
We thank all reviewers for their time and their valuable feedback. We will add corrections/clarifications as suggested.1

We would like to emphasize our contribution, as summarized by R5’s thorough review: “What’s novel about this paper2

is not the concept of applying knowledge distillation to FL or distributed training. Rather, the contribution of this paper3

is formulating a robust, efficient training scheme with extensive results and analysis which is significant enough.”4

[R1: Misunderstanding on algorithm] Our proposed FedDF is not the mentioned engineering solution. Each model5

architecture groups acquires knowledge from logits averaged over all received models (line 14 in Alg. 3, Fig. 7) for next6

FL round; thus mutual beneficial information can be shared across architectures. The St at Line 13 in Alg. 3 is correct.7

[R1: No privacy concern in using GAN] GAN training is not involved in all stages of FL and cannot steal clients’8

data. Data generation is done by the (frozen) generator before the FL training by performing inference on random noise.9

[R1: Clarity of line 32] “[A]pplying ensemble learning techniques directly...” refers to keeping weights of all received10

models on the server and performing naive ensembling (logits averaging) for inference (line 30-31). In contrast, we11

distill the knowledge of all received models to the server model and then drop all received models’ weights.12

[R2: Quality loss and data heterogeneity] Final performance for all methods with different non-i.i.d. de-13

grees/models/datasets is shown in Tab. 2 & 3, and FedDF is consistently the best performing method. As mentioned14

in the caption of Tab. 1, the fine-tuned test accuracy of centralized training (on all local data) is 86%. The data15

heterogeneity issue in FL results in quality loss (e.g. Fig. 2), and thus 80% and 75% are reasonable targets.16

Due to computational infeasibility, ResNet-8 with fine-tuned hyper-parameters is used to provide in-depth empirical17

understanding. Better performance can be achieved by larger model capacity, but is orthogonal to the provided insights.18

[R2 & R4 & R5: Comments on preprints FedMD and Cronus] We comment on the two closest approaches (FedMD19

and Cronus), in order to address 1) Distinctions between FedDF and prior work (R4), 2) Privacy/Communication traffic20

concerns (R2), 3) Omitted experiments on FedMD and Cronus (R2, R4, R5).21

• Distinctions between FedDF and prior work. As discussed in the related work, most SOTA FL methods directly22

manipulate received model parameters (e.g. FedAvg/FedAvgM/FedMA). To our best knowledge, FedMD and Cronus23

are the only two that utilize logits information (of neural nets) for FL. The distinctions from them are made below.24

• Different objectives and evaluation metrics. Cronus is designed for robust FL under poisoning attack, whereas25

FedMD is for personalized FL. In contrast, FedDF is intended for on-server model aggregation (evaluation on the26

aggregated model), whereas neither FedMD nor Cronus aggregates the model on the server.27

• Different Operations. 1) FedDF, like FedAvg, only exchanges models between the server and clients (line 114),28

without transmitting input data. In contrast, FedMD and Cornus rely on exchanging public data logits. As FedAvg,29

FedDF can include privacy/security extensions and has the same communication cost per round. 2) FedDF performs30

ensemble distillation with unlabeled data on the server. In contrast, FedMD/Cronus use averaged logits received31

from the server for local client training.32

• Omitted experiments with FedMD/Cronus. 1) FedMD requires to locally pre-train on the labeled public data, thus33

the model classifier necessitates an output dimension of # of public classes plus # of private classes (c.f. the output34

dimension of # of private classes in other FL methods). We cannot compare FedMD with FedDF with the same35

architecture (classifier) to ensure fairness. 2) Cronus is shown to be consistently worse than FedAvg in normal FL (i.e.36

no attack case) in their Tab. IV & VI. 3) We thoroughly evaluated SOTA baselines with the same objective/metric.37

[R4: Local training technique] Our experimental setup is widely adopted in many other published FL papers. We38

observe that techniques like learning rate decay and local momentum are orthogonal to the model aggregation. Fig. 1239

showcases the ineffectiveness of learning rate decay during local training. Including local Nesterov momentum only40

marginally improves all methods without affecting the conclusion; we will include omitted results for local momentum.41

[R5: Clarification on the “contradiction claims”] FedMD and Cronus have no evaluations on their choices of training42

data construction, thus it remains unclear (line 89-90) how local training gets affected. Some general robust approaches43

reviewed in Cronus (e.g. Krum, Bulyan) can be adapted to exclude faulty client models for FedDF. These techniques44

alone do not interfere with the local training. We include extra results to justify the compatibility of FedDF with45

orthogonal work; fine-tuned proximal penalty (from FedProx) is used locally as suggested, on CIFAR-10 with ResNet-846

(setups in Fig. 2). For non-iid degree α=1, the results of FedDF v.s. FedAvg over three seeds are: w/ prox 80.56 v.s.47

76.11 and w/o prox 80.27 v.s. 72.73; for α=0.1, we have w/ prox 71.64 v.s. 62.53, and w/o prox 71.52 v.s. 62.44.48

[R5: Learning rate] Our learning rate tuning is actually sufficient, as our used STOA networks are much less sensitive49

to learning rate, different from the classical CNN (w/o BN and w/o residual connection) used in the original papers of50

FedAvg and FedMD. The initial grid {1.5, 1, 0.5, 0.1, 0.05, 0.01} loosely covers good SGD learning rates and can be51

extended to scales such as {0.005, 0.001} whenever necessary. A more fine-grained tuning only marginally improved52

the results of all methods and did not affect our conclusions. The learning rate decay used in appendix (i.e. decay by 1053

at 50% and 75% of the local training epochs) follows the general scheme as in many published papers.54

To distinguish the benefits of FedDF from the small learning rate or Adam optimizer, we report the results of using55

Adam (2e-3) for both local training and model fusion (over three seeds), on CIFAR-10 with ResNet-8 (setups in Fig. 2).56

For α=1, we have 80.27 v.s. 72.73 (local training via SGD) and 83.32 v.s. 78.13 (local training via Adam); for α=0.1,57

the results of FedDF v.s. FedAvg are 71.52 v.s. 62.44 and 72.58 v.s. 62.53 respectively. Improving the local training58

through Adam might help FL but the benefit vanishes with higher data heterogeneity (e.g. α=0.1). Performance gain59

from FedDF is robust to data heterogeneity and also orthogonal to effects of learning rates and Adam. As a side note,60

FedDF uses the common learning rate magnitude for Adam (different from SGD’s 1e-1) and is not small.61


