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Abstract

Federated Learning (FL) is a machine learning setting where many devices collab-
oratively train a machine learning model while keeping the training data decen-
tralized. In most of the current training schemes the central model is refined by
averaging the parameters of the server model and the updated parameters from the
client side. However, directly averaging model parameters is only possible if all
models have the same structure and size, which could be a restrictive constraint in
many scenarios.
In this work we investigate more powerful and more flexible aggregation schemes
for FL. Specifically, we propose ensemble distillation for model fusion, i.e. training
the central classifier through unlabeled data on the outputs of the models from
the clients. This knowledge distillation technique mitigates privacy risk and cost
to the same extent as the baseline FL algorithms, but allows flexible aggregation
over heterogeneous client models that can differ e.g. in size, numerical precision
or structure. We show in extensive empirical experiments on various CV/NLP
datasets (CIFAR-10/100, ImageNet, AG News, SST2) and settings (heterogeneous
models/data) that the server model can be trained much faster, requiring fewer
communication rounds than any existing FL technique so far.

1 Introduction
Federated Learning (FL) has emerged as an important machine learning paradigm in which a
federation of clients participate in collaborative training of a centralized model [62, 51, 65, 8, 5,
42, 34]. The clients send their model parameters to the server but never their private training
datasets, thereby ensuring a basic level of privacy. Among the key challenges in federated training
are communication overheads and delays (one would like to train the central model with as few
communication rounds as possible), and client heterogeneity: the training data (non-i.i.d.-ness), as
well as hardware and computing resources, can change drastically among clients, for instance when
training on commodity mobile devices.
Classic training algorithms in FL, such as federated averaging (FEDAVG) [51] and its recent adap-
tations [53, 44, 25, 35, 26, 58], are all based on directly averaging of the participating client’s
parameters and can hence only be applied if all client’s models have the same size and structure. In
contrast, ensemble learning methods [77, 15, 2, 14, 56, 47, 75] allow to combine multiple hetero-
geneous weak classifiers by averaging the predictions of the individual models instead. However,
applying ensemble learning techniques directly in FL is infeasible in practice due to the large number
of participating clients, as it requires keeping weights of all received models on the server and
performing naive ensembling (logits averaging) for inference.
To enable federated learning in more realistic settings, we propose to use ensemble distillation [7, 22]
for robust model fusion (FedDF). Our scheme leverages unlabeled data or artificially generated
examples (e.g. by a GAN’s generator [17]) to aggregate knowledge from all received (heterogeneous)
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Figure 1: Limitations of FEDAVG. We consider a toy example of a 3-class classification task with a 3-layer
MLP, and display the decision boundaries (probabilities over RGB channels) on the input space. The left two
figures show the individually trained local models. The right three figures evaluate aggregated models and the
global data distribution; the averaged model results in much blurred decision boundaries. The used datasets are
displayed in Figure 8 (Appendix C.1).

client models. We demonstrate with thorough empirical results that our ensemble distillation approach
not only addresses the existing quality loss issue [24] of Batch Normalization (BN) [31] for networks
in a homogeneous FL system, but can also break the knowledge barriers among heterogeneous client
models. Our main contributions are:
• We propose a distillation framework for robust federated model fusion, which allows for heteroge-

neous client models and data, and is robust to the choices of neural architectures.
• We show in extensive numerical experiments on various CV/NLP datasets (CIFAR-10/100, Ima-

geNet, AG News, SST2) and settings (heterogeneous models and/or data) that the server model
can be trained much faster, requiring fewer communication rounds than any existing FL technique.

We further provide insights on when FedDF can outperform FEDAVG (see also Fig. 1 that highlights
an intrinsic limitation of parameter averaging based approaches) and what factors influence FedDF.

2 Related Work
Federated learning. The classic algorithm in FL, FEDAVG [51], or local SGD [46] when all
devices are participating, performs weighted parameter average over the client models after several
local SGD updates with weights proportional to the size of each client’s local data. Weighting schemes
based on client loss are investigated in [53, 44]. To address the difficulty of directly averaging model
parameters, [64, 74] propose to use optimal transport and other alignment schemes to first align or
match individual neurons of the neural nets layer-wise before averaging the parameters. However,
these layer-based alignment schemes necessitate client models with the same number of layers and
structure, which is restrictive in heterogeneous systems in practice.
Another line of work aims to improve local client training, i.e., client-drift problem caused by the
heterogeneity of local data [43, 35]. For example, FEDPROX [43] incorporates a proximal term for
the local training. Other techniques like acceleration, recently appear in [25, 26, 58].

Knowledge distillation. Knowledge distillation for neural networks is first introduced in [7, 22].
By encouraging the student model to approximate the output logits of the teacher model, the student is
able to imitate the teacher’s behavior with marginal quality loss [59, 79, 36, 71, 37, 28, 1, 70]. Some
work study the ensemble distillation, i.e., distilling the knowledge of an ensemble of teacher models
to a student model. To this end, existing approaches either average the logits from the ensemble of
teacher models [77, 15, 2, 14], or extract knowledge from the feature level [56, 47, 75].
Most of these schemes rely on using the original training data for the distillation process. In
cases where real data is unavailable, some recent work [54, 52] demonstrate that distillation can be
accomplished by crafting pseudo data either from the weights of the teacher model or through a
generator adversarially trained with the student. FedDF can be combined with all of these approaches.
In this work, we consider unlabeled datasets for ensemble distillation, which could be either collected
from other domains or directly generated from a pre-trained generator.

Comparison with close FL work. Guha et al. [18] propose “one-shot fusion” through unlabeled
data for SVM loss objective, whereas we consider multiple-round scenarios on diverse neural
architectures and tasks. FD [33] utilizes distillation to reduce FL communication costs. To this end,
FD synchronizes logits per label which are accumulated during the local training. The averaged
logits per label (over local steps and clients) will then be used as a distillation regularizer for the
next round’s local training. Compared to FEDAVG, FD experiences roughly 15% quality drop on
MNIST. In contrast, FedDF shows superior learning performance over FEDAVG and can significantly
reduce the number of communication rounds to reach target accuracy on diverse challenging tasks.
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FedMD [41] and the recently proposed Cronus [9] consider learning through averaged logits per
sample on a public dataset. After the initial pre-training on the labeled public dataset, FedMD learns
on the public and private dataset iteratively for personalization, whereas in Cronus, the public dataset
(with soft labels) is used jointly with local private data for the local training. As FedMD trains client
models simultaneously on both labeled public and private datasets, the model classifiers have to
include all classes from both datasets. Cronus, in its collaborative training phase, mixes public and
private data for local training. Thus for these methods, the public dataset construction requires careful
deliberation and even prior knowledge on clients’ private data. Moreover, how these modifications
impact local training quality remains unclear. FedDF faces no such issues: we show that FedDF
is robust to distillation dataset selection and the distillation is performed on the server side, leaving
local training unaffected. We include a detailed discussion with FedMD, Cronus in Appendix A.
When preparing this version, we also notice other contemporary work [68, 10, 81, 19] and we defer
discussions to Appendix A.

3 Ensemble Distillation for Robust Model Fusion

Algorithm 1 Illustration of FedDF on K homogeneous clients (indexed by k) for T rounds, nk denotes the
number of data points per client and C the fraction of clients participating in each round. The server model is
initialized as x0. While FEDAVG just uses the averaged models xt,0, we perform N iterations of server-side
model fusion on top (line 7 – line 10).

1: procedure SERVER
2: for each communication round t = 1, . . . , T do
3: St ← random subset (C fraction) of the K clients
4: for each client k ∈ St in parallel do
5: x̂kt ← Client-LocalUpdate(k,xt−1) . detailed in Algorithm 2.
6: initialize for model fusion xt,0 ←

∑
k∈St

nk∑
k∈St

nk
x̂kt

7: for j in {1, . . . , N} do
8: sample a mini-batch of samples d, from e.g. (1) an unlabeled dataset, (2) a generator
9: use ensemble of {x̂kt }k∈St to update server student xt,j−1 through AVGLOGITS

10: xt ← xt,N
11: return xT

In this section, we first introduce the core idea of the proposed Federated Distillation Fusion (FedDF).
We then comment on its favorable characteristics and discuss possible extensions.

Ensemble distillation. We first discuss the key features of FedDF for the special case of homoge-
neous models, i.e. when all clients share the same network architecture (Algorithm 1). For model
fusion, the server distills the ensemble of |St| client teacher models to one single server student
model. For the distillation, the teacher models are evaluated on mini-batches of unlabeled data on the
server (forward pass) and their logit outputs (denoted by f(x̂kt ,d) for mini-batch d) are used to train
the student model on the server:

xt,j := xt,j−1 − η
∂KL

(
σ
(

1
|St|

∑
k∈St f(x̂

k
t ,d)

)
, σ (f(xt,j−1,d))

)
∂xt,j−1

. (AVGLOGITS)

Here KL stands for Kullback–Leibler divergence, σ is the softmax function, and η is the stepsize.
FedDF can easily be extended to heterogeneous FL systems (Algorithm 3 and Figure 7 in Appendix B).
We assume the system contains p distinct model prototype groups that potentially differ in neural
architecture, structure and numerical precision. By ensemble distillation, each model architecture
group acquires knowledge from logits averaged over all received models, thus mutual beneficial
information can be shared across architectures; in the next round, each activated client receives the
corresponding fused prototype model. Notably, as the fusion takes place on the server side, there is
no additional burden and interference on clients.

Utilizing unlabeled/generated data for distillation. Unlike most existing ensemble distillation
methods that rely on labeled data from the training domain, we demonstrate the feasibility of achieving
model fusion by using unlabeled datasets from other domains for the sake of privacy-preserving
FL. Our proposed method also allows the use of synthetic data from a pre-trained generator (e.g.

3



GAN2) as distillation data to alleviate potential limitations (e.g. acquisition, storage) of real unlabeled
datasets.

Discussions on privacy-preserving extension. Our proposed model fusion framework in its sim-
plest form—like most existing FL methods—requires to exchange models between the server and
each client, resulting in potential privacy leakage due to e.g. memorization present in the models.
Several existing protection mechanisms can be added to our framework to protect clients from adver-
saries. These include adding differential privacy [16] for client models, or performing hierarchical
and decentralized model fusion through synchronizing locally inferred logits e.g. on random public
data3, as in the recent work [9]. We leave further explorations of this aspect for future work.

4 Experiments
4.1 Setup
Datasets and models. We evaluate the learning of different SOTA FL methods on both CV and
NLP tasks, on architectures of ResNet [20], VGG [63], ShuffleNetV2 [48] and DistilBERT [60].
We consider federated learning CIFAR-10/100 [38] and ImageNet [39] (down-sampled to image
resolution 32 for computational feasibility [11]) from scratch for CV tasks; while for NLP tasks,
we perform federated fine-tuning on a 4-class news classification dataset (AG News [80]) and a
2-class classification task (Stanford Sentiment Treebank, SST2 [66]). The validation dataset is
created for CIFAR-10/100, ImageNet, and SST2, by holding out 10%, 1% and 1% of the original
training samples respectively; the remaining training samples are used as the training dataset (before
partitioning client data) and the whole procedure is controlled by random seeds. We use validation/test
datasets on the server and report the test accuracy over three different random seeds.

Heterogeneous distribution of client data. We use the Dirichlet distribution as in [78, 25] to
create disjoint non-i.i.d. client training data. The value of α controls the degree of non-i.i.d.-ness:
α=100 mimics identical local data distributions, and the smaller α is, the more likely the clients hold
examples from only one class (randomly chosen). Figure 2 visualizes how samples are distributed
among 20 clients for CIFAR-10 on different α values; more visualizations are shown in Appendix C.2.

Baselines. FedDF is designed for effective model fusion on the server, considering the accuracy
of the global model on the test dataset. Thus we omit the comparisons to methods designed for
personalization (e.g. FedMD [41]), security/robustness (e.g. Cronus [9]), and communication effi-
ciency (e.g. [33], known for poorer performance than FEDAVG). We compare FedDF with SOTA FL
methods, including 1) FEDAVG [51], 2) FEDPROX [43] (for better local training under heterogeneous
systems), 3) accelerated FEDAVG a.k.a. FEDAVGM4 [25, 26], and 4) FEDMA5 [74] (for better model
fusion). We elaborate on the reasons for omitted numerical comparisons in Appendix A.

The local training procedure. The FL algorithm randomly samples a fraction (C) of clients
per communication round for local training. For the sake of simplicity, the local training in our
experiments uses a constant learning rate (no decay), no Nesterov momentum acceleration, and no
weight decay. The hyperparameter tuning procedure is deferred to Appendix C.2. Unless mentioned
otherwise the learning rate is set to 0.1 for ResNet-like nets, 0.05 for VGG, and 1e−5 for DistilBERT.

The model fusion procedure. We evaluate the performance of FedDF by utilizing either randomly
sampled data from existing (unlabeled) datasets6 or BigGAN’s generator [6]. Unless mentioned
otherwise we use CIFAR-100 and downsampled ImageNet (image size 32) as the distillation datasets
for FedDF on CIFAR-10 and CIFAR-100 respectively. Adam with learning rate 1e−3 (w/ cosine
annealing) is used to distill knowledge from the ensemble of received local models. We employ
early-stopping to stop distillation after the validation performance plateaus for 1e3 steps (total 1e4
update steps). The hyperparameter used for model fusion is kept constant over all tasks.

2 GAN training is not involved in all stages of FL and cannot steal clients’ data. Data generation is done by
the (frozen) generator before the FL training by performing inference on random noise. Adversarially involving
GAN’s training during the FL training may cause the privacy issue, but it is beyond the scope of this paper.

3 For instance, these data can be generated locally from identical generators with a controlled random state.
4 The performance of FEDAVGM is coupled with local learning rate, local training epochs, and the number

of communication rounds. The preprints [25, 26] consider small learning rate for at least 10k communication
rounds; while we use much fewer communication rounds, which sometimes result in different observations.

5 FEDMA does not support BN or residual connections, thus the comparison is only performed on VGG-9.
6 Note the actual computation expense for distillation is determined by the product of the number of

distillation steps and distillation mini-batch size (128 in all experiments), rather than the distillation dataset size.
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(c) α=0.01.
Figure 2: Top: Illustration of # of samples per class allocated to each client (indicated by dot sizes), for
different Dirichlet distribution α values. Bottom: Test performance of FedDF and FEDAVG on CIFAR-10
with ResNet-8, for different local training settings: non-i.i.d. degrees α, data fractions, and # of local epochs
per communication round. We perform 100 communication rounds, and active clients are sampled with ratio
C=0.4 from a total of 20 clients. Detailed learning curves in these scenarios can be found in Appendix C.4.

4.2 Evaluation on the Common Federated Learning Settings
Performance overview for different FL scenarios. We can observe from Figure 2 that FedDF
consistently outperforms FEDAVG for all client fractions and non-i.i.d. degrees when the local training
is reasonably sufficient (e.g. over 40 epochs).
FedDF benefits from larger numbers of local training epochs. This is because the performance
of the model ensemble is highly dependent on the diversity among its individual models [40, 67].
Thus longer local training leads to greater diversity and quality of the ensemble and hence a better
distillation result for the fused model. This characteristic is desirable in practice as it helps reduce
the communication overhead in FL systems. In contrast, the performance of FEDAVG saturates and
even degrades with the increased number of local epochs, which is consistent with observations
in [51, 8, 74]. As FedDF focuses on better model fusion on the server side, it is orthogonal to recent
techniques (e.g. [61, 35, 12]) targeting the issue of non-i.i.d. local data. We believe combining FedDF
with these techniques can lead to a more robust FL, which we leave as future work7.

Ablation study of FedDF. We provide detailed ablation study for FedDF in Appendix C.4.1 to
identify the source of the benefits. For example, Table 5 justifies the importance of using the uniformly
averaged local models as a starting model (line 6 in Algorithm 1 and line 11 in Algorithm 3), for the
quality of ensemble distillation in FedDF. We further investigate the effect of different optimizers
(for on-server ensemble distillation) on the federated learning performance in Table 6 and Table 7.

Detailed comparison of FedDF with other SOTA federated learning methods for CV tasks.
Table 1 summarizes the results for various degrees of non-i.i.d. data, local training epochs and client
sampling fractions. In all scenarios, FedDF requires significantly fewer communication rounds than
other SOTA methods to reach designated target accuracies. The benefits of FedDF can be further
pronounced by taking more local training epochs as illustrated in Figure 2.
All competing methods have strong difficulties with increasing data heterogeneity (non-i.i.d. data,
i.e. smaller α), while FedDF shows significantly improved robustness to data heterogeneity. In most
scenarios in Table 1, the reduction of α from 1 to 0.1 almost triples the number of communication
rounds for FEDAVG, FEDPROX and FEDAVGM to reach target accuracies, whereas less than twice
the number of rounds are sufficient for FedDF.
Increasing the sampling ratio makes a more noticeable positive impact on FedDF compared to other
methods. We attribute this to the fact that an ensemble tends to improve in robustness and quality,
with a larger number of reasonable good participants, and hence results in better model fusion.
Nevertheless, even in cases with a very low sampling fraction (i.e. C=0.2), FedDF still maintains a
considerable leading margin over the closest competitor.

7 We include some preliminary results to illustrate the compatibility of FedDF in Table 8 (Appendix C.4.1).

5



Table 1: Evaluating different FL methods in different scenarios (i.e. different client sampling fractions, # of
local epochs and target accuracies), in terms of the number of communication rounds to reach target top-1
test accuracy. We evaluate on ResNet-8 with CIFAR-10. For each communication round, a fraction C of the
total 20 clients are randomly selected. T denotes the specified target top-1 test accuracy. Hyperparameters are
fine-tuned for each method (FEDAVG, FEDPROX, and FEDAVGM); FedDF uses the optimal learning rate from
FEDAVG. The performance upper bound of (tuned) centralized training is 86% (trained on all local data).

The number of communication rounds to reach target performance T
Local

epochs C=0.2 C=0.4 C=0.8

α=1, T =80% α=0.1, T =75% α=1, T =80% α=0.1, T =75% α=1, T =80% α=0.1, T =75%

FEDAVG 1 350± 31 546± 191 246± 41 445± 8 278± 83 361± 111
20 144± 51 423± 105 97± 29 309± 88 103± 26 379± 151
40 130± 13 312± 87 104± 52 325± 82 100± 76 312± 110

FEDPROX 20 99± 61 346± 12 91± 40 235± 41 92± 21 237± 93
40 115± 17 270± 96 87± 49 229± 79 80± 44 284± 130

FEDAVGM 20 92± 15 299± 85 92± 46 221± 29 97± 37 235± 129
40 135± 52 322± 99 78± 28 224± 38 83± 34 232± 11

FedDF (ours) 20 61± 24 102± 42 28± 10 51± 4 22± 1 33± 18
40 28± 6 80± 25 20± 4 39± 10 14± 2 20± 4

Table 2: The impact of normalization techniques (i.e. BN, GN) for ResNet-8 on CIFAR (20 clients with
C=0.4, 100 communication rounds, and 40 local epochs per round). We use a constant learning rate and tune
other hyperparameters. The distillation dataset of FedDF for CIFAR-100 is ImageNet (with image size of 32).

Top-1 test accuracy of different methods

Datasets FEDAVG, w/ BN FEDAVG, w/ GN FEDPROX, w/ GN FEDAVGM, w/ GN FedDF, w/ BN

CIFAR-10 α=1 76.01± 1.53 78.57± 0.22 76.32± 1.98 77.79± 1.22 80.69± 0.43
α=0.1 62.22± 3.88 68.37± 0.50 68.65± 0.77 68.63± 0.79 71.36± 1.07

CIFAR-100 α=1 35.56± 1.99 42.54± 0.51 42.94± 1.23 42.83± 0.36 47.43± 0.45
α=0.1 29.14± 1.91 36.72± 1.50 35.74± 1.00 36.29± 1.98 39.33± 0.03

Table 3: Top-1 test accuracy of federated learning CIFAR-10 on VGG-9 (w/o BN), for 20 clients with
C=0.4, α=1 and 100 communication rounds (40 epochs per round). We by default drop dummy predictors.

Top-1 test accuracy @ communication round

Methods 5 10 20 50 100

FEDAVG (w/o drop-worst) 45.72± 30.95 51.06± 35.56 53.22± 37.43 29.60± 40.66 7.52± 4.29
FEDMA (w/o drop-worst) 1 23.41± 0.00 27.55± 0.10 41.56± 0.08 60.35± 0.03 65.0± 0.02
FEDAVG 64.77± 1.24 70.28± 1.02 75.80± 1.36 77.98± 1.81 78.34± 1.42
FEDPROX 63.86± 1.55 71.85± 0.75 75.57± 1.16 77.85± 1.96 78.60± 1.91
FedDF 66.08± 4.14 72.80± 1.59 75.82± 2.09 79.05± 0.54 80.36± 0.63

1 FEDMA does not support drop-worst operation due to its layer-wise communication/fusion scheme. The number of local training
epochs per layer is 5 (45 epochs per model) thus results in stabilized training. More details can be found in Appendix C.2.

Comments on Batch Normalization. Batch Normalization (BN) [31] is the current workhorse in
convolutional deep learning tasks and has been employed by default in most SOTA CNNs [20, 27,
48, 69]. However, it often fails on heterogeneous training data. Hsieh et al. [24] recently examined
the non-i.i.d. data ‘quagmire’ for distributed learning and point out that replacing BN by Group
Normalization (GN) [76] can alleviate some of the quality loss brought by BN due to the discrepancies
between local data distributions.
As shown in Table 2, despite additional effort on architecture modification and hyperparameter tuning
(i.e. the number of groups in GN), baseline methods with GN replacement still lag much behind
FedDF. FedDF provides better model fusion which is robust to non-i.i.d. data, and is compatible with
BN, thus avoids extra efforts for modifying the standard SOTA neural architectures. Figure 13 in
Appendix C.3 shows the complete learning curves.
We additionally evaluate architectures originally designed without BN (i.e. VGG), to demonstrate the
broad applicability of FedDF. Due to the lack of normalization layers, VGG is vulnerable to non-i.i.d.
local distributions. We observe that received models on the server might output random prediction
results on the validation/test dataset and hence give rise to uninformative results overwhelmed by
large variance (as shown in Table 3). We address this issue by a simple treatment8, “drop-worst”, i.e.,
dropping learners with random predictions on the server validation dataset (e.g. 10% accuracy for
CIFAR-10), in each round before applying model averaging and/or ensemble distillation. Table 3
examines the FL methods (FEDAVG, FEDPROX, FEDMA and FedDF) on VGG-9; FedDF consistently
outperforms other methods by a large margin for different communication rounds.

8 Techniques (e.g. Krum, Bulyan), can be adapted to further improve the robustness or defend against attacks.
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(b) SST2.
Figure 3: Federated fine-tuning DistilBERT on (a) AG News and (b) SST-2. For simplicity, we consider 10
clients with C=100% participation ratio and α=1; the number of local training epochs per communication
round (10 rounds in total) is set to 10 and 1 respectively. The 50% of the original training dataset is used for the
federated fine-tuning (for all methods) and the left 50% is used as the unlabeled distillation dataset for FedDF.

Table 4: Federated learning with low-precision models (1-bit binarized ResNet-8) on CIFAR-10. For each
communication round (100 in total), 40% of the total 20 clients (α=1) are randomly selected.

Local Epochs ResNet-8-BN (FEDAVG) ResNet-8-GN (FEDAVG) ResNet-8-BN (FedDF)

20 44.38± 1.21 59.70± 1.65 59.49± 0.98
40 43.91± 3.26 64.25± 1.31 65.49± 0.74
80 47.62± 1.84 65.99± 1.29 70.27± 1.22

Extension to NLP tasks for federated fine-tuning of DistilBERT. Fine-tuning a pre-trained
transformer language model like BERT [13] yields SOTA results on various NLP benchmarks [73, 72].
DistilBERT [60] is a lighter version of BERT with only marginal quality loss on downstream tasks.
As a proof of concept, in Figure 3 we consider federated fine-tuning of DistilBERT on non-i.i.d.
local data (α= 1, depicted in Figure 11). For both AG News and SST2 datasets, FedDF achieves
significantly faster convergence than FEDAVG and consistently outperforms the latter.

4.3 Case Studies
Federated learning for low-bit quantized models. FL for the Internet of Things (IoT) involves
edge devices with diverse hardware, e.g. different computational capacities. Network quantization is
hence of great interest to FL by representing the activations/weights in low precision, with benefits of
significantly reduced local computational footprints and communication costs. Table 4 examines the
model fusion performance for binarized ResNet-8 [57, 30]. FedDF can be on par with or outperform
FEDAVG by a noticeable margin, without introducing extra GN tuning overheads.

Federated learning on heterogeneous systems. Apart from non-i.i.d. local distributions, another
major source of heterogeneity in FL systems manifests in neural architectures [41]. Figure 4
visualizes the training dynamics of FedDF and FEDAVG9 in a heterogeneous system with three distinct
architectures, i.e., ResNet-20, ResNet-32, and ShuffleNetV2. On CIFAR-10/100 and ImageNet,
FedDF dominates FEDAVG on test accuracy in each communication round with much less variance.
Each fused model exhibits marginal quality loss compared to the ensemble performance, which
suggests unlabeled datasets from other domains are sufficient for model fusion. Besides, the gap
between the fused model and the ensemble one widens when the training dataset contains a much
larger number of classes10 than that of the distillation dataset. For instance, the performance gap is
negligible on CIFAR-10, whereas on ImageNet, the gap increases to around 6%. In Section 5, we
study this underlying interaction between training data and unlabeled distillation data in detail.

5 Understanding FedDF
FedDF consists of two chief components: ensembling and knowledge distillation via out-of-domain
data. In this section, we first investigate what affects the ensemble performance on the global
distribution (test domain) through a generalization bound. We then provide empirical understanding
of how different attributes of the out-of-domain distillation dataset affect the student performance on
the global distribution.

9 Model averaging is only performed among models with identical structures.
10 # of classes is a proxy measurement for distribution shift; labels are not used in our distillation procedure.
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(a) CIFAR-10.
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(b) CIFAR-100.
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(c) ImageNet (image resolution 32).
Figure 4: Federated learning on heterogeneous systems (model/data), with three neural architectures
(ResNet-20, ResNet-32, ShuffleNetV2) and non-i.i.d. local data distribution (α=1). We consider 21 clients for
CIFAR (client sampling ratio C=0.4) and 150 clients for ImageNet (C=0.1); different neural architectures are
evenly distributed among clients. We train 80 local training epochs per communication round (total 30 rounds).
CIFAR-100, STL-10, and STL-10 are used as the distillation datasets for CIFAR-10/100 and ImageNet training
respectively. The solid lines show the results of FedDF for a given communication round, while dashed lines
correspond to that of FEDAVG; colors indicate model architectures.

70.0

72.5

75.0

77.5

80.0

82.5

To
p-

1 
te

st
 a

cc
ur

ac
y

FedAvg
FedDF, CIFAR-100
FedDF, STL-10

FedDF, ImageNet32
FedDF, Random noise
FedDF, Generator

20 40 80
# of local epochs per communication round

40
50

(a) CIFAR-10.

0 20 40 60 80 100
# of communication rounds

40

50

60

70

80

To
p-

1 
ac

cu
ra

cy
 o

n 
te

st
 d

at
as

et

Model Fusion Scheme
FedDF, CIFAR-100
FedDF, STL-10

FedDF, ImageNet32
FedDF, Generator
FedAvg

(b) CIFAR-10 (40 local epochs).
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(c) CIFAR-100 (40 local epochs).
Figure 5: The performance of FedDF on different distillation datasets: random uniformly sampled noises,
randomly generated images (from the generator), CIFAR, downsampled ImageNet32, and downsampled STL-10.
We evaluate ResNet-8 on CIFAR for 20 clients, with C=0.4, α=1 and 100 communication rounds.
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unlabeled ImageNet (100 classes),
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Figure 6: Understanding knowledge distillation behaviors of FedDF on # of classes (6(a)), sizes of the
distillation dataset (6(b)), and # of distillation steps (6(c)), for federated learning ResNet-8 on CIFAR-100,
with C = 0.4, α = 1 and 100 communication rounds (40 local epochs per round). ImageNet with image
resolution 32 is considered as our base unlabeled dataset. For simplicity, only classes without overlap with
CIFAR-100 classes are considered, in terms of the synonyms, hyponyms, or hypernyms of the class name.

Generalization bound. Theorem 5.1 provides insights into ensemble performance on the global
distribution. Detailed description and derivations are deferred to Appendix D.
Theorem 5.1 (informal). We denote the global distribution as D, the k-th local distribution and its
empirical distribution as Dk and D̂k respectively. The hypothesis h ∈ H learned on D̂k is denoted
by hD̂k . The upper bound on the risk of the ensemble of K local models on D mainly consists of 1)
the empirical risk of a model trained on the global empirical distribution D̂ = 1

K

∑
k D̂k, and 2)

terms dependent on the distribution discrepancy between Dk and D, with the probability 1− δ:

LD
(

1
K

∑
k hD̂k

)
≤ LD̂(hD̂) +

1

K

∑
k

(
1

2
dH∆H(Dk,D) + λk

)
+

√
log 2K

δ

2m
,

where dH∆H measures the distribution discrepancy between two distributions [3], m is the number of
samples per local distribution, and λk is the minimum of the combined loss LD(h)+LDk(h),∀h ∈ H.
The ensemble of the local models sets the performance upper bound for the later distilled model on
the global distribution as shown in Figure 4. Theorem 5.1 shows that compared to a model trained
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on the global empirical distribution (ideal centralized case), the performance of the ensemble on the
global distribution is associated with the discrepancy between local distributions Dk’s and the global
distribution D. Besides, the shift between the distillation and the global distribution determines the
knowledge transfer quality between these two distributions and hence the test performance of the
fused model. In the following, we empirically examine how the choice of distillation data distributions
and the number of distillation steps influence the quality of ensemble knowledge distillation.

Source, diversity and size of the distillation dataset. The fusion in FedDF demonstrates remark-
able consistency across a wide range of realistic data sources as shown in Figure 5, although an abrupt
performance declination is encountered when the distillation data are sampled from a dramatically
different manifold (e.g. random noise). Notably, synthetic data from the generator of a pre-trained
GAN does not incur noticeable quality loss, opening up numerous possibilities for effective and
efficient model fusion. Figure 6(a) illustrates that in general the diversity of the distillation data does
not significantly impact the performance of ensemble distillation, though the optimal performance is
achieved when two domains have a similar number of classes. Figure 6(b) shows the FedDF is not
demanding on the distillation dataset size: even 1% of data (∼ 48% of the local training dataset) can
result in a reasonably good fusion performance.

Distillation steps. Figure 6(c) depicts the impact of distillation steps on fusion performance, where
FedDF with a moderate number of the distillation steps is able to approach the optimal performance.
For example, 100 distillation steps in Figure 6(c), which corresponds to 5 local epochs of CIFAR-100
(partitioned by 20 clients), suffice to yield satisfactory performance. Thus FedDF introduces minor
time-wise expense.

Broader Impact
We believe that collaborative learning schemes such as federated learning are an important element
towards enabling privacy-preserving training of ML models, as well as a better alignment of each
individual’s data ownership with the resulting utility from jointly trained machine learning models,
especially in applications where data is user-provided and privacy sensitive [34, 55].
In addition to privacy, efficiency gains and lower resource requirements in distributed training reduce
the environmental impact of training large machine learning models. The introduction of a practical
and reliable distillation technique for heterogeneous models and for low-resource clients is a step
towards more broadly enabling collaborative privacy-preserving and efficient decentralized learning.
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