can obtain a strictly convex objective in wk, whose gradients w.r.t wk
read:

∂(12)

∂wk
≈ λ

|S| [
∑
i∈S

yik(zi −wk) + p
(t)
ik (zi −w(t)

k)] +

1 + α

|Q| [
∑
i∈Q

qik(zi −wk) + p
(t)
ik (zi −w(t)

k)] (14)

Note that the approximation we do here is similar in spirit to concave-convex procedures,
which are well known in optimization. Concave-convex techniques proceed as follows: for
a function in the form of a sum of a concave term and a convex term, the concave part is
replaced by its first-order approximation, while the convex part is kept as is. The difference
here is that the part that we linearize in Eq. (12) is not concave. Setting the gradients above
to 0 yields the optimal solution for the approximate objective.

15

Another solution to obtain a strictly convex objective would have been to discard the non-
convex part C̄. Very interestingly, in this case, one would recoverwk updates that would very
much resemble the prototype updates of the K-means clustering algorithm (slightly modified
to take into account the fact that for support points in S have labels). Note that the link
between regularized K-means and mutual information maximization has been extensively
explored in [17]. Of course, in this case, the approximation is not as good as the first-order
approximation above, and we found that omitting the non-convex part might decrease the
performances significantly.

• q-update: With weights W fixed, the objective is convex w.r.t auxiliary variables qi (sum
of linear and convex functions) and the simplex constraints are affine. Therefore, one
can minimize this constrained convex problem for each qi by solving the Karush-Kuhn-
Tucker (KKT) conditions8. The KKT conditions yield closed-form solutions for both
primal variable qi and the dual variable (Lagrange multiplier) corresponding to simplex
constraint

∑K
j=1 qij = 1. Interestingly, the negative entropy of auxiliary variables, i.e.,∑K

k=1 qik log qik, which appears in the penalty term, handles implicitly non-negativity
constraints qi ≥ 0. In fact, this negative entropy acts as a barrier function, restricting the
domain of each qi to non-negative values, which avoids extra dual variables and Lagrangian-
dual inner iterations for constraints qi ≥ 0. As we will see, the closed-form solutions of
the KKT conditions satisfy these non-negativity constraints, without explicitly imposing
them. In addition to non-negativity, for each point i, we need to handle probability simplex
constraints

∑K
k=1 qik = 1. Let γi ∈ R denote the Lagrangian multiplier corresponding to

this constraint. The KKT conditions correspond to setting the following gradient of the
Lagrangian function to zero, while enforcing the simplex constraints:

∂(4)

∂qik
= −1 + α

|Q| log pik +
1

|Q| (log q̂k + 1) +
1

|Q| (log qik + 1) + γi (15)

=
1

|Q|

(
log(

qikq̂k

p1+α
ik

) + 2

)
+ γi (16)

This yields:

qik =
p1+α
ik

q̂k
e−(γi|Q|+2) (17)

Applying simplex constraint
∑K
j=1 qij = 1 to (17), Lagrange multiplier γi verifies:

e−(γi|Q|+2) =
1

K∑
j=1

p1+α
ij

q̂j

(18)

Hence, plugging (18) in (17) yields:

qik =

p1+α
ik

q̂k
K∑
j=1

p1+α
ij

q̂j

(19)

Using the definition of q̂k, we can decouple this equation:

q̂k =
1

|Q|
∑
i∈Q

qik ∝
∑
i∈Q

p1+α
ik

q̂k
(20)

which implies:

q̂k ∝
(∑
i∈Q

p1+α
ik

)1/2

(21)

8Note that strong duality holds since the objective is convex and the simplex constraints are affine. This
means that the solutions of the (KKT) conditions minimize the objective.

16

Plugging this back in Eq. (19), we get:

qik ∝
p1+α
ik(∑

i∈Q
p1+α
ik

)1/2
(22)

Notice that qik ≥ 0, hence the solution fulfils the positivity constraint of the original
problem.

B TIM algorithms

In this section, we provide the pseudo-code for TIM’s inference stage (both TIM-GD and TIM-ADM).

Algorithm 1: TIM-ADM
Input : Pre-trained encoder fφ, Task {S,Q}, # iterations iter, Temperature τ , Weights {λ, α}
zi ← fφ(xi)

‖fφ(xi)‖2
, i ∈ S ∪ Q

wk ←
∑
i∈S yikzi∑
i∈S yik

, k ∈ {1, . . . ,K}
for i← 0 to iter do

pik ← exp
(
− τ2 ‖wk − zi‖

2
)

, i ∈ S ∪ Q
pik ← pik∑K

l=1 pil

qik ← p1+αik

(
∑
i∈Q p1+αik)

1/2 , i ∈ Q
qik ← qik∑K

l=1 qil

wk ←

λ

1 + α

∑
i∈S

(yik zi + pik(wk − zi)) +
|S|
|Q|

∑
i∈Q

(qikzi + pik(wk − zi))

λ

1 + α

∑
i∈S

yik +
|S|
|Q|

∑
i∈Q

qik

end
Result: Query predictions ŷi = arg maxk pik , i ∈ Q

Algorithm 2: TIM-GD
Input : Pre-trained encoder fφ, Task {S,Q}, # iterations iter, Temperature τ , Weights {λ, α},

Learning rate γ

zi ← fφ(xi)
‖fφ(xi)‖2

, i ∈ S ∪ Q
wk ←

∑
i∈S yikzi∑
i∈S yik

, k ∈ {1, . . . ,K}
for i← 0 to iter do

pik ← exp
(
− τ2 ‖wk − zi‖

2
)

pik ← pik∑K
l=1 pil

wk ← wk − γ∇wkLTIM
end
Result: Query predictions ŷi = arg maxk pik , i ∈ Q

17

C Summary figure

We hereby provide a summarizing figure of the training and inference stages used in TIM.

Figure 2: Outline of TIM framework (best viewed in color). First, the feature extractor is trained with
the standard cross-entropy on the base classes. Then, it is kept fixed at inference and weights W are
optimized for by minimizing the cross-entropy on the support set S, while maximizing the mutual
information between features and predictions on the query set Q.

D Details of ADM ablation

In Table 6, we provide the W and q updates for each configuration of the TIM-ADM ablation study,
whose results were presented in Table 4. The proof for each of these updates is very similar to the
proof of Proposition 2 detailed in Appendix A. Therefore, we do not detail it here.

Table 6: The W and q-updates for each case of the ablation study. "-" refers to the updates in
Proposition 2. "NA" refers to non-applicable.

Loss wk update qik update

CE

∑
i∈S

yikzi∑
i∈S

yik
N/A

CE + Ĥ(YQ|XQ) - ∝ p1+α
ik

CE− Ĥ(YQ) - ∝ pik ∑
i∈Q

pik

1/2

CE− Ĥ(YQ) + Ĥ(YQ|XQ) - -

18

	Proofs
	TIM algorithms
	Summary figure
	Details of ADM ablation

